Files
mgmt/lang/core/struct_lookup.go
James Shubin 790b7199ca lang: New function engine
This mega patch primarily introduces a new function engine. The main
reasons for this new engine are:

1) Massively improved performance with lock-contended graphs.

Certain large function graphs could have very high lock-contention which
turned out to be much slower than I would have liked. This new algorithm
happens to be basically lock-free, so that's another helpful
improvement.

2) Glitch-free function graphs.

The function graphs could "glitch" (an FRP term) which could be
undesirable in theory. In practice this was never really an issue, and
I've not explicitly guaranteed that the new graphs are provably
glitch-free, but in practice things are a lot more consistent.

3) Simpler graph shape.

The new graphs don't require the private channels. This makes
understanding the graphs a lot easier.

4) Branched graphs only run half.

Previously we would run two pure side of an if statement, and while this
was mostly meant as an early experiment, it stayed in for far too long
and now was the right time to remove this. This also means our graphs
are much smaller and more efficient too.

Note that this changed the function API slightly. Everything has been
ported. It's possible that we introduce a new API in the future, but it
is unexpected to cause removal of the two current APIs.

In addition, we finally split out the "schedule" aspect from
world.schedule(). The "pick me" aspects now happen in a separate
resource, rather than as a yucky side-effect in the function. This also
lets us more precisely choose when we're scheduled, and we can observe
without being chosen too.

As usual many thanks to Sam for helping through some of the algorithmic
graph shape issues!
2025-09-11 23:19:45 -04:00

