lang: funcs: core: iter: Add map iterator function part2

This adds the Unify method to our map function and also switches the arg
order because I decided it would look nicer. Completely untested.
This commit is contained in:
James Shubin
2021-05-18 03:54:18 -04:00
parent 0be4b86230
commit 75d4d767c6
9 changed files with 346 additions and 25 deletions

View File

@@ -23,6 +23,7 @@ import (
"github.com/purpleidea/mgmt/lang/funcs" "github.com/purpleidea/mgmt/lang/funcs"
"github.com/purpleidea/mgmt/lang/interfaces" "github.com/purpleidea/mgmt/lang/interfaces"
"github.com/purpleidea/mgmt/lang/types" "github.com/purpleidea/mgmt/lang/types"
"github.com/purpleidea/mgmt/util"
"github.com/purpleidea/mgmt/util/errwrap" "github.com/purpleidea/mgmt/util/errwrap"
) )
@@ -32,14 +33,18 @@ func init() {
} }
const ( const (
argNameFunction = "function"
argNameInputs = "inputs" argNameInputs = "inputs"
argNameFunction = "function"
) )
// MapFunc is the standard map iterator function that applies a function to each // MapFunc is the standard map iterator function that applies a function to each
// element in a list. It returns a list with the same number of elements as the // element in a list. It returns a list with the same number of elements as the
// input list. There is no requirement that the element output type be the same // input list. There is no requirement that the element output type be the same
// as the input element type. // as the input element type. This implements the signature:
// `func(inputs []T1, function func(T1) T2) []T2` instead of the alternate with
// the two input args swapped, because while the latter is more common with
// languages that support partial function application, the former variant that
// we implemented is much more readable when using an inline lambda.
// TODO: should we extend this to support iterating over map's and structs, or // TODO: should we extend this to support iterating over map's and structs, or
// should that be a different function? I think a different function is best. // should that be a different function? I think a different function is best.
type MapFunc struct { type MapFunc struct {
@@ -49,8 +54,8 @@ type MapFunc struct {
init *interfaces.Init init *interfaces.Init
last types.Value // last value received to use for diff last types.Value // last value received to use for diff
function func([]types.Value) (types.Value, error)
inputs types.Value inputs types.Value
function func([]types.Value) (types.Value, error)
result types.Value // last calculated output result types.Value // last calculated output
@@ -59,17 +64,291 @@ type MapFunc struct {
// ArgGen returns the Nth arg name for this function. // ArgGen returns the Nth arg name for this function.
func (obj *MapFunc) ArgGen(index int) (string, error) { func (obj *MapFunc) ArgGen(index int) (string, error) {
seq := []string{argNameFunction, argNameInputs} seq := []string{argNameInputs, argNameFunction} // inverted for pretty!
if l := len(seq); index >= l { if l := len(seq); index >= l {
return "", fmt.Errorf("index %d exceeds arg length of %d", index, l) return "", fmt.Errorf("index %d exceeds arg length of %d", index, l)
} }
return seq[index], nil return seq[index], nil
} }
// Unify returns the list of invariants that this func produces.
func (obj *MapFunc) Unify(expr interfaces.Expr) ([]interfaces.Invariant, error) {
var invariants []interfaces.Invariant
var invar interfaces.Invariant
// func(inputs []T1, function func(T1) T2) []T2
inputsName, err := obj.ArgGen(0)
if err != nil {
return nil, err
}
functionName, err := obj.ArgGen(1)
if err != nil {
return nil, err
}
dummyArgList := &interfaces.ExprAny{} // corresponds to the input list
dummyArgFunc := &interfaces.ExprAny{} // corresponds to the input func
dummyOutList := &interfaces.ExprAny{} // corresponds to the output list
// full function
mapped := make(map[string]interfaces.Expr)
ordered := []string{inputsName, functionName}
mapped[inputsName] = dummyArgList
mapped[functionName] = dummyArgFunc
invar = &interfaces.EqualityWrapFuncInvariant{
Expr1: expr, // maps directly to us!
Expr2Map: mapped,
Expr2Ord: ordered,
