Files
mgmt/lang/unification/unification.go
James Shubin 525b4e6a53 lang: Move core unification structs into shared interfaces package
We should probably move these into the central interfaces package so
that these can be used from multiple places. They don't have any
dependencies, and it doesn't make sense to have the solver code mixed in
to the same package. Overall the interface being implemented here could
probably be improved, but that's a project for another day.
2021-05-02 00:52:57 -04:00

200 lines
6.6 KiB
Go

// Mgmt
// Copyright (C) 2013-2021+ James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
package unification
import (
"fmt"
"sort"
"strings"
"github.com/purpleidea/mgmt/lang/interfaces"
)
// Unifier holds all the data that the Unify function will need for it to run.
type Unifier struct {
// AST is the input abstract syntax tree to unify.
AST interfaces.Stmt
// Solver is the solver algorithm implementation to use.
Solver func([]interfaces.Invariant, []interfaces.Expr) (*InvariantSolution, error)
Debug bool
Logf func(format string, v ...interface{})
}
// Unify takes an AST expression tree and attempts to assign types to every node
// using the specified solver. The expression tree returns a list of invariants
// (or constraints) which must be met in order to find a unique value for the
// type of each expression. This list of invariants is passed into the solver,
// which hopefully finds a solution. If it cannot find a unique solution, then
// it will return an error. The invariants are available in different flavours
// which describe different constraint scenarios. The simplest expresses that a
// a particular node id (it's pointer) must be a certain type. More complicated
// invariants might express that two different node id's must have the same
// type. This function and logic was invented after the author could not find
// any proper literature or examples describing a well-known implementation of
// this process. Improvements and polite recommendations are welcome.
func (obj *Unifier) Unify() error {
if obj.AST == nil {
return fmt.Errorf("the AST is nil")
}
if obj.Solver == nil {
return fmt.Errorf("the Solver is missing")
}
if obj.Logf == nil {
return fmt.Errorf("the Logf function is missing")
}
if obj.Debug {
obj.Logf("tree: %+v", obj.AST)
}
invariants, err := obj.AST.Unify()
if err != nil {
return err
}
// build a list of what we think we need to solve for to succeed
exprs := []interfaces.Expr{}
for _, x := range invariants {
exprs = append(exprs, x.ExprList()...)
}
exprMap := ExprListToExprMap(exprs) // makes searching faster
exprList := ExprMapToExprList(exprMap) // makes it unique (no duplicates)
solved, err := obj.Solver(invariants, exprList)
if err != nil {
return err
}
// determine what expr's we need to solve for
if obj.Debug {
obj.Logf("expr count: %d", len(exprList))
//for _, x := range exprList {
// obj.Logf("> %p (%+v)", x, x)
//}
}
// XXX: why doesn't `len(exprList)` always == `len(solved.Solutions)` ?
// XXX: is it due to the extra ExprAny ??? I see an extra function sometimes...
if obj.Debug {
obj.Logf("solutions count: %d", len(solved.Solutions))
//for _, x := range solved.Solutions {
// obj.Logf("> %p (%+v) -- %s", x.Expr, x.Type, x.Expr.String())
//}
}
// Determine that our solver produced a solution for every expr that
// we're interested in. If it didn't, and it didn't error, then it's a
// bug. We check for this because we care about safety, this ensures
// that our AST will get fully populated with the correct types!
for _, x := range solved.Solutions {
delete(exprMap, x.Expr) // remove everything we know about
}
if c := len(exprMap); c > 0 { // if there's anything left, it's bad...
ptrs := []string{}
disp := make(map[string]string) // display hack
for i := range exprMap {
s := fmt.Sprintf("%p", i) // pointer
ptrs = append(ptrs, s)
disp[s] = i.String()
}
sort.Strings(ptrs)
// programming error!
s := strings.Join(ptrs, ", ")
obj.Logf("got %d unbound expr's: %s", c, s)
for i, s := range ptrs {
obj.Logf("(%d) %s => %s", i, s, disp[s])
}
return fmt.Errorf("got %d unbound expr's: %s", c, s)
}
if obj.Debug {
obj.Logf("found a solution!")
}
// solver has found a solution, apply it...
// we're modifying the AST, so code can't error now...
for _, x := range solved.Solutions {
if obj.Debug {
obj.Logf("solution: %p => %+v\t(%+v)", x.Expr, x.Type, x.Expr.String())
}
// apply this to each AST node
if err := x.Expr.SetType(x.Type); err != nil {
// programming error!
panic(fmt.Sprintf("error setting type: %+v, error: %+v", x.Expr, err))
}
}
return nil
}
// exclusivesProduct returns a list of different products produced from the
// combinatorial product of the list of exclusives. Each ExclusiveInvariant must
// contain between one and more Invariants. This takes every combination of
// Invariants (choosing one from each ExclusiveInvariant) and returns that list.
// In other words, if you have three exclusives, with invariants named (A1, B1),
// (A2), and (A3, B3, C3) you'll get: (A1, A2, A3), (A1, A2, B3), (A1, A2, C3),
// (B1, A2, A3), (B1, A2, B3), (B1, A2, C3) as results for this function call.
func exclusivesProduct(exclusives []*interfaces.ExclusiveInvariant) [][]interfaces.Invariant {
if len(exclusives) == 0 {
return nil
}
length := func(i int) int { return len(exclusives[i].Invariants) }
// NextIx sets ix to the lexicographically next value,
// such that for each i > 0, 0 <= ix[i] < length(i).
NextIx := func(ix []int) {
for i := len(ix) - 1; i >= 0; i-- {
ix[i]++
if i == 0 || ix[i] < length(i) {
return
}
ix[i] = 0
}
}
results := [][]interfaces.Invariant{}
for ix := make([]int, len(exclusives)); ix[0] < length(0); NextIx(ix) {
x := []interfaces.Invariant{}
for j, k := range ix {
x = append(x, exclusives[j].Invariants[k])
}
results = append(results, x)
}
return results
}
// InvariantSolution lists a trivial set of EqualsInvariant mappings so that you
// can populate your AST with SetType calls in a simple loop.
type InvariantSolution struct {
Solutions []*interfaces.EqualsInvariant // list of trivial solutions for each node
}
// ExprList returns the list of valid expressions. This struct is not part of
// the invariant interface, but it implements this anyways.
func (obj *InvariantSolution) ExprList() []interfaces.Expr {
exprs := []interfaces.Expr{}
for _, x := range obj.Solutions {
exprs = append(exprs, x.ExprList()...)
}
return exprs
}