// Mgmt // Copyright (C) James Shubin and the project contributors // Written by James Shubin and the project contributors // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // // Additional permission under GNU GPL version 3 section 7 // // If you modify this program, or any covered work, by linking or combining it // with embedded mcl code and modules (and that the embedded mcl code and // modules which link with this program, contain a copy of their source code in // the authoritative form) containing parts covered by the terms of any other // license, the licensors of this program grant you additional permission to // convey the resulting work. Furthermore, the licensors of this program grant // the original author, James Shubin, additional permission to update this // additional permission if he deems it necessary to achieve the goals of this // additional permission. package core import ( "context" "fmt" "github.com/purpleidea/mgmt/lang/funcs" "github.com/purpleidea/mgmt/lang/interfaces" "github.com/purpleidea/mgmt/lang/types" "github.com/purpleidea/mgmt/util/errwrap" ) const ( // StructLookupFuncName is the name this function is registered as. This // starts with an underscore so that it cannot be used from the lexer. StructLookupFuncName = funcs.StructLookupFuncName // arg names... structLookupArgNameStruct = "struct" structLookupArgNameField = "field" ) func init() { funcs.Register(StructLookupFuncName, func() interfaces.Func { return &StructLookupFunc{} }) // must register the func and name } var _ interfaces.BuildableFunc = &StructLookupFunc{} // ensure it meets this expectation // StructLookupFunc is a struct field lookup function. type StructLookupFunc struct { Type *types.Type // Kind == Struct, that is used as the struct we lookup Out *types.Type // type of field we're extracting built bool // was this function built yet? init *interfaces.Init last types.Value // last value received to use for diff field string result types.Value // last calculated output } // String returns a simple name for this function. This is needed so this struct // can satisfy the pgraph.Vertex interface. func (obj *StructLookupFunc) String() string { return StructLookupFuncName } // ArgGen returns the Nth arg name for this function. func (obj *StructLookupFunc) ArgGen(index int) (string, error) { seq := []string{structLookupArgNameStruct, structLookupArgNameField} if l := len(seq); index >= l { return "", fmt.Errorf("index %d exceeds arg length of %d", index, l) } return seq[index], nil } // helper func (obj *StructLookupFunc) sig() *types.Type { st := "?1" out := "?2" if obj.Type != nil { st = obj.Type.String() } if obj.Out != nil { out = obj.Out.String() } return types.NewType(fmt.Sprintf( "func(%s %s, %s str) %s", structLookupArgNameStruct, st, structLookupArgNameField, out, )) } // FuncInfer takes partial type and value information from the call site of this // function so that it can build an appropriate type signature for it. The type // signature may include unification variables. func (obj *StructLookupFunc) FuncInfer(partialType *types.Type, partialValues []types.Value) (*types.Type, []*interfaces.UnificationInvariant, error) { // func(struct ?1, field str) ?2 // This particular function should always get called with a known string // for the second argument. Without it being known statically, we refuse // to build this function. if l := 2; len(partialValues) != l { return nil, nil, fmt.Errorf("function must have %d args", l) } if err := partialValues[1].Type().Cmp(types.TypeStr); err != nil { return nil, nil, errwrap.Wrapf(err, "function field name must be a str") } s := partialValues[1].Str() // must not panic if s == "" { return nil, nil, fmt.Errorf("function must not have an empty field name") } // This can happen at runtime too, but we save it here for Build()! obj.field = s // store for later // Figure out more about the sig if any information is known statically. if len(partialType.Ord) > 0 && partialType.Map[partialType.Ord[0]] != nil { obj.Type = partialType.Map[partialType.Ord[0]] // assume this if obj.Type.Kind == types.KindStruct && obj.Type.Map != nil { if typ, exists := obj.Type.Map[s]; exists { obj.Out = typ } } } // This isn't precise enough because we must guarantee that the field is // in the struct and that ?1 is actually a struct, but that's okay it is // something that we'll verify at build time! return obj.sig(), []*interfaces.UnificationInvariant{}, nil } // Build is run to turn the polymorphic, undetermined function, into the // specific statically typed version. It is usually run after Unify completes, // and must be run before Info() and any of the other Func interface methods are // used. This