Expr2Out: dummyOutList,
}
invariants = append(invariants, invar)
// generator function
fn := func(fnInvariants []interfaces.Invariant, solved map[interfaces.Expr]*types.Type) ([]interfaces.Invariant, error) {
for _, invariant := range fnInvariants {
// search for this special type of invariant
cfavInvar, ok := invariant.(*interfaces.CallFuncArgsValueInvariant)
if !ok {
continue
}
// did we find the mapping from us to ExprCall ?
if cfavInvar.Func != expr {
continue
}
// cfavInvar.Expr is the ExprCall! (the return pointer)
// cfavInvar.Args are the args that ExprCall uses!
if l := len(cfavInvar.Args); l != 2 {
return nil, fmt.Errorf("unable to build function with %d args", l)
}
// we must have exactly two args
var invariants []interfaces.Invariant
var invar interfaces.Invariant
t1Expr := &interfaces.ExprAny{} // corresponds to the t1 type
t2Expr := &interfaces.ExprAny{} // corresponds to the t2 type
// add the relationship to the returned value
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Expr,
Expr2: dummyOutList,
}
invariants = append(invariants, invar)
// add the relationships to the called args
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Args[0],
Expr2: dummyArgList,
}
invariants = append(invariants, invar)
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Args[1],
Expr2: dummyArgFunc,
}
invariants = append(invariants, invar)
var t1, t2 *types.Type // as seen in our sig's
var foundArgName string = util.NumToAlpha(0) // XXX: is this a hack?
// validateArg0 checks: inputs []T1
validateArg0 := func(typ *types.Type) error {
if typ == nil { // unknown so far
return nil
}
if typ.Kind != types.KindList {
return fmt.Errorf("input type must be of kind list")
}
if typ.Val == nil { // TODO: is this okay to add?
return nil // unknown so far
}
if t1 == nil { // t1 is not yet known, so done!
t1 = typ.Val // learn!
return nil
}
//if err := typ.Val.Cmp(t1); err != nil {
// return errwrap.Wrapf(err, "input type was inconsistent")
//}
//return nil
return errwrap.Wrapf(typ.Val.Cmp(t1), "input type was inconsistent")
}
// validateArg1 checks: func(T1) T2
validateArg1 := func(typ *types.Type) error {
if typ == nil { // unknown so far
return nil
}
if typ.Kind != types.KindFunc {
return fmt.Errorf("input type must be of kind func")
}
if len(typ.Map) != 1 || len(typ.Ord) != 1 {
return fmt.Errorf("input type func must have only one input arg")
}
arg, exists := typ.Map[typ.Ord[0]]
if !exists {
// programming error
return fmt.Errorf("input type func first arg is missing")
}
if t1 != nil {
if err := arg.Cmp(t1); err != nil {
return errwrap.Wrapf(err, "input type func arg was inconsistent")
}
}
if t2 != nil {
if err := typ.Out.Cmp(t2); err != nil {
return errwrap.Wrapf(err, "input type func output was inconsistent")
}
}
// in case they weren't set already
t1 = arg
t2 = typ.Out
foundArgName = typ.Ord[0] // we found a name!
return nil
}
if typ, err := cfavInvar.Args[0].Type(); err == nil { // is it known?
// this sets t1 and t2 on success if it learned
if err := validateArg0(typ); err != nil {
return nil, errwrap.Wrapf(err, "first input arg type is inconsistent")
}
}
if typ, exists := solved[cfavInvar.Args[0]]; exists { // alternate way to lookup type
// this sets t1 and t2 on success if it learned
if err := validateArg0(typ); err != nil {
return nil, errwrap.Wrapf(err, "first input arg type is inconsistent")
}
}
// XXX: since we might not yet have association to this
// expression (dummyArgList) yet, we could consider
// returning some of the invariants and a new generator
// and hoping we get a hit on this one the next time.
if typ, exists := solved[dummyArgList]; exists { // alternate way to lookup type
// this sets t1 and t2 on success if it learned
if err := validateArg0(typ); err != nil {
return nil, errwrap.Wrapf(err, "first input arg type is inconsistent")
}
}
if typ, err := cfavInvar.Args[1].Type(); err == nil { // is it known?
// this sets t1 and t2 on success if it learned
if err := validateArg1(typ); err != nil {
return nil, errwrap.Wrapf(err, "second input arg type is inconsistent")
}
}
if typ, exists := solved[cfavInvar.Args[1]]; exists { // alternate way to lookup type