312 lines
10 KiB
Go

// Mgmt
// Copyright (C) James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
//
// Additional permission under GNU GPL version 3 section 7
//
// If you modify this program, or any covered work, by linking or combining it
// with embedded mcl code and modules (and that the embedded mcl code and
// modules which link with this program, contain a copy of their source code in
// the authoritative form) containing parts covered by the terms of any other
// license, the licensors of this program grant you additional permission to
// convey the resulting work. Furthermore, the licensors of this program grant
// the original author, James Shubin, additional permission to update this
// additional permission if he deems it necessary to achieve the goals of this
// additional permission.
package core
import (
"context"
"fmt"
"github.com/purpleidea/mgmt/lang/funcs"
"github.com/purpleidea/mgmt/lang/interfaces"
"github.com/purpleidea/mgmt/lang/types"
"github.com/purpleidea/mgmt/util/errwrap"
)
const (
// StructLookupFuncName is the name this function is registered as. This
// starts with an underscore so that it cannot be used from the lexer.
StructLookupFuncName = funcs.StructLookupFuncName
// arg names...
structLookupArgNameStruct = "struct"
structLookupArgNameField = "field"
)
func init() {
funcs.Register(StructLookupFuncName, func() interfaces.Func { return &StructLookupFunc{} }) // must register the func and name
}
var _ interfaces.BuildableFunc = &StructLookupFunc{} // ensure it meets this expectation
// StructLookupFunc is a struct field lookup function.
type StructLookupFunc struct {
Type *types.Type // Kind == Struct, that is used as the struct we lookup
Out *types.Type // type of field we're extracting
built bool // was this function built yet?
init *interfaces.Init
last types.Value // last value received to use for diff
field string
result types.Value // last calculated output
}
// String returns a simple name for this function. This is needed so this struct
// can satisfy the pgraph.Vertex interface.
func (obj *StructLookupFunc) String() string {
return StructLookupFuncName
}
// ArgGen returns the Nth arg name for this function.
func (obj *StructLookupFunc) ArgGen(index int) (string, error) {
seq := []string{structLookupArgNameStruct, structLookupArgNameField}
if l := len(seq); index >= l {
return "", fmt.Errorf("index %d exceeds arg length of %d", index, l)
}
return seq[index], nil
}
// helper
func (obj *StructLookupFunc) sig() *types.Type {
st := "?1"
out := "?2"
if obj.Type != nil {
st = obj.Type.String()
}
if obj.Out != nil {
out = obj.Out.String()
}
return types.NewType(fmt.Sprintf(
"func(%s %s, %s str) %s",
structLookupArgNameStruct, st,
structLookupArgNameField,
out,
))
}
// FuncInfer takes partial type and value information from the call site of this
// function so that it can build an appropriate type signature for it. The type
// signature may include unification variables.
func (obj *StructLookupFunc) FuncInfer(partialType *types.Type, partialValues []types.Value) (*types.Type, []*interfaces.UnificationInvariant, error) {
// func(struct ?1, field str) ?2
// This particular function should always get called with a known string
// for the second argument. Without it being known statically, we refuse
// to build this function.
if l := 2; len(partialValues) != l {
return nil, nil, fmt.Errorf("function must have %d args", l)
}
if err := partialValues[1].Type().Cmp(types.TypeStr); err != nil {
return nil, nil, errwrap.Wrapf(err, "function field name must be a str")
}
s := partialValues[1].Str() // must not panic
if s == "" {
return nil, nil, fmt.Errorf("function must not have an empty field name")
}
// This can happen at runtime too, but we save it here for Build()!
obj.field = s // store for later
// Figure out more about the sig if any information is known statically.
if len(partialType.Ord) > 0 && partialType.Map[partialType.Ord[0]] != nil {
obj.Type = partialType.Map[partialType.Ord[0]] // assume this
if obj.Type.Kind == types.KindStruct && obj.Type.Map != nil {
if typ, exists := obj.Type.Map[s]; exists {
obj.Out = typ
}
}
}
// This isn't precise enough because we must guarantee that the field is
// in the struct and that ?1 is actually a struct, but that's okay it is
// something that we'll verify at build time!
return obj.sig(), []*interfaces.UnificationInvariant{}, nil
}
// Build is run to turn the polymorphic, undetermined function, into the
// specific statically typed version. It is usually run after Unify completes,
// and must be run before Info() and any of the other Func interface methods are
// used. This function is idempotent, as long as the arg isn't changed between
// runs.
func (obj *StructLookupFunc) Build(typ *types.Type) (*types.Type, error) {
// typ is the KindFunc signature we're trying to build...
if typ.Kind != types.KindFunc {
return nil, fmt.Errorf("input type must be of kind func")
}
if len(typ.Ord) != 2 {
return nil, fmt.Errorf("the structlookup function needs exactly two args")
}
if typ.Out == nil {
return nil, fmt.Errorf("return type of function must be specified")
}
if typ.Map == nil {
return nil, fmt.Errorf("invalid input type")
}
tStruct, exists := typ.Map[typ.Ord[0]]
if !exists || tStruct == nil {
return nil, fmt.Errorf("first arg must be specified")
}
tField, exists := typ.Map[typ.Ord[1]]
if !exists || tField == nil {
return nil, fmt.Errorf("second arg must be specified")
}
if err := tField.Cmp(types.TypeStr); err != nil {
return nil, errwrap.Wrapf(err, "field must be an str")
}
// NOTE: We actually don't know which field this is yet, only its type!
// We cached the discovered field during Infer(), but it turns out it's
// not actually necessary for us to know it to build the struct. It is
// needed to make sure the lossy Infer unification variables are right.
if tStruct.Kind != types.KindStruct {
return nil, fmt.Errorf("first arg must be of kind struct, got: %s", tStruct.Kind)
}
if obj.field == "" {
// programming error
return nil, fmt.Errorf("did not infer correctly")
}
ix := -1 // not found
for i, x := range tStruct.Ord {
if x != obj.field {
continue
}
// found
if ix != -1 {
// programming error
return nil, fmt.Errorf("duplicate field found")
}
ix = i // found it here!
//break // keep checking for extra safety
}
if ix == -1 {
return nil, fmt.Errorf("field %s was not found in struct", obj.field)
}
tF, exists := tStruct.Map[tStruct.Ord[ix]]
if !exists {
return nil, fmt.Errorf("field %s was not found in struct", obj.field)
}
// The return value must match the type of the field we're pulling out!
if err := typ.Out.Cmp(tF); err != nil {
return nil, fmt.Errorf("field %s type error: %+v", obj.field, err)
}
obj.Type = tStruct // struct type
obj.Out = typ.Out // type of return value
obj.built = true
return obj.sig(), nil
}
// Copy is implemented so that the obj.field value is not lost if we copy this
// function. That value is learned during FuncInfer, and previously would have
// been lost by the time we used it in Build.
func (obj *StructLookupFunc) Copy() interfaces.Func {
return &StructLookupFunc{
Type: obj.Type, // don't copy because we use this after unification
Out: obj.Out,
built: obj.built,
init: obj.init, // likely gets overwritten anyways
field: obj.field, // this we really need!
}
}
// Validate tells us if the input struct takes a valid form.
func (obj *StructLookupFunc) Validate() error {
if !obj.built {
return fmt.Errorf("function wasn't built yet")
}
if obj.Type == nil { // build must be run first
return fmt.Errorf("type is still unspecified")
}
if obj.Type.Kind != types.KindStruct {
return fmt.Errorf("type must be a kind of struct")
}
if obj.Out == nil {
return fmt.Errorf("return type must be specified")
}
for _, t := range obj.Type.Map {
if obj.Out.Cmp(t) == nil {
return nil // found at least one match
}
}
return fmt.Errorf("return type is not in the list of available struct fields")
}
// Info returns some static info about itself. Build must be called before this
// will return correct data.
func (obj *StructLookupFunc) Info() *interfaces.Info {
// Since this function implements FuncInfer we want sig to return nil to
// avoid an accidental return of unification variables when we should be
// getting them from FuncInfer, and not from here. (During unification!)
var sig *types.Type
if obj.built {
sig = obj.sig() // helper
}
return &interfaces.Info{
Pure: true,
Memo: true,
Fast: true,
Spec: true,
Sig: sig,
Err: obj.Validate(),
}
}
// Init runs some startup code for this function.
func (obj *StructLookupFunc) Init(init *interfaces.Init) error {
obj.init = init
return nil
}
// Call returns the result of this function.
func (obj *StructLookupFunc) Call(ctx context.Context, args []types.Value) (types.Value, error) {
if len(args) < 2 {
return nil, fmt.Errorf("not enough args")
}
st := args[0].(*types.StructValue)
field := args[1].Str()
if field == "" {
return nil, fmt.Errorf("received empty field")
}
// TODO: Is it a hack to grab this first value?
if obj.field == "" {
// This can happen at compile time too. Bonus!
obj.field = field // store first field
}
if field != obj.field {
return nil, fmt.Errorf("input field changed from: `%s`, to: `%s`", obj.field, field)
}
result, exists := st.Lookup(obj.field)
if !exists {
return nil, fmt.Errorf("could not lookup field: `%s` in struct", field)
}
return result, nil
}