// Mgmt // Copyright (C) 2013-2021+ James Shubin and the project contributors // Written by James Shubin and the project contributors // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . package funcs // TODO: should this be in its own individual package? import ( "fmt" "github.com/purpleidea/mgmt/lang/interfaces" "github.com/purpleidea/mgmt/lang/types" "github.com/purpleidea/mgmt/util/errwrap" ) const ( // HistoryFuncName is the name this function is registered as. This // starts with an underscore so that it cannot be used from the lexer. HistoryFuncName = "_history" ) func init() { Register(HistoryFuncName, func() interfaces.Func { return &HistoryFunc{} }) // must register the func and name } // HistoryFunc is special function which returns the Nth oldest value seen. It // must store up incoming values until it gets enough to return the desired one. // A restart of the program, will expunge the stored state. This obviously takes // more memory, the further back you wish to index. A change in the index var is // generally not useful, but it is permitted. Moving it to a smaller value will // cause older index values to be expunged. If this is undesirable, a max count // could be added. This was not implemented with efficiency in mind. Since some // functions might not send out un-changed values, it might also make sense to // implement a *time* based hysteresis, since this only looks at the last N // changed values. A time based hysteresis would tick every precision-width, and // store whatever the latest value at that time is. type HistoryFunc struct { Type *types.Type // type of input value (same as output type) init *interfaces.Init history []types.Value // goes from newest (index->0) to oldest (len()-1) result types.Value // last calculated output closeChan chan struct{} } // ArgGen returns the Nth arg name for this function. func (obj *HistoryFunc) ArgGen(index int) (string, error) { seq := []string{"value", "index"} if l := len(seq); index >= l { return "", fmt.Errorf("index %d exceeds arg length of %d", index, l) } return seq[index], nil } // Unify returns the list of invariants that this func produces. func (obj *HistoryFunc) Unify(expr interfaces.Expr) ([]interfaces.Invariant, error) { var invariants []interfaces.Invariant var invar interfaces.Invariant // func(value T1, index int) T1 valueName, err := obj.ArgGen(0) if err != nil { return nil, err } indexName, err := obj.ArgGen(1) if err != nil { return nil, err } dummyValue := &interfaces.ExprAny{} // corresponds to the value type dummyIndex := &interfaces.ExprAny{} // corresponds to the index type dummyOut := &interfaces.ExprAny{} // corresponds to the out string // index arg type of int invar = &interfaces.EqualsInvariant{ Expr: dummyIndex, Type: types.TypeInt, } invariants = append(invariants, invar) // index and return are the same type invar = &interfaces.EqualityInvariant{ Expr1: dummyValue, Expr2: dummyOut, } invariants = append(invariants, invar) // full function mapped := make(map[string]interfaces.Expr) ordered := []string{valueName, indexName} mapped[valueName] = dummyValue mapped[indexName] = dummyIndex invar = &interfaces.EqualityWrapFuncInvariant{ Expr1: expr, // maps directly to us! Expr2Map: mapped, Expr2Ord: ordered, Expr2Out: dummyOut, } invariants = append(invariants, invar) // generator function fn := func(fnInvariants []interfaces.Invariant, solved map[interfaces.Expr]*types.Type) ([]interfaces.Invariant, error) { for _, invariant := range fnInvariants { // search for this special type of invariant cfavInvar, ok := invariant.(*interfaces.CallFuncArgsValueInvariant) if !ok { continue } // did we find the mapping from us to ExprCall ? if cfavInvar.Func != expr { continue } // cfavInvar.Expr is the ExprCall! (the return pointer) // cfavInvar.Args are the args that ExprCall uses! if l := len(cfavInvar.Args); l != 2 { return nil, fmt.Errorf("unable to build function with %d args", l) } var invariants []interfaces.Invariant var invar interfaces.Invariant // add the relationship to the returned value invar = &interfaces.EqualityInvariant{ Expr1: cfavInvar.Expr, Expr2: dummyOut, } invariants = append(invariants, invar) // second arg must be an int invar = &interfaces.EqualsInvariant{ Expr: cfavInvar.Args[1], Type: types.TypeInt, } invariants = append(invariants, invar) // add the relationships to the called args invar = &interfaces.EqualityInvariant{ Expr1: cfavInvar.Args[0], Expr2: dummyValue, } invariants = append(invariants, invar) invar = &interfaces.EqualityInvariant{ Expr1: cfavInvar.Args[1], Expr2: dummyIndex, } invariants = append(invariants, invar) if typ, err := cfavInvar.Args[1].Type(); err == nil { // is it known? if k := typ.Kind; k != types.KindInt { return nil, fmt.Errorf("unable to build function with 1st arg of kind: %s", k) } } // We just need to figure out one type to know the full // type... var t1 *types.Type // the value type // validateArg0 checks: value T1 validateArg0 := func(typ *types.Type) error { if typ == nil { // unknown so far return nil } if err := typ.Cmp(t1); t1 != nil && err != nil { return errwrap.Wrapf(err, "input type was inconsistent") } // learn! t1 = typ return nil } if typ, err := cfavInvar.Args[0].Type(); err == nil { // is it known? // this sets t1 and t2 on success if it learned if err := validateArg0(typ); err != nil { return nil, errwrap.Wrapf(err, "first struct arg type is inconsistent") } } if typ, exists := solved[cfavInvar.Args[0]]; exists { // alternate way to lookup type // this sets t1 and t2 on success if it learned if err := validateArg0(typ); err != nil { return nil, errwrap.Wrapf(err, "first struct arg type is inconsistent") } } // XXX: if the struct type/value isn't know statically? if t1 != nil { invar = &interfaces.EqualsInvariant{ Expr: