Files
mgmt/lang/funcs/structlookup_func.go
James Shubin b134c4b778 lang: interfaces, funcs: Port Func API to new Stream signature
This removes the `Close() error` and replaces it with a more modern
Stream API that takes a context. This removes boilerplate and makes
integration with concurrent code easier. The only downside is that there
isn't an explicit cleanup step, but only one function was even using
that and it was possible to switch it to a defer in Stream.

This also renames the functions from polyfunc to just func which we
determine by API not naming.
2023-08-08 21:33:06 -04:00

534 lines
16 KiB
Go

// Mgmt
// Copyright (C) 2013-2023+ James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
package funcs
import (
"context"
"fmt"
"github.com/purpleidea/mgmt/lang/interfaces"
"github.com/purpleidea/mgmt/lang/types"
"github.com/purpleidea/mgmt/util/errwrap"
)
const (
// StructLookupFuncName is the name this function is registered as. This
// starts with an underscore so that it cannot be used from the lexer.
// XXX: change to _structlookup and add syntax in the lexer/parser
StructLookupFuncName = "structlookup"
// arg names...
structLookupArgNameStruct = "struct"
structLookupArgNameField = "field"
)
func init() {
Register(StructLookupFuncName, func() interfaces.Func { return &StructLookupFunc{} }) // must register the func and name
}
// StructLookupFunc is a struct field lookup function.
type StructLookupFunc struct {
Type *types.Type // Kind == Struct, that is used as the struct we lookup
Out *types.Type // type of field we're extracting
init *interfaces.Init
last types.Value // last value received to use for diff
field string
result types.Value // last calculated output
}
// String returns a simple name for this function. This is needed so this struct
// can satisfy the pgraph.Vertex interface.
func (obj *StructLookupFunc) String() string {
return StructLookupFuncName
}
// ArgGen returns the Nth arg name for this function.
func (obj *StructLookupFunc) ArgGen(index int) (string, error) {
seq := []string{structLookupArgNameStruct, structLookupArgNameField}
if l := len(seq); index >= l {
return "", fmt.Errorf("index %d exceeds arg length of %d", index, l)
}
return seq[index], nil
}
// Unify returns the list of invariants that this func produces.
func (obj *StructLookupFunc) Unify(expr interfaces.Expr) ([]interfaces.Invariant, error) {
var invariants []interfaces.Invariant
var invar interfaces.Invariant
// func(struct T1, field str) T2
structName, err := obj.ArgGen(0)
if err != nil {
return nil, err
}
fieldName, err := obj.ArgGen(1)
if err != nil {
return nil, err
}
dummyStruct := &interfaces.ExprAny{} // corresponds to the struct type
dummyField := &interfaces.ExprAny{} // corresponds to the field type
dummyOut := &interfaces.ExprAny{} // corresponds to the out string
// field arg type of string
invar = &interfaces.EqualsInvariant{
Expr: dummyField,
Type: types.TypeStr,
}
invariants = append(invariants, invar)
// XXX: we could use this relationship *if* our solver could understand
// different fields, and partial struct matches. I guess we'll leave it
// for another day!
//mapped := make(map[string]interfaces.Expr)
//ordered := []string{???}
//mapped[???] = dummyField
//invar = &interfaces.EqualityWrapStructInvariant{
// Expr1: dummyStruct,
// Expr2Map: mapped,
// Expr2Ord: ordered,
//}
//invariants = append(invariants, invar)
// full function
mapped := make(map[string]interfaces.Expr)
ordered := []string{structName, fieldName}
mapped[structName] = dummyStruct
mapped[fieldName] = dummyField
invar = &interfaces.EqualityWrapFuncInvariant{
Expr1: expr, // maps directly to us!