// this sets t1 and t2 on success if it learned
if err := validateArg1(typ); err != nil {
return nil, errwrap.Wrapf(err, "second input arg type is inconsistent")
}
}
// XXX: since we might not yet have association to this
// expression (dummyArgFunc) yet, we could consider
// returning some of the invariants and a new generator
// and hoping we get a hit on this one the next time.
if typ, exists := solved[dummyArgFunc]; exists { // alternate way to lookup type
// this sets t1 and t2 on success if it learned
if err := validateArg1(typ); err != nil {
return nil, errwrap.Wrapf(err, "second input arg type is inconsistent")
}
}
// XXX: look for t1 and t2 in other places?
if t1 != nil {
invar = &interfaces.EqualsInvariant{
Expr: t1Expr,
Type: t1,
}
invariants = append(invariants, invar)
invar = &interfaces.EqualityWrapListInvariant{
Expr1: cfavInvar.Args[0],
Expr2Val: t1Expr,
}
invariants = append(invariants, invar)
// we already have the mapping, but add both in
// case we need to solve these from either side
invar = &interfaces.EqualityWrapListInvariant{
Expr1: dummyArgList,
Expr2Val: t1Expr,
}
invariants = append(invariants, invar)
}
if t1 != nil && t2 != nil {
argName := foundArgName // XXX: is this a hack?
mapped := make(map[string]interfaces.Expr)
ordered := []string{argName}
mapped[argName] = t1Expr
invar = &interfaces.EqualityWrapFuncInvariant{
Expr1: dummyArgFunc,
Expr2Map: mapped,
Expr2Ord: ordered,
Expr2Out: t2Expr,
}
invariants = append(invariants, invar)
}
// note, currently, we can't learn t2 without t1
if t2 != nil {
invar = &interfaces.EqualsInvariant{
Expr: t2Expr,
Type: t2,
}
invariants = append(invariants, invar)
invar = &interfaces.EqualityWrapListInvariant{
Expr1: dummyOutList,
Expr2Val: t2Expr,
}
invariants = append(invariants, invar)
// we already have the mapping, but add both in
// case we need to solve these from either side
invar = &interfaces.EqualityWrapListInvariant{
Expr1: cfavInvar.Expr,
Expr2Val: t2Expr,
}
invariants = append(invariants, invar)
}
// We need to require this knowledge to continue!
if t1 == nil || t2 == nil {
return nil, fmt.Errorf("not enough known about function signature")
}
// TODO: do we return this relationship with ExprCall?
invar = &interfaces.EqualityWrapCallInvariant{
// TODO: should Expr1 and Expr2 be reversed???
Expr1: cfavInvar.Expr,
//Expr2Func: cfavInvar.Func, // same as below
Expr2Func: expr,
}
invariants = append(invariants, invar)
// TODO: are there any other invariants we should build?
return invariants, nil // generator return
}
// We couldn't tell the solver anything it didn't already know!
return nil, fmt.Errorf("couldn't generate new invariants")
}
invar = &interfaces.GeneratorInvariant{
Func: fn,
}
invariants = append(invariants, invar)
return invariants, nil
}
// Polymorphisms returns the list of possible function signatures available for // Polymorphisms returns the list of possible function signatures available for
// this static polymorphic function. It relies on type and value hints to limit // this static polymorphic function. It relies on type and value hints to limit
// the number of returned possibilities. // the number of returned possibilities.
func (obj *MapFunc) Polymorphisms(partialType *types.Type, partialValues []types.Value) ([]*types.Type, error) { func (obj *MapFunc) Polymorphisms(partialType *types.Type, partialValues []types.Value) ([]*types.Type, error) {
// XXX: double check that this works with `func([]int, func(int) str) []str` (when types change!)
// TODO: look at partialValues to gleam type information? // TODO: look at partialValues to gleam type information?
if partialType == nil { if partialType == nil {
return nil, fmt.Errorf("zero type information given") return nil, fmt.Errorf("zero type information given")
@@ -100,22 +379,22 @@ func (obj *MapFunc) Polymorphisms(partialType *types.Type, partialValues []types
return nil, fmt.Errorf("must have two args in func") return nil, fmt.Errorf("must have two args in func")
} }
if tInputs, exists := partialType.Map[ord[1]]; exists && tInputs != nil { if tInputs, exists := partialType.Map[ord[0]]; exists && tInputs != nil {
