Files
mgmt/lang/funcs/structs/composite.go
James Shubin b134c4b778 lang: interfaces, funcs: Port Func API to new Stream signature
This removes the `Close() error` and replaces it with a more modern
Stream API that takes a context. This removes boilerplate and makes
integration with concurrent code easier. The only downside is that there
isn't an explicit cleanup step, but only one function was even using
that and it was possible to switch it to a defer in Stream.

This also renames the functions from polyfunc to just func which we
determine by API not naming.
2023-08-08 21:33:06 -04:00

220 lines
6.7 KiB
Go

// Mgmt
// Copyright (C) 2013-2023+ James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
package structs
import (
"context"
"fmt"
"github.com/purpleidea/mgmt/lang/interfaces"
"github.com/purpleidea/mgmt/lang/types"
"github.com/purpleidea/mgmt/util/errwrap"
)
const (
// CompositeFuncName is the unique name identifier for this function.
CompositeFuncName = "composite"
)
// CompositeFunc is a function that passes through the value it receives. It is
// used to take a series of inputs to a list, map or struct, and return that
// value as a stream that depends on those inputs. It helps the list, map, and
// struct's that fulfill the Expr interface but expressing a Func method.
type CompositeFunc struct {
Type *types.Type // this is the type of the composite value we hold
Len int // length of list or map (if used)
init *interfaces.Init
last types.Value // last value received to use for diff
result types.Value // last calculated output
}
// String returns a simple name for this function. This is needed so this struct
// can satisfy the pgraph.Vertex interface.
func (obj *CompositeFunc) String() string {
return CompositeFuncName
}
// Validate makes sure we've built our struct properly.
func (obj *CompositeFunc) Validate() error {
if obj.Type == nil {
return fmt.Errorf("must specify a type")
}
switch obj.Type.Kind {
case types.KindList:
fallthrough
case types.KindMap:
fallthrough
case types.KindStruct:
return nil
}
return fmt.Errorf("can't compose type `%s`", obj.Type.String())
}
// Info returns some static info about itself.
func (obj *CompositeFunc) Info() *interfaces.Info {
typ := &types.Type{
Kind: types.KindFunc, // function type
Map: make(map[string]*types.Type),
Ord: []string{},
Out: obj.Type, // this is the output type for the expression
}
switch obj.Type.Kind {
case types.KindList: // wrapped in a struct with `length` many keys
for i := 0; i < obj.Len; i++ {
// FIXME: should we .Title the fields or add a prefix?
key := fmt.Sprintf("%d", i)
typ.Map[key] = obj.Type.Val // type of each list element
typ.Ord = append(typ.Ord, key)
}
case types.KindMap: // wrapped in a struct with named keys
for i := 0; i < obj.Len; i++ {
// each key and val has a value to pass in, and we have
// a known number of kv pairs, so we pass each in with
// the index of the kv pair as found in the parse order
key1 := fmt.Sprintf("key:%d", i)
typ.Map[key1] = obj.Type.Key // type of each map key
typ.Ord = append(typ.Ord, key1)
key2 := fmt.Sprintf("val:%d", i)
typ.Map[key2] = obj.Type.Val // type of each map val
typ.Ord = append(typ.Ord, key2)
}
case types.KindStruct:
// map it directly, each key is the right input!
typ.Map = obj.Type.Map
typ.Ord = obj.Type.Ord
}
return &interfaces.Info{
Pure: true,
Memo: false, // TODO: ???
Sig: typ,
Err: obj.Validate(),
}
}
// Init runs some startup code for this composite function.
func (obj *CompositeFunc) Init(init *interfaces.Init) error {
obj.init = init
return nil
}
// Stream takes an input struct in the format as described in the Func and Graph
// methods of the Expr, and returns the actual expected value as a stream based
// on the changing inputs to that value.
func (obj *CompositeFunc) Stream(ctx context.Context) error {
defer close(obj.init.Output) // the sender closes
for {
select {
case input, ok := <-obj.init.Input:
if !ok {
obj.init.Input = nil // don't infinite loop back
if obj.last == nil {
// FIXME: can we get an empty struct?
result := obj.Type.New() // new list or map
obj.result = result
select {
case obj.init.Output <- result: // send
// pass
case <-ctx.Done():
return nil
}
}
return nil // can't output any more
}
//if err := input.Type().Cmp(obj.Info().Sig.Input); err != nil {
// return errwrap.Wrapf(err, "wrong function input")
//}
if obj.last != nil && input.Cmp(obj.last) == nil {
continue // value didn't change, skip it
}
obj.last = input // store for next
var result types.Value
switch obj.Type.Kind {
case types.KindList:
// XXX: this duplicates the same logic that exists in Value() as implemented on *ExprList
// XXX: have this call that function to get the result?
result = obj.Type.New() // new list
input := input.(*types.StructValue) // must be!
for i := 0; i < obj.Len; i++ { // build it
value, exists := input.Lookup(fmt.Sprintf("%d", i)) // argNames as integers!
if !exists {
return fmt.Errorf("missing input index `%d`", i)
}
if err := result.(*types.ListValue).Add(value); err != nil {
return errwrap.Wrapf(err, "can't build list index `%d`", i)
}
}
case types.KindMap:
result = obj.Type.New() // new map
input := (input.(*types.StructValue)).Struct() // must be!
l := len(input)
if l%2 != 0 {
return fmt.Errorf("expected even number of inputs for a map, got: %d", l)
}
// each key should be named `key:0`, `val:0`, `key:1`, `val:1`,
// and so on for as many key pairs as we have... remember that
// the number of keys pairs is known statically in this case!
for i := 0; i < l/2; i++ { // build it
key, exists := input[fmt.Sprintf("key:%d", i)]
if !exists {
return fmt.Errorf("missing input key `key:%d`", i)
}
val, exists := input[fmt.Sprintf("val:%d", i)]
if !exists {
return fmt.Errorf("missing input val `val:%d`", i)
}
if err := result.(*types.MapValue).Add(key, val); err != nil {
return errwrap.Wrapf(err, "can't build map key with index `%d`", i)
}
}
case types.KindStruct:
result = input
}
// skip sending an update...
if obj.result != nil && result.Cmp(obj.result) == nil {
continue // result didn't change
}
obj.result = result // store new result
case <-ctx.Done():
return nil
}
select {
case obj.init.Output <- obj.result: // send
// pass
case <-ctx.Done():
return nil
}
}
}