Expr2Map: mapped,
Expr2Ord: ordered,
Expr2Out: dummyOut,
}
invariants = append(invariants, invar)
// generator function
fn := func(fnInvariants []interfaces.Invariant, solved map[interfaces.Expr]*types.Type) ([]interfaces.Invariant, error) {
for _, invariant := range fnInvariants {
// search for this special type of invariant
cfavInvar, ok := invariant.(*interfaces.CallFuncArgsValueInvariant)
if !ok {
continue
}
// did we find the mapping from us to ExprCall ?
if cfavInvar.Func != expr {
continue
}
// cfavInvar.Expr is the ExprCall! (the return pointer)
// cfavInvar.Args are the args that ExprCall uses!
if l := len(cfavInvar.Args); l != 2 {
return nil, fmt.Errorf("unable to build function with %d args", l)
}
// add the relationship to the returned value
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Expr,
Expr2: dummyOut,
}
invariants = append(invariants, invar)
// add the relationships to the called args
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Args[0],
Expr2: dummyStruct,
}
invariants = append(invariants, invar)
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Args[1],
Expr2: dummyField,
}
invariants = append(invariants, invar)
var invariants []interfaces.Invariant
var invar interfaces.Invariant
// second arg must be a string
invar = &interfaces.EqualsInvariant{
Expr: cfavInvar.Args[1],
Type: types.TypeStr,
}
invariants = append(invariants, invar)
value, err := cfavInvar.Args[1].Value() // is it known?
if err != nil {
return nil, fmt.Errorf("field string is not known statically")
}
if k := value.Type().Kind; k != types.KindStr {
return nil, fmt.Errorf("unable to build function with 1st arg of kind: %s", k)
}
field := value.Str() // must not panic
// If we figure out both of these two types, we'll know
// the full type...
var t1 *types.Type // struct type
var t2 *types.Type // return type
// validateArg0 checks: struct T1
validateArg0 := func(typ *types.Type) error {
if typ == nil { // unknown so far
return nil
}
// we happen to have a struct!
if k := typ.Kind; k != types.KindStruct {
return fmt.Errorf("unable to build function with 0th arg of kind: %s", k)
}
// check both Ord and Map for safety
found := false
for _, s := range typ.Ord {
if s == field {
found = true
break
}
}
t, exists := typ.Map[field] // type found is T2
if !exists || !found {
return fmt.Errorf("struct is missing field: %s", field)
}
if err := typ.Cmp(t1); t1 != nil && err != nil {
return errwrap.Wrapf(err, "input type was inconsistent")
}
if err := t.Cmp(t2); t2 != nil && err != nil {
return errwrap.Wrapf(err, "input type was inconsistent")
}
// learn!
t1 = typ
t2 = t
return nil
}
if typ, err := cfavInvar.Args[0].Type(); err == nil { // is it known?
// this sets t1 and t2 on success if it learned
if err := validateArg0(typ); err != nil {
return nil, errwrap.Wrapf(err, "first struct arg type is inconsistent")
}
}
if typ, exists := solved[cfavInvar.Args[0]]; exists { // alternate way to lookup type
// this sets t1 and t2 on success if it learned
if err := validateArg0(typ); err != nil {
return nil, errwrap.Wrapf(err, "first struct arg type is inconsistent")
}
}
// XXX: if the struct type/value isn't know statically?
if t1 != nil {
invar = &interfaces.EqualsInvariant{
Expr: dummyStruct,
Type: t1,
}
invariants = append(invariants, invar)
// We know *some* information about the struct!
// Let's hope the unusedField expr won't trip
// up the solver...
mapped := make(map[string]interfaces.Expr)
ordered := []string{}
for _, x := range t1.Ord {
// We *don't* need to solve unusedField
unusedField := &interfaces.ExprAny{}
mapped[x] = unusedField
if x == field { // the one we care about
mapped[x] = dummyOut
}
ordered = append(ordered, x)
}
// We map to dummyOut which is the return type
// and has the same type of the field we want!
mapped[field] = dummyOut // redundant =D
invar = &interfaces.EqualityWrapStructInvariant{
Expr1: dummyStruct,
Expr2Map: mapped,
Expr2Ord: ordered,
}
invariants = append(invariants, invar)
}
if t2 != nil {
invar := &interfaces.EqualsInvariant{
Expr: dummyOut,
Type: t2,
}
invariants = append(invariants, invar)
}
// XXX: if t1 or t2 are missing, we could also return a
// new generator for later if we learn new information,
// but we'd have to be careful to not do the infinitely
// TODO: do we return this relationship with ExprCall?
invar = &interfaces.EqualityWrapCallInvariant{
// TODO: should Expr1 and Expr2 be reversed???