dummyValue, Type: t1, } invariants = append(invariants, invar) invar = &interfaces.EqualsInvariant{ // bonus Expr: dummyOut, Type: t1, } invariants = append(invariants, invar) } // TODO: do we return this relationship with ExprCall? invar = &interfaces.EqualityWrapCallInvariant{ // TODO: should Expr1 and Expr2 be reversed??? Expr1: cfavInvar.Expr, //Expr2Func: cfavInvar.Func, // same as below Expr2Func: expr, } invariants = append(invariants, invar) // TODO: are there any other invariants we should build? return invariants, nil // generator return } // We couldn't tell the solver anything it didn't already know! return nil, fmt.Errorf("couldn't generate new invariants") } invar = &interfaces.GeneratorInvariant{ Func: fn, } invariants = append(invariants, invar) return invariants, nil } // Polymorphisms returns the possible type signature for this function. In this // case, since the number of possible types for the first arg can be infinite, // it returns the final precise type only if it can be gleamed statically. If // not, it returns that unknown as a variant, which is hopefully solved during // unification. func (obj *HistoryFunc) Polymorphisms(partialType *types.Type, partialValues []types.Value) ([]*types.Type, error) { // TODO: return `variant` as first & return arg for now -- maybe there's a better way? variant := []*types.Type{types.NewType("func(value variant, index int) variant")} if partialType == nil { return variant, nil } var typ *types.Type // = nil is implied ord := partialType.Ord if partialType.Map != nil { if len(ord) != 2 { return nil, fmt.Errorf("must have at exactly two args in history func") } if t, exists := partialType.Map[ord[1]]; exists && t != nil { if t.Cmp(types.TypeInt) != nil { return nil, fmt.Errorf("second arg for history must be an int") } } if t, exists := partialType.Map[ord[0]]; exists && t != nil && partialType.Out != nil { if t.Cmp(partialType.Out) != nil { return nil, fmt.Errorf("type of first arg for history must match return type") } typ = t // it has been found :) } } if partialType.Out != nil { typ = partialType.Out // it has been found :) } if typ == nil { return variant, nil } t := types.NewType(fmt.Sprintf("func(value %s, index int) %s", typ.String(), typ.String())) return []*types.Type{t}, nil // return a list with a single possibility } // Build takes the now known function signature and stores it so that this // function can appear to be static. That type is used to build our function // statically. func (obj *HistoryFunc) Build(typ *types.Type) error { if typ.Kind != types.KindFunc { return fmt.Errorf("input type must be of kind func") } if len(typ.Ord) != 2 { return fmt.Errorf("the history function needs exactly two args") } if typ.Out == nil { return fmt.Errorf("return type of function must be specified") } if typ.Map == nil { return fmt.Errorf("invalid input type") } t1, exists := typ.Map[typ.Ord[1]] if !exists || t1 == nil { return fmt.Errorf("second arg must be specified") } if t1.Cmp(types.TypeInt) != nil { return fmt.Errorf("second arg for history must be an int") } t0, exists := typ.Map[typ.Ord[0]] if !exists || t0 == nil { return fmt.Errorf("first arg must be specified") } obj.Type = t0 // type of historical value is now known! return nil } // Validate makes sure we've built our struct properly. It is usually unused for // normal functions that users can use directly. func (obj *HistoryFunc) Validate() error { if obj.Type == nil { // build must be run first return fmt.Errorf("type is still unspecified") } return nil } // Info returns some static info about itself. func (obj *HistoryFunc) Info() *interfaces.Info { var sig *types.Type if obj.Type != nil { // don't panic if called speculatively s := obj.Type.String() sig = types.NewType(fmt.Sprintf("func(value %s, index int) %s", s, s)) } return &interfaces.Info{ Pure: false, // definitely false Memo: false, Sig: sig, Err: obj.Validate(), } } // Init runs some startup code for this function. func (obj *HistoryFunc) Init(init *interfaces.Init) error { obj.init = init obj.closeChan = make(chan struct{}) return nil } // Stream returns the changing values that this func has over time. func (obj *HistoryFunc) Stream() error { defer close(obj.init.Output) // the sender closes for { select { case input, ok := <-obj.init.Input: if !ok { return nil // can't output any more } //if err := input.Type().Cmp(obj.Info().Sig.Input); err != nil { // return errwrap.Wrapf(err, "wrong function input") //} //if obj.last != nil && input.Cmp(obj.last) == nil { // continue // value didn't change, skip it //} //obj.last = input // store for next index := int(input.Struct()["index"].Int()) value := input.Struct()["value"] var result types.Value if index < 0 { return fmt.Errorf("can't use a negative index of %d", index) } // 1) truncate history so length equals index if len(obj.history) > index { // remove all but first N elements, where N == index obj.history = obj.history[:index] } // 2) (un)shift (add our new value to the beginning) obj.history = append([]types.Value{value}, obj.history...) // 3) are we ready to output a sufficiently old value? if index >= len(obj.history) { continue // not enough history is stored yet... } // 4) read one off the back result = obj.history[len(obj.history)-1] // TODO: do we want to do this? // if the result is still the same, skip sending an update... if obj.result != nil && result.Cmp(obj.result) == nil { continue // result didn't change } obj.result = result // store new result case <-obj.closeChan: return nil } select { case obj.init.Output <- obj.result: // send // pass case <-obj.closeChan: return nil } } } // Close runs some shutdown code for this function and turns off the stream. func (obj *HistoryFunc) Close() error { close(obj.closeChan) return nil }