if tInputs.Kind != types.KindList { if tInputs.Kind != types.KindList {
return nil, fmt.Errorf("second input arg must be of kind list") return nil, fmt.Errorf("first input arg must be of kind list")
} }
t1 = tInputs.Val // found (if not nil) t1 = tInputs.Val // found (if not nil)
} }
if tFunction, exists := partialType.Map[ord[0]]; exists && tFunction != nil { if tFunction, exists := partialType.Map[ord[1]]; exists && tFunction != nil {
if tFunction.Kind != types.KindFunc { if tFunction.Kind != types.KindFunc {
return nil, fmt.Errorf("first input arg must be a func") return nil, fmt.Errorf("second input arg must be a func")
} }
fOrd := tFunction.Ord fOrd := tFunction.Ord
if fMap := tFunction.Map; fMap != nil { if fMap := tFunction.Map; fMap != nil {
if len(fOrd) != 1 { if len(fOrd) != 1 {
return nil, fmt.Errorf("first input arg func, must have only one arg") return nil, fmt.Errorf("second input arg func, must have only one arg")
} }
if fIn, exists := fMap[fOrd[0]]; exists && fIn != nil { if fIn, exists := fMap[fOrd[0]]; exists && fIn != nil {
if err := fIn.Cmp(t1); t1 != nil && err != nil { if err := fIn.Cmp(t1); t1 != nil && err != nil {
@@ -127,7 +406,7 @@ func (obj *MapFunc) Polymorphisms(partialType *types.Type, partialValues []types
if fOut := tFunction.Out; fOut != nil { if fOut := tFunction.Out; fOut != nil {
if err := fOut.Cmp(t2); t2 != nil && err != nil { if err := fOut.Cmp(t2); t2 != nil && err != nil {
return nil, errwrap.Wrapf(err, "first arg function out type is inconsistent") return nil, errwrap.Wrapf(err, "second arg function out type is inconsistent")
} }
t2 = fOut // found t2 = fOut // found
} }
@@ -140,7 +419,7 @@ func (obj *MapFunc) Polymorphisms(partialType *types.Type, partialValues []types
tI := types.NewType(fmt.Sprintf("[]%s", t1.String())) // in tI := types.NewType(fmt.Sprintf("[]%s", t1.String())) // in
tO := types.NewType(fmt.Sprintf("[]%s", t2.String())) // out tO := types.NewType(fmt.Sprintf("[]%s", t2.String())) // out
tF := types.NewType(fmt.Sprintf("func(%s) %s", t1.String(), t2.String())) tF := types.NewType(fmt.Sprintf("func(%s) %s", t1.String(), t2.String()))
s := fmt.Sprintf("func(%s %s, %s %s) %s", argNameFunction, tF, argNameInputs, tI, tO) s := fmt.Sprintf("func(%s %s, %s %s) %s", argNameInputs, tI, argNameFunction, tF, tO)
typ := types.NewType(s) // yay! typ := types.NewType(s) // yay!
// TODO: type check that the partialValues are compatible // TODO: type check that the partialValues are compatible
@@ -166,20 +445,20 @@ func (obj *MapFunc) Build(typ *types.Type) error {
return fmt.Errorf("the map is nil") return fmt.Errorf("the map is nil")
} }
tFunction, exists := typ.Map[typ.Ord[0]] tInputs, exists := typ.Map[typ.Ord[0]]
if !exists || tFunction == nil { if !exists || tInputs == nil {
return fmt.Errorf("first argument was missing") return fmt.Errorf("first argument was missing")
} }
tInputs, exists := typ.Map[typ.Ord[1]] tFunction, exists := typ.Map[typ.Ord[1]]
if !exists || tInputs == nil { if !exists || tFunction == nil {
return fmt.Errorf("second argument was missing") return fmt.Errorf("second argument was missing")
} }
if tFunction.Kind != types.KindFunc {
return fmt.Errorf("first argument must be of kind func")
}
if tInputs.Kind != types.KindList { if tInputs.Kind != types.KindList {
return fmt.Errorf("second argument must be of kind list") return fmt.Errorf("first argument must be of kind list")
}
if tFunction.Kind != types.KindFunc {
return fmt.Errorf("second argument must be of kind func")
} }
if typ.Out == nil { if typ.Out == nil {
@@ -242,7 +521,7 @@ func (obj *MapFunc) Info() *interfaces.Info {
// type of 1st arg (the function) // type of 1st arg (the function)
tF := types.NewType(fmt.Sprintf("func(%s) %s", tIi.String(), tOi.String())) tF := types.NewType(fmt.Sprintf("func(%s) %s", tIi.String(), tOi.String()))
s := fmt.Sprintf("func(%s %s, %s %s) %s", argNameFunction, tF, argNameInputs, tI, tO) s := fmt.Sprintf("func(%s %s, %s %s) %s", argNameInputs, tI, argNameFunction, tF, tO)
typ := types.NewType(s) // yay! typ := types.NewType(s) // yay!
return &interfaces.Info{ return &interfaces.Info{