Expr1: cfavInvar.Expr,
//Expr2Func: cfavInvar.Func, // same as below
Expr2Func: expr,
}
invariants = append(invariants, invar)
// TODO: are there any other invariants we should build?
return invariants, nil // generator return
}
// We couldn't tell the solver anything it didn't already know!
return nil, fmt.Errorf("couldn't generate new invariants")
}
invar = &interfaces.GeneratorInvariant{
Func: fn,
}
invariants = append(invariants, invar)
return invariants, nil
}
// Polymorphisms returns the list of possible function signatures available for
// this static polymorphic function. It relies on type and value hints to limit
// the number of returned possibilities.
func (obj *StructLookupFunc) Polymorphisms(partialType *types.Type, partialValues []types.Value) ([]*types.Type, error) {
// TODO: return `variant` as arg for now -- maybe there's a better way?
variant := []*types.Type{types.NewType("func(struct variant, field str) variant")}
if partialType == nil {
return variant, nil
}
var typ *types.Type // struct type of the first argument
var out *types.Type // type of the field
// TODO: if partialValue[0] exists, check it matches the type we expect
ord := partialType.Ord
if partialType.Map != nil {
if len(ord) != 2 {
return nil, fmt.Errorf("must have exactly two args in structlookup func")
}
if tStruct, exists := partialType.Map[ord[0]]; exists && tStruct != nil {
if tStruct.Kind != types.KindStruct {
return nil, fmt.Errorf("first arg for structlookup must be a struct")
}
if !tStruct.HasVariant() {
typ = tStruct // found
}
}
if tField, exists := partialType.Map[ord[1]]; exists && tField != nil {
if tField.Cmp(types.TypeStr) != nil {
return nil, fmt.Errorf("second arg for structlookup must be a string")
}
}
if len(partialValues) == 2 && partialValues[1] != nil {
if types.TypeStr.Cmp(partialValues[1].Type()) != nil {
return nil, fmt.Errorf("second value must be an str")
}
structType, exists := partialType.Map[ord[0]]
if !exists {
return nil, fmt.Errorf("missing struct field")
}
if structType != nil {
field := partialValues[1].Str()
fieldType, exists := structType.Map[field]
if !exists {
return nil, fmt.Errorf("field: `%s` does not exist in struct", field)
}
if fieldType != nil {
if partialType.Out != nil && fieldType.Cmp(partialType.Out) != nil {
return nil, fmt.Errorf("field `%s` must have same type as return type", field)
}
out = fieldType // found!
}
}
}
if tOut := partialType.Out; tOut != nil {
// TODO: we could check that at least one of the types
// in struct.Map was our type, but not very useful...
}
}
typFunc := &types.Type{
Kind: types.KindFunc, // function type
Map: make(map[string]*types.Type),
Ord: []string{structLookupArgNameStruct, structLookupArgNameField},
Out: out,
}
typFunc.Map[structLookupArgNameStruct] = typ
typFunc.Map[structLookupArgNameField] = types.TypeStr
// set variant instead of nil
if typFunc.Map[structLookupArgNameStruct] == nil {
typFunc.Map[structLookupArgNameStruct] = types.TypeVariant
}
if out == nil {
typFunc.Out = types.TypeVariant
}
return []*types.Type{typFunc}, nil
}
// Build is run to turn the polymorphic, undetermined function, into the
// specific statically typed version. It is usually run after Unify completes,
// and must be run before Info() and any of the other Func interface methods are
// used. This function is idempotent, as long as the arg isn't changed between
// runs.
