Files
mgmt/lang/funcs/history_polyfunc.go
James Shubin d04c7a6ae4 lang: funcs: Add Unify method for history function
This could use some tests.
2021-05-23 20:03:10 -04:00

423 lines
13 KiB
Go

// Mgmt
// Copyright (C) 2013-2021+ James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
package funcs // TODO: should this be in its own individual package?
import (
"fmt"
"github.com/purpleidea/mgmt/lang/interfaces"
"github.com/purpleidea/mgmt/lang/types"
"github.com/purpleidea/mgmt/util/errwrap"
)
const (
// HistoryFuncName is the name this function is registered as. This
// starts with an underscore so that it cannot be used from the lexer.
HistoryFuncName = "_history"
)
func init() {
Register(HistoryFuncName, func() interfaces.Func { return &HistoryFunc{} }) // must register the func and name
}
// HistoryFunc is special function which returns the Nth oldest value seen. It
// must store up incoming values until it gets enough to return the desired one.
// A restart of the program, will expunge the stored state. This obviously takes
// more memory, the further back you wish to index. A change in the index var is
// generally not useful, but it is permitted. Moving it to a smaller value will
// cause older index values to be expunged. If this is undesirable, a max count
// could be added. This was not implemented with efficiency in mind. Since some
// functions might not send out un-changed values, it might also make sense to
// implement a *time* based hysteresis, since this only looks at the last N
// changed values. A time based hysteresis would tick every precision-width, and
// store whatever the latest value at that time is.
type HistoryFunc struct {
Type *types.Type // type of input value (same as output type)
init *interfaces.Init
history []types.Value // goes from newest (index->0) to oldest (len()-1)
result types.Value // last calculated output
closeChan chan struct{}
}
// ArgGen returns the Nth arg name for this function.
func (obj *HistoryFunc) ArgGen(index int) (string, error) {
seq := []string{"value", "index"}
if l := len(seq); index >= l {
return "", fmt.Errorf("index %d exceeds arg length of %d", index, l)
}
return seq[index], nil
}
// Unify returns the list of invariants that this func produces.
func (obj *HistoryFunc) Unify(expr interfaces.Expr) ([]interfaces.Invariant, error) {
var invariants []interfaces.Invariant
var invar interfaces.Invariant
// func(value T1, index int) T1
valueName, err := obj.ArgGen(0)
if err != nil {
return nil, err
}
indexName, err := obj.ArgGen(1)
if err != nil {
return nil, err
}
dummyValue := &interfaces.ExprAny{} // corresponds to the value type
dummyIndex := &interfaces.ExprAny{} // corresponds to the index type
dummyOut := &interfaces.ExprAny{} // corresponds to the out string
// index arg type of int
invar = &interfaces.EqualsInvariant{
Expr: dummyIndex,
Type: types.TypeInt,
}
invariants = append(invariants, invar)
// index and return are the same type
invar = &interfaces.EqualityInvariant{
Expr1: dummyValue,
Expr2: dummyOut,
}
invariants = append(invariants, invar)
// full function
mapped := make(map[string]interfaces.Expr)
ordered := []string{valueName, indexName}
mapped[valueName] = dummyValue
mapped[indexName] = dummyIndex
invar = &interfaces.EqualityWrapFuncInvariant{
Expr1: expr, // maps directly to us!
Expr2Map: mapped,
Expr2Ord: ordered,
Expr2Out: dummyOut,
}
invariants = append(invariants, invar)
// generator function
fn := func(fnInvariants []interfaces.Invariant, solved map[interfaces.Expr]*types.Type) ([]interfaces.Invariant, error) {
for _, invariant := range fnInvariants {
// search for this special type of invariant
cfavInvar, ok := invariant.(*interfaces.CallFuncArgsValueInvariant)
if !ok {
continue
}
// did we find the mapping from us to ExprCall ?
if cfavInvar.Func != expr {
continue
}
// cfavInvar.Expr is the ExprCall! (the return pointer)
// cfavInvar.Args are the args that ExprCall uses!
