// Mgmt // Copyright (C) 2013-2021+ James Shubin and the project contributors // Written by James Shubin and the project contributors // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . package unification import ( "fmt" "sort" "strings" "github.com/purpleidea/mgmt/lang/interfaces" ) // Unifier holds all the data that the Unify function will need for it to run. type Unifier struct { // AST is the input abstract syntax tree to unify. AST interfaces.Stmt // Solver is the solver algorithm implementation to use. Solver func([]interfaces.Invariant, []interfaces.Expr) (*InvariantSolution, error) Debug bool Logf func(format string, v ...interface{}) } // Unify takes an AST expression tree and attempts to assign types to every node // using the specified solver. The expression tree returns a list of invariants // (or constraints) which must be met in order to find a unique value for the // type of each expression. This list of invariants is passed into the solver, // which hopefully finds a solution. If it cannot find a unique solution, then // it will return an error. The invariants are available in different flavours // which describe different constraint scenarios. The simplest expresses that a // a particular node id (it's pointer) must be a certain type. More complicated // invariants might express that two different node id's must have the same // type. This function and logic was invented after the author could not find // any proper literature or examples describing a well-known implementation of // this process. Improvements and polite recommendations are welcome. func (obj *Unifier) Unify() error { if obj.AST == nil { return fmt.Errorf("the AST is nil") } if obj.Solver == nil { return fmt.Errorf("the Solver is missing") } if obj.Logf == nil { return fmt.Errorf("the Logf function is missing") } if obj.Debug { obj.Logf("tree: %+v", obj.AST) } invariants, err := obj.AST.Unify() if err != nil { return err } // build a list of what we think we need to solve for to succeed exprs := []interfaces.Expr{} for _, x := range invariants { exprs = append(exprs, x.ExprList()...) } exprMap := ExprListToExprMap(exprs) // makes searching faster exprList := ExprMapToExprList(exprMap) // makes it unique (no duplicates) solved, err := obj.Solver(invariants, exprList) if err != nil { return err } // determine what expr's we need to solve for if obj.Debug { obj.Logf("expr count: %d", len(exprList)) //for _, x := range exprList { // obj.Logf("> %p (%+v)", x, x) //} } // XXX: why doesn't `len(exprList)` always == `len(solved.Solutions)` ? // XXX: is it due to the extra ExprAny ??? I see an extra function sometimes... if obj.Debug { obj.Logf("solutions count: %d", len(solved.Solutions)) //for _, x := range solved.Solutions { // obj.Logf("> %p (%+v) -- %s", x.Expr, x.Type, x.Expr.String()) //} } // Determine that our solver produced a solution for every expr that // we're interested in. If it didn't, and it didn't error, then it's a // bug. We check for this because we care about safety, this ensures // that our AST will get fully populated with the correct types! for _, x := range solved.Solutions { delete(exprMap, x.Expr) // remove everything we know about } if c := len(exprMap); c > 0 { // if there's anything left, it's bad... ptrs := []string{} disp := make(map[string]string) // display hack for i := range exprMap { s := fmt.Sprintf("%p", i) // pointer ptrs = append(ptrs, s) disp[s] = i.String() } sort.Strings(ptrs) // programming error! s := strings.Join(ptrs, ", ") obj.Logf("got %d unbound expr's: %s", c, s) for i, s := range ptrs { obj.Logf("(%d) %s => %s", i, s, disp[s]) } return fmt.Errorf("got %d unbound expr's: %s", c, s) } if obj.Debug { obj.Logf("found a solution!") } // solver has found a solution, apply it... // we're modifying the AST, so code can't error now... for _, x := range solved.Solutions { if obj.Debug { obj.Logf("solution: %p => %+v\t(%+v)", x.Expr, x.Type, x.Expr.String()) } // apply this to each AST node if err := x.Expr.SetType(x.Type); err != nil { // programming error! panic(fmt.Sprintf("error setting type: %+v, error: %+v", x.Expr, err)) } } return nil } // exclusivesProduct returns a list of different products produced from the // combinatorial product of the list of exclusives. Each ExclusiveInvariant must // contain between one and more Invariants. This takes every combination of // Invariants (choosing one from each ExclusiveInvariant) and returns that list. // In other words, if you have three exclusives, with invariants named (A1, B1), // (A2), and (A3, B3, C3) you'll get: (A1, A2, A3), (A1, A2, B3), (A1, A2, C3), // (B1, A2, A3), (B1, A2, B3), (B1, A2, C3) as results for this function call. func exclusivesProduct(exclusives []*interfaces.ExclusiveInvariant) [][]interfaces.Invariant { if len(exclusives) == 0 { return nil } length := func(i int) int { return len(exclusives[i].Invariants) } // NextIx sets ix to the lexicographically next value, // such that for each i > 0, 0 <= ix[i] < length(i). NextIx := func(ix []int) { for i := len(ix) - 1; i >= 0; i-- { ix[i]++ if i == 0 || ix[i] < length(i) { return } ix[i] = 0 } } results := [][]interfaces.Invariant{} for ix := make([]int, len(exclusives)); ix[0] < length(0); NextIx(ix) { x := []interfaces.Invariant{} for j, k := range ix { x = append(x, exclusives[j].Invariants[k]) } results = append(results, x) } return results } // InvariantSolution lists a trivial set of EqualsInvariant mappings so that you // can populate your AST with SetType calls in a simple loop. type InvariantSolution struct { Solutions []*interfaces.EqualsInvariant // list of trivial solutions for each node } // ExprList returns the list of valid expressions. This struct is not part of // the invariant interface, but it implements this anyways. func (obj *InvariantSolution) ExprList() []interfaces.Expr { exprs := []interfaces.Expr{} for _, x := range obj.Solutions { exprs = append(exprs, x.ExprList()...) } return exprs }