func (obj *StructLookupFunc) Build(typ *types.Type) error {
// typ is the KindFunc signature we're trying to build...
if typ.Kind != types.KindFunc {
return fmt.Errorf("input type must be of kind func")
}
if len(typ.Ord) != 2 {
return fmt.Errorf("the structlookup function needs exactly two args")
}
if typ.Out == nil {
return fmt.Errorf("return type of function must be specified")
}
if typ.Map == nil {
return fmt.Errorf("invalid input type")
}
tStruct, exists := typ.Map[typ.Ord[0]]
if !exists || tStruct == nil {
return fmt.Errorf("first arg must be specified")
}
tField, exists := typ.Map[typ.Ord[1]]
if !exists || tField == nil {
return fmt.Errorf("second arg must be specified")
}
if err := tField.Cmp(types.TypeStr); err != nil {
return errwrap.Wrapf(err, "field must be an str")
}
// NOTE: We actually don't know which field this is, only its type! we
// could have cached the discovered field during Polymorphisms(), but it
// turns out it's not actually necessary for us to know it to build the
// struct.
obj.Type = tStruct // struct type
obj.Out = typ.Out // type of return value
return nil
}
// Validate tells us if the input struct takes a valid form.
func (obj *StructLookupFunc) Validate() error {
if obj.Type == nil { // build must be run first
return fmt.Errorf("type is still unspecified")
}
if obj.Type.Kind != types.KindStruct {
return fmt.Errorf("type must be a kind of struct")
}
if obj.Out == nil {
return fmt.Errorf("return type must be specified")
}
for _, t := range obj.Type.Map {
if obj.Out.Cmp(t) == nil {
return nil // found at least one match
}
}
return fmt.Errorf("return type is not in the list of available struct fields")
}
// Info returns some static info about itself. Build must be called before this
// will return correct data.
func (obj *StructLookupFunc) Info() *interfaces.Info {
var sig *types.Type
if obj.Type != nil { // don't panic if called speculatively
// TODO: can obj.Out be nil (a partial) ?
sig = types.NewType(fmt.Sprintf("func(%s %s, %s str) %s", structLookupArgNameStruct, obj.Type.String(), structLookupArgNameField, obj.Out.String()))
}
return &interfaces.Info{
Pure: true,
Memo: false,
Sig: sig, // func kind
Err: obj.Validate(),
}
}
// Init runs some startup code for this function.
func (obj *StructLookupFunc) Init(init *interfaces.Init) error {
obj.init = init
return nil
}
// Stream returns the changing values that this func has over time.
func (obj *StructLookupFunc) Stream(ctx context.Context) error {
defer close(obj.init.Output) // the sender closes
for {
select {
case input, ok := <-obj.init.Input:
if !ok {
return nil // can't output any more
}
//if err := input.Type().Cmp(obj.Info().Sig.Input); err != nil {
// return errwrap.Wrapf(err, "wrong function input")
//}
if obj.last != nil && input.Cmp(obj.last) == nil {
continue // value didn't change, skip it
}
obj.last = input // store for next
st := (input.Struct()[structLookupArgNameStruct]).(*types.StructValue)
field := input.Struct()[structLookupArgNameField].Str()
if field == "" {
return fmt.Errorf("received empty field")
}
result, exists := st.Lookup(field)
if !exists {
return fmt.Errorf("could not lookup field: `%s` in struct", field)
}
if obj.field == "" {
obj.field = field // store first field
}
if field != obj.field {
return fmt.Errorf("input field changed from: `%s`, to: `%s`", obj.field, field)
}
// if previous input was `2 + 4`, but now it
// changed to `1 + 5`, the result is still the
// same, so we can skip sending an update...
if obj.result != nil && result.Cmp(obj.result) == nil {
continue // result didn't change
}
obj.result = result // store new result
case <-ctx.Done():
return nil
}
select {
case obj.init.Output <- obj.result: // send
case <-ctx.Done():
return nil
}
}
}