function is idempotent, as long as the arg isn't changed between // runs. func (obj *StructLookupFunc) Build(typ *types.Type) (*types.Type, error) { // typ is the KindFunc signature we're trying to build... if typ.Kind != types.KindFunc { return nil, fmt.Errorf("input type must be of kind func") } if len(typ.Ord) != 2 { return nil, fmt.Errorf("the structlookup function needs exactly two args") } if typ.Out == nil { return nil, fmt.Errorf("return type of function must be specified") } if typ.Map == nil { return nil, fmt.Errorf("invalid input type") } tStruct, exists := typ.Map[typ.Ord[0]] if !exists || tStruct == nil { return nil, fmt.Errorf("first arg must be specified") } tField, exists := typ.Map[typ.Ord[1]] if !exists || tField == nil { return nil, fmt.Errorf("second arg must be specified") } if err := tField.Cmp(types.TypeStr); err != nil { return nil, errwrap.Wrapf(err, "field must be an str") } // NOTE: We actually don't know which field this is yet, only its type! // We cached the discovered field during Infer(), but it turns out it's // not actually necessary for us to know it to build the struct. It is // needed to make sure the lossy Infer unification variables are right. if tStruct.Kind != types.KindStruct { return nil, fmt.Errorf("first arg must be of kind struct, got: %s", tStruct.Kind) } if obj.field == "" { // programming error return nil, fmt.Errorf("did not infer correctly") } ix := -1 // not found for i, x := range tStruct.Ord { if x != obj.field { continue } // found if ix != -1 { // programming error return nil, fmt.Errorf("duplicate field found") } ix = i // found it here! //break // keep checking for extra safety } if ix == -1 { return nil, fmt.Errorf("field %s was not found in struct", obj.field) } tF, exists := tStruct.Map[tStruct.Ord[ix]] if !exists { return nil, fmt.Errorf("field %s was not found in struct", obj.field) } // The return value must match the type of the field we're pulling out! if err := typ.Out.Cmp(tF); err != nil { return nil, fmt.Errorf("field %s type error: %+v", obj.field, err) } obj.Type = tStruct // struct type obj.Out = typ.Out // type of return value obj.built = true return obj.sig(), nil } // Copy is implemented so that the obj.field value is not lost if we copy this // function. That value is learned during FuncInfer, and previously would have // been lost by the time we used it in Build. func (obj *StructLookupFunc) Copy() interfaces.Func { return &StructLookupFunc{ Type: obj.Type, // don't copy because we use this after unification Out: obj.Out, built: obj.built, init: obj.init, // likely gets overwritten anyways field: obj.field, // this we really need! } } // Validate tells us if the input struct takes a valid form. func (obj *StructLookupFunc) Validate() error { if !obj.built { return fmt.Errorf("function wasn't built yet") } if obj.Type == nil { // build must be run first return fmt.Errorf("type is still unspecified") } if obj.Type.Kind != types.KindStruct { return fmt.Errorf("type must be a kind of struct") } if obj.Out == nil { return fmt.Errorf("return type must be specified") } for _, t := range obj.Type.Map { if obj.Out.Cmp(t) == nil { return nil // found at least one match } } return fmt.Errorf("return type is not in the list of available struct fields") } // Info returns some static info about itself. Build must be called before this // will return correct data. func (obj *StructLookupFunc) Info() *interfaces.Info { // Since this function implements FuncInfer we want sig to return nil to // avoid an accidental return of unification variables when we should be // getting them from FuncInfer, and not from here. (During unification!) var sig *types.Type if obj.built { sig = obj.sig() // helper } return &interfaces.Info{ Pure: true, Memo: true, Fast: true, Spec: true, Sig: sig, Err: obj.Validate(), } } // Init runs some startup code for this function. func (obj *StructLookupFunc) Init(init *interfaces.Init) error { obj.init = init return nil } // Call returns the result of this function. func (obj *StructLookupFunc) Call(ctx context.Context, args []types.Value) (types.Value, error) { if len(args) < 2 { return nil, fmt.Errorf("not enough args") } st := args[0].(*types.StructValue) field := args[1].Str() if field == "" { return nil, fmt.Errorf("received empty field") } // TODO: Is it a hack to grab this first value? if obj.field == "" { // This can happen at compile time too. Bonus! obj.field = field // store first field } if field != obj.field { return nil, fmt.Errorf("input field changed from: `%s`, to: `%s`", obj.field, field) } result, exists := st.Lookup(obj.field) if !exists { return nil, fmt.Errorf("could not lookup field: `%s` in struct", field) } return result, nil }