if l := len(cfavInvar.Args); l != 2 {
return nil, fmt.Errorf("unable to build function with %d args", l)
}
var invariants []interfaces.Invariant
var invar interfaces.Invariant
// add the relationship to the returned value
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Expr,
Expr2: dummyOut,
}
invariants = append(invariants, invar)
// second arg must be an int
invar = &interfaces.EqualsInvariant{
Expr: cfavInvar.Args[1],
Type: types.TypeInt,
}
invariants = append(invariants, invar)
// add the relationships to the called args
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Args[0],
Expr2: dummyValue,
}
invariants = append(invariants, invar)
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Args[1],
Expr2: dummyIndex,
}
invariants = append(invariants, invar)
if typ, err := cfavInvar.Args[1].Type(); err == nil { // is it known?
if k := typ.Kind; k != types.KindInt {
return nil, fmt.Errorf("unable to build function with 1st arg of kind: %s", k)
}
}
// We just need to figure out one type to know the full
// type...
var t1 *types.Type // the value type
// validateArg0 checks: value T1
validateArg0 := func(typ *types.Type) error {
if typ == nil { // unknown so far
return nil
}
if err := typ.Cmp(t1); t1 != nil && err != nil {
return errwrap.Wrapf(err, "input type was inconsistent")
}
// learn!
t1 = typ
return nil
}
if typ, err := cfavInvar.Args[0].Type(); err == nil { // is it known?
// this sets t1 and t2 on success if it learned
if err := validateArg0(typ); err != nil {
return nil, errwrap.Wrapf(err, "first struct arg type is inconsistent")
}
}
if typ, exists := solved[cfavInvar.Args[0]]; exists { // alternate way to lookup type
// this sets t1 and t2 on success if it learned
if err := validateArg0(typ); err != nil {
return nil, errwrap.Wrapf(err, "first struct arg type is inconsistent")
}
}
// XXX: if the struct type/value isn't know statically?
if t1 != nil {
invar = &interfaces.EqualsInvariant{
Expr: dummyValue,
Type: t1,
}
invariants = append(invariants, invar)
invar = &interfaces.EqualsInvariant{ // bonus
Expr: dummyOut,
Type: t1,
}
invariants = append(invariants, invar)
}
// TODO: do we return this relationship with ExprCall?
invar = &interfaces.EqualityWrapCallInvariant{
// TODO: should Expr1 and Expr2 be reversed???
Expr1: cfavInvar.Expr,
//Expr2Func: cfavInvar.Func, // same as below
Expr2Func: expr,
}
invariants = append(invariants, invar)
// TODO: are there any other invariants we should build?
return invariants, nil // generator return
}
// We couldn't tell the solver anything it didn't already know!
return nil, fmt.Errorf("couldn't generate new invariants")
}
invar = &interfaces.GeneratorInvariant{
Func: fn,
}
invariants = append(invariants, invar)
return invariants, nil
}
// Polymorphisms returns the possible type signature for this function. In this
// case, since the number of possible types for the first arg can be infinite,
// it returns the final precise type only if it can be gleamed statically. If
// not, it returns that unknown as a variant, which is hopefully solved during
// unification.
func (obj *HistoryFunc) Polymorphisms(partialType *types.Type, partialValues []types.Value) ([]*types.Type, error) {
// TODO: return `variant` as first & return arg for now -- maybe there's a better way?
variant := []*types.Type{types.NewType("func(value variant, index int) variant")}
if partialType == nil {
return variant, nil
}
var typ *types.Type // = nil is implied
ord := partialType.Ord
if partialType.Map != nil {
if len(ord) != 2 {
return nil, fmt.Errorf("must have at exactly two args in history func")
}
if t, exists := partialType.Map[ord[1]]; exists && t != nil {
if t.Cmp(types.TypeInt) != nil {
return nil, fmt.Errorf("second arg for history must be an int")
}
}
if t, exists := partialType.Map[ord[0]]; exists && t != nil && partialType.Out != nil {
if t.Cmp(partialType.Out) != nil {
return nil, fmt.Errorf("type of first arg for history must match return type")
}
typ = t // it has been found :)
}
}
if partialType.Out != nil {
typ = partialType.Out // it has been found :)
}
if typ == nil {
return variant, nil
}
t := types.NewType(fmt.Sprintf("func(value %s, index int) %s", typ.String(), typ.String()))
return []*types.Type{t}, nil // return a list with a single possibility
}
// Build takes the now known function signature and stores it so that this
// function can appear to be static. That type is used to build our function
// statically.
