Files
mgmt/lang/core/iter/range.go
Lourenço Vales ae68dd79cb lang: core: iter: Add a range function
This commit implements a range function that mimicks python's range
built-in by having a start, stop, and range argument. There's also
a few examples and tests to mimick Python's examples to guarantee
we're consistent with their behaviour.
2025-04-22 02:37:35 -04:00

269 lines
8.1 KiB
Go

// Mgmt
// Copyright (C) James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
//
// Additional permission under GNU GPL version 3 section 7
//
// If you modify this program, or any covered work, by linking or combining it
// with embedded mcl code and modules (and that the embedded mcl code and
// modules which link with this program, contain a copy of their source code in
// the authoritative form) containing parts covered by the terms of any other
// license, the licensors of this program grant you additional permission to
// convey the resulting work. Furthermore, the licensors of this program grant
// the original author, James Shubin, additional permission to update this
// additional permission if he deems it necessary to achieve the goals of this
// additional permission.
package coreiter
import (
"context"
"fmt"
"github.com/purpleidea/mgmt/lang/funcs"
"github.com/purpleidea/mgmt/lang/interfaces"
"github.com/purpleidea/mgmt/lang/types"
)
func init() {
funcs.ModuleRegister(ModuleName, RangeFuncName, func() interfaces.Func { return &RangeFunc{} })
}
const (
// RangeFuncName is the name this function is registered as.
RangeFuncName = "range"
)
var _ interfaces.CallableFunc = &RangeFunc{}
var _ interfaces.BuildableFunc = &RangeFunc{}
// RangeFunc is a function that ranges over elements on a list according to
// three possible inputs: start, stop, and step. At least one input is needed,
// and in that case it's mapped to be the stop argument. Start is used for the
// function to build lists which start from a chosen number, and step to filter
// its contents to a subset of all the numbers between start and stop. This
// function only takes ints as inputs, and outputs a list of ints.
type RangeFunc struct {
Type *types.Type
init *interfaces.Init
last types.Value // used to store the last known value of the function
result types.Value // used to store the result of the function
}
// String returns a simple name for this function. This is needed so this struct
// can satisfy the pgraph.Vertex interface.
func (obj *RangeFunc) String() string {
return RangeFuncName
}
// FuncInfer takes partial type and value information from the call site of this
// function so that it can build an appropriate type signature for it. The type
// signature may include unification variables.
func (obj *RangeFunc) FuncInfer(partialType *types.Type, partialValues []types.Value) (*types.Type, []*interfaces.UnificationInvariant, error) {
// This function only takes ints as inputs, and outputs a list of ints.
l := len(partialValues)
if l < 1 || l > 3 {
return nil, nil, fmt.Errorf("function must have between 1 and 3 args")
}
var typ *types.Type
if l == 1 {
// we only have the stop argument
typ = types.NewType("func(int) []int")
}
if l == 2 {
// we have start and stop arguments
typ = types.NewType("func(int, int) []int")
}
if l == 3 {
// we have all the arguments
typ = types.NewType("func(int, int, int) []int")
}
return typ, []*interfaces.UnificationInvariant{}, nil
}
// Build is run to turn the polymorphic, undetermined function, into the
// specific statically typed version. It is usually run after Unify completes,
// and must be run before Info() and any of the other Func interface methods are
// used. This function is idempotent, as long as the arg isn't changed between
// runs.
func (obj *RangeFunc) Build(typ *types.Type) (*types.Type, error) {
if typ.Kind != types.KindFunc {
return nil, fmt.Errorf("must be of kind func")
}
if len(typ.Ord) < 1 || len(typ.Ord) > 3 {
return nil, fmt.Errorf("the range function needs one to three args")
}
// check each of the args
for i, v := range typ.Ord {
tI, exists := typ.Map[v]
if !exists || tI == nil { // sanity check for existence of arg
return nil, fmt.Errorf("argument number %d is missing", i)
}
if tI.Cmp(types.TypeInt) != nil { // checking arg type
return nil, fmt.Errorf("input type is not int")
}
}
if typ.Out == nil {
return nil, fmt.Errorf("return type of function must be specified")
}
if typ.Out.Cmp(types.NewType("[]int")) != nil {
return nil, fmt.Errorf("return type of function must be a list of ints")
}
obj.Type = typ.Copy() // this is to store the type of return value
return obj.Type, nil
}
// Copy is implemented so that the obj.Type value is not lost if we copy this
// function.
func (obj *RangeFunc) Copy() interfaces.Func {
return &RangeFunc{
Type: obj.Type, // don't copy because we use this after unification
init: obj.init, // likely gets overwritten anyways
}
}
// Validate tells us if the input struct takes a valid form.
func (obj *RangeFunc) Validate() error {
if obj.Type == nil {
return fmt.Errorf("must specify a type")
}
return nil
}
// Info returns some static info about itself. Build must be called before this
// will return correct data
func (obj *RangeFunc) Info() *interfaces.Info {
return &interfaces.Info{
Pure: true,
Memo: false,
Sig: obj.Type,
Err: obj.Validate(),
}
}
// Init runs some startup code for this function.
func (obj *RangeFunc) Init(init *interfaces.Init) error {
obj.init = init
return nil
}
// Stream returns the changing values that this func has over time.
func (obj *RangeFunc) Stream(ctx context.Context) error {
defer close(obj.init.Output) // closing the sender
for {
select {
case input, ok := <-obj.init.Input:
if !ok {
return nil // we don't have more inputs
}
if obj.last != nil && input.Cmp(obj.last) == nil {
continue // nothing has changed, skip it
}
obj.last = input // storing the input for comparison
args, err := interfaces.StructToCallableArgs(input)
if err != nil {
return err
}
result, err := obj.Call(ctx, args)
if err != nil {
return err
}
if obj.result != nil && result.Cmp(obj.result) == nil {
continue // if the result didn't change, we don't need to update
}
obj.result = result // store new result
case <-ctx.Done():
return nil
}
select {
case obj.init.Output <- obj.result: // sending new result
case <-ctx.Done():
return nil
}
}
}
// Call returns the result of this function.
func (obj *RangeFunc) Call(ctx context.Context, args []types.Value) (types.Value, error) {
if len(args) == 1 { // we only have stop, assume start is 0 and step is 1
return obj.loop(ctx, 0, args[0].Int(), 1)
}
if len(args) == 2 { // we have start and stop, assume step is 1
return obj.loop(ctx, args[0].Int(), args[1].Int(), 1)
}
if len(args) == 3 { // we have all the args
return obj.loop(ctx, args[0].Int(), args[1].Int(), args[2].Int())
}
return nil, fmt.Errorf("error calling the loop function")
}
// loop is the private helper function that calculates the range according to
// the inputs provided.
func (obj *RangeFunc) loop(ctx context.Context, start, stop, step int64) (types.Value, error) {
if step == 0 {
return nil, fmt.Errorf("step value cannot be 0")
}
if step > 0 && start >= stop {
// empty since step is positive and start > stop
return types.NewType("[]int").New(), nil
}
if step < 0 && start <= stop {
// empty since step is negative and start < stop
return types.NewType("[]int").New(), nil
}
result := []types.Value{}
if step > 0 {
for i := start; i < stop; i += step {
result = append(result, &types.IntValue{V: i})
}
} else {
for i := start; i > stop; i += step {
result = append(result, &types.IntValue{V: i})
}
}
return &types.ListValue{
T: types.NewType("[]int"),
V: result,
}, nil
}