View File

@@ -0,0 +1 @@
Vertex: test[out1: [1 2 3 4 5]]

View File

@@ -0,0 +1,13 @@
import "iter"
$fn = func($x) { # notable because concrete type is fn(t1) t2, where t1 != t2
len($x)
}
$in1 = ["a", "bb", "ccc", "dddd", "eeeee",]
$out1 = iter.xmap($in1, $fn) # XXX: change to map
$t1 = template("out1: {{ . }}", $out1)
test $t1 {}

View File

@@ -11,10 +11,10 @@ $fn = func($x) {
$in1 = [5, 4, 3, 2, 1,] $in1 = [5, 4, 3, 2, 1,]
$in2 = ["a", "b", "c", "d", "e",] $in2 = ["a", "b", "c", "d", "e",]
$out1 = iter.xmap($fn, $in1) # XXX: change to map $out1 = iter.xmap($in1, $fn) # XXX: change to map
$out2 = iter.xmap($fn, $in2) # XXX: change to map $out2 = iter.xmap($in2, $fn) # XXX: change to map
$out3 = iterxmap($fn, $in1) # XXX: change to map $out3 = iterxmap($in1, $fn) # XXX: change to map
$out4 = iterxmap($fn, $in2) # XXX: change to map $out4 = iterxmap($in2, $fn) # XXX: change to map
$t1 = template("out1: {{ . }}", $out1) $t1 = template("out1: {{ . }}", $out1)
$t2 = template("out2: {{ . }}", $out2) $t2 = template("out2: {{ . }}", $out2)

View File

@@ -6,7 +6,7 @@ $fn = func($x) { # ignore arg
$in = [5, 4, 3, 2, 1,] $in = [5, 4, 3, 2, 1,]
$out = iter.xmap($fn, $in) # XXX: change to map $out = iter.xmap($in, $fn) # XXX: change to map
$t = template("out: {{ . }}", $out) $t = template("out: {{ . }}", $out)

View File

@@ -0,0 +1 @@
Vertex: test[out: [1 2 3 4 5]]

View File

@@ -0,0 +1,13 @@
import "iter"
$fn = func($x) { # type changes from str to int
len($x)
}
$in = ["a", "bb", "ccc", "dddd", "eeeee",]
$out = iter.xmap($in, $fn) # XXX: change to map
$t = template("out: {{ . }}", $out)
test $t {}

View File

@@ -0,0 +1 @@
Vertex: test[out: [1 2 3 4 5]]

View File

@@ -0,0 +1,13 @@
import "iter"
$in = ["a", "bb", "ccc", "dddd", "eeeee",]
# the inline lambda format is more readable with the func as the second arg
$out = iter.xmap($in, func($x) {
len($x)
}) # XXX: change to map
$t = template("out: {{ . }}", $out)
test $t {}