func (obj *HistoryFunc) Build(typ *types.Type) error {
if typ.Kind != types.KindFunc {
return fmt.Errorf("input type must be of kind func")
}
if len(typ.Ord) != 2 {
return fmt.Errorf("the history function needs exactly two args")
}
if typ.Out == nil {
return fmt.Errorf("return type of function must be specified")
}
if typ.Map == nil {
return fmt.Errorf("invalid input type")
}
t1, exists := typ.Map[typ.Ord[1]]
if !exists || t1 == nil {
return fmt.Errorf("second arg must be specified")
}
if t1.Cmp(types.TypeInt) != nil {
return fmt.Errorf("second arg for history must be an int")
}
t0, exists := typ.Map[typ.Ord[0]]
if !exists || t0 == nil {
return fmt.Errorf("first arg must be specified")
}
obj.Type = t0 // type of historical value is now known!
return nil
}
// Validate makes sure we've built our struct properly. It is usually unused for
// normal functions that users can use directly.
func (obj *HistoryFunc) Validate() error {
if obj.Type == nil { // build must be run first
return fmt.Errorf("type is still unspecified")
}
return nil
}
// Info returns some static info about itself.
func (obj *HistoryFunc) Info() *interfaces.Info {
var sig *types.Type
if obj.Type != nil { // don't panic if called speculatively
s := obj.Type.String()
sig = types.NewType(fmt.Sprintf("func(value %s, index int) %s", s, s))
}
return &interfaces.Info{
Pure: false, // definitely false
Memo: false,
Sig: sig,
Err: obj.Validate(),
}
}
// Init runs some startup code for this function.
func (obj *HistoryFunc) Init(init *interfaces.Init) error {
obj.init = init
obj.closeChan = make(chan struct{})
return nil
}
// Stream returns the changing values that this func has over time.
func (obj *HistoryFunc) Stream() error {
defer close(obj.init.Output) // the sender closes
for {
select {
case input, ok := <-obj.init.Input:
if !ok {
return nil // can't output any more
}
//if err := input.Type().Cmp(obj.Info().Sig.Input); err != nil {
// return errwrap.Wrapf(err, "wrong function input")
//}
//if obj.last != nil && input.Cmp(obj.last) == nil {
// continue // value didn't change, skip it
//}
//obj.last = input // store for next
index := int(input.Struct()["index"].Int())
value := input.Struct()["value"]
var result types.Value
if index < 0 {
return fmt.Errorf("can't use a negative index of %d", index)
}
// 1) truncate history so length equals index
if len(obj.history) > index {
// remove all but first N elements, where N == index
obj.history = obj.history[:index]
}
// 2) (un)shift (add our new value to the beginning)
obj.history = append([]types.Value{value}, obj.history...)
// 3) are we ready to output a sufficiently old value?
if index >= len(obj.history) {
continue // not enough history is stored yet...
}
// 4) read one off the back
result = obj.history[len(obj.history)-1]
// TODO: do we want to do this?
// if the result is still the same, skip sending an update...
if obj.result != nil && result.Cmp(obj.result) == nil {
continue // result didn't change
}
obj.result = result // store new result
case <-obj.closeChan:
return nil
}
select {
case obj.init.Output <- obj.result: // send
// pass
case <-obj.closeChan:
return nil
}
}
}
// Close runs some shutdown code for this function and turns off the stream.
func (obj *HistoryFunc) Close() error {
close(obj.closeChan)
return nil
}