// Mgmt // Copyright (C) James Shubin and the project contributors // Written by James Shubin and the project contributors // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // // Additional permission under GNU GPL version 3 section 7 // // If you modify this program, or any covered work, by linking or combining it // with embedded mcl code and modules (and that the embedded mcl code and // modules which link with this program, contain a copy of their source code in // the authoritative form) containing parts covered by the terms of any other // license, the licensors of this program grant you additional permission to // convey the resulting work. Furthermore, the licensors of this program grant // the original author, James Shubin, additional permission to update this // additional permission if he deems it necessary to achieve the goals of this // additional permission. package coreiter import ( "context" "fmt" "github.com/purpleidea/mgmt/lang/funcs" "github.com/purpleidea/mgmt/lang/interfaces" "github.com/purpleidea/mgmt/lang/types" ) func init() { funcs.ModuleRegister(ModuleName, RangeFuncName, func() interfaces.Func { return &RangeFunc{} }) } const ( // RangeFuncName is the name this function is registered as. RangeFuncName = "range" ) var _ interfaces.CallableFunc = &RangeFunc{} var _ interfaces.BuildableFunc = &RangeFunc{} // RangeFunc is a function that ranges over elements on a list according to // three possible inputs: start, stop, and step. At least one input is needed, // and in that case it's mapped to be the stop argument. Start is used for the // function to build lists which start from a chosen number, and step to filter // its contents to a subset of all the numbers between start and stop. This // function only takes ints as inputs, and outputs a list of ints. type RangeFunc struct { Type *types.Type init *interfaces.Init last types.Value // used to store the last known value of the function result types.Value // used to store the result of the function } // String returns a simple name for this function. This is needed so this struct // can satisfy the pgraph.Vertex interface. func (obj *RangeFunc) String() string { return RangeFuncName } // FuncInfer takes partial type and value information from the call site of this // function so that it can build an appropriate type signature for it. The type // signature may include unification variables. func (obj *RangeFunc) FuncInfer(partialType *types.Type, partialValues []types.Value) (*types.Type, []*interfaces.UnificationInvariant, error) { // This function only takes ints as inputs, and outputs a list of ints. l := len(partialValues) if l < 1 || l > 3 { return nil, nil, fmt.Errorf("function must have between 1 and 3 args") } var typ *types.Type if l == 1 { // we only have the stop argument typ = types.NewType("func(int) []int") } if l == 2 { // we have start and stop arguments typ = types.NewType("func(int, int) []int") } if l == 3 { // we have all the arguments typ = types.NewType("func(int, int, int) []int") } return typ, []*interfaces.UnificationInvariant{}, nil } // Build is run to turn the polymorphic, undetermined function, into the // specific statically typed version. It is usually run after Unify completes, // and must be run before Info() and any of the other Func interface methods are // used. This function is idempotent, as long as the arg isn't changed between // runs. func (obj *RangeFunc) Build(typ *types.Type) (*types.Type, error) { if typ.Kind != types.KindFunc { return nil, fmt.Errorf("must be of kind func") } if len(typ.Ord) < 1 || len(typ.Ord) > 3 { return nil, fmt.Errorf("the range function needs one to three args") } // check each of the args for i, v := range typ.Ord { tI, exists := typ.Map[v] if !exists || tI == nil { // sanity check for existence of arg return nil, fmt.Errorf("argument number %d is missing", i) } if tI.Cmp(types.TypeInt) != nil { // checking arg type return nil, fmt.Errorf("input type is not int") } } if typ.Out == nil { return nil, fmt.Errorf("return type of function must be specified") } if typ.Out.Cmp(types.NewType("[]int")) != nil { return nil, fmt.Errorf("return type of function must be a list of ints") } obj.Type = typ.Copy() // this is to store the type of return value return obj.Type, nil } // Copy is implemented so that the obj.Type value is not lost if we copy this // function. func (obj *RangeFunc) Copy() interfaces.Func { return &RangeFunc{ Type: obj.Type, // don't copy because we use this after unification init: obj.init, // likely gets overwritten anyways } } // Validate tells us if the input struct takes a valid form. func (obj *RangeFunc) Validate() error { if obj.Type == nil { return fmt.Errorf("must specify a type") } return nil } // Info returns some static info about itself. Build must be called before this // will return correct data func (obj *RangeFunc) Info() *interfaces.Info { return &interfaces.Info{ Pure: true, Memo: false, Sig: obj.Type, Err: obj.Validate(), } } // Init runs some startup code for this function. func (obj *RangeFunc) Init(init *interfaces.Init) error { obj.init = init return nil } // Stream returns the changing values that this func has over time. func (obj *RangeFunc) Stream(ctx context.Context) error { defer close(obj.init.Output) // closing the sender for { select { case input, ok := <-obj.init.Input: if !ok { return nil // we don't have more inputs } if obj.last != nil && input.Cmp(obj.last) == nil { continue // nothing has changed, skip it } obj.last = input // storing the input for comparison args, err := interfaces.StructToCallableArgs(input) if err != nil { return err } result, err := obj.Call(ctx, args) if err != nil { return err } if obj.result != nil && result.Cmp(obj.result) == nil { continue // if the result didn't change, we don't need to update } obj.result = result // store new result case <-ctx.Done(): return nil } select { case obj.init.Output <- obj.result: // sending new result case <-ctx.Done(): return nil } } } // Call returns the result of this function. func (obj *RangeFunc) Call(ctx context.Context, args []types.Value) (types.Value, error) { if len(args) == 1 { // we only have stop, assume start is 0 and step is 1 return obj.loop(ctx, 0, args[0].Int(), 1) } if len(args) == 2 { // we have start and stop, assume step is 1 return obj.loop(ctx, args[0].Int(), args[1].Int(), 1) } if len(args) == 3 { // we have all the args return obj.loop(ctx, args[0].Int(), args[1].Int(), args[2].Int()) } return nil, fmt.Errorf("error calling the loop function") } // loop is the private helper function that calculates the range according to // the inputs provided. func (obj *RangeFunc) loop(ctx context.Context, start, stop, step int64) (types.Value, error) { if step == 0 { return nil, fmt.Errorf("step value cannot be 0") } if step > 0 && start >= stop { // empty since step is positive and start > stop return types.NewType("[]int").New(), nil } if step < 0 && start <= stop { // empty since step is negative and start < stop return types.NewType("[]int").New(), nil } result := []types.Value{} if step > 0 { for i := start; i < stop; i += step { result = append(result, &types.IntValue{V: i}) } } else { for i := start; i > stop; i += step { result = append(result, &types.IntValue{V: i}) } } return &types.ListValue{ T: types.NewType("[]int"), V: result, }, nil }