Instead of constantly making these updates, let's just remove the year
since things are stored in git anyways, and this is not an actual modern
legal risk anymore.
This adds a modern type unification algorithm, which drastically
improves performance, particularly for bigger programs.
This required a change to the AST to add TypeCheck methods (for Stmt)
and Infer/Check methods (for Expr). This also changed how the functions
express their invariants, and as a result this was changed as well.
This greatly improves the way we express these invariants, and as a
result it makes adding new polymorphic functions significantly easier.
This also makes error output for the user a lot better in pretty much
all scenarios.
The one downside of this patch is that a good chunk of it is merged in
this giant single commit since it was hard to do it step-wise. That's
not the end of the world.
This couldn't be done without the guidance of Sam who helped me in
explaining, debugging, and writing all the sneaky algorithmic parts and
much more. Thanks again Sam!
Co-authored-by: Samuel Gélineau <gelisam@gmail.com>
With the recent merging of embedded package imports and the entry CLI
package, it is now possible for users to build in mcl code into a single
binary. This additional permission makes it explicitly clear that this
is permitted to make it easier for those users. The condition is phrased
so that the terms can be "patched" by the original author if it's
necessary for the project. For example, if the name of the language
(mcl) changes, has a differently named new version, someone finds a
phrasing improvement or a legal loophole, or for some other
reasonable circumstance. Now go write some beautiful embedded tools!
There were a bunch of packages that weren't well documented. With the
recent split up of the lang package, I figured it would be more helpful
for new contributors who want to learn the structure of the project.
We should probably move these into the central interfaces package so
that these can be used from multiple places. They don't have any
dependencies, and it doesn't make sense to have the solver code mixed in
to the same package. Overall the interface being implemented here could
probably be improved, but that's a project for another day.
This ensures that docstring comments are wrapped to 80 chars. ffrank
seemed to be making this mistake far too often, and it's a silly thing
to look for manually. As it turns out, I've made it too, as have many
others. Now we have a test that checks for most cases. There are still a
few stray cases that aren't checked automatically, but this can be
improved upon if someone is motivated to do so.
Before anyone complains about the 80 character limit: this only checks
docstring comments, not source code length or inline source code
comments. There's no excuse for having docstrings that are badly
reflowed or over 80 chars, particularly if you have an automated test.
This adds a giant missing piece of the language: proper function values!
It is lovely to now understand why early programming language designers
didn't implement these, but a joy to now reap the benefits of them. In
adding these, many other changes had to be made to get them to "fit"
correctly. This improved the code and fixed a number of bugs.
Unfortunately this touched many areas of the code, and since I was
learning how to do all of this for the first time, I've squashed most of
my work into a single commit. Some more information:
* This adds over 70 new tests to verify the new functionality.
* Functions, global variables, and classes can all be implemented
natively in mcl and built into core packages.
* A new compiler step called "Ordering" was added. It is called by the
SetScope step, and determines statement ordering and shadowing
precedence formally. It helped remove at least one bug and provided the
additional analysis required to properly capture variables when
implementing function generators and closures.
* The type unification code was improved to handle the new cases.
* Light copying of Node's allowed our function graphs to be more optimal
and share common vertices and edges. For example, if two different
closures capture a variable $x, they'll both use the same copy when
running the function, since the compiler can prove if they're identical.
* Some areas still need improvements, but this is ready for mainstream
testing and use!
The simple type unification algorithm suffered from some serious
performance and memory problems when used with certain code bases. This
adds some crucial optimizations that improve performance drastically.
This is an initial implementation of the mgmt language. It is a
declarative (immutable) functional, reactive, domain specific
programming language. It is intended to be a language that is:
* safe
* powerful
* easy to reason about
With these properties, we hope this language, and the mgmt engine will
allow you to model the real-time systems that you'd like to automate.
This also includes a number of other associated changes. Sorry for the
large size of this patch.