lang: funcs: core: iter: Add map iterator function

Sadly this doesn't all work yet, but the tests and xmap function are
approximately correct. Eventually we add filter and reduce too!
This commit is contained in:
James Shubin
2019-10-17 16:43:53 -04:00
parent 784d15b012
commit 0be4b86230
7 changed files with 402 additions and 0 deletions

View File

@@ -25,6 +25,7 @@ import (
_ "github.com/purpleidea/mgmt/lang/funcs/core/example"
_ "github.com/purpleidea/mgmt/lang/funcs/core/example/nested"
_ "github.com/purpleidea/mgmt/lang/funcs/core/fmt"
_ "github.com/purpleidea/mgmt/lang/funcs/core/iter"
_ "github.com/purpleidea/mgmt/lang/funcs/core/math"
_ "github.com/purpleidea/mgmt/lang/funcs/core/net"
_ "github.com/purpleidea/mgmt/lang/funcs/core/os"

View File

@@ -0,0 +1,23 @@
// Mgmt
// Copyright (C) 2013-2021+ James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
package coreiter
const (
// ModuleName is the prefix given to all the functions in this module.
ModuleName = "iter"
)

View File

@@ -0,0 +1,333 @@
// Mgmt
// Copyright (C) 2013-2021+ James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
package coreiter
import (
"fmt"
"github.com/purpleidea/mgmt/lang/funcs"
"github.com/purpleidea/mgmt/lang/interfaces"
"github.com/purpleidea/mgmt/lang/types"
"github.com/purpleidea/mgmt/util/errwrap"
)
func init() {
// XXX: rename to map once our parser sees a function name and not a type
funcs.ModuleRegister(ModuleName, "xmap", func() interfaces.Func { return &MapFunc{} }) // must register the func and name
}
const (
argNameFunction = "function"
argNameInputs = "inputs"
)
// MapFunc is the standard map iterator function that applies a function to each
// element in a list. It returns a list with the same number of elements as the
// input list. There is no requirement that the element output type be the same
// as the input element type.
// TODO: should we extend this to support iterating over map's and structs, or
// should that be a different function? I think a different function is best.
type MapFunc struct {
Type *types.Type // this is the type of the elements in our input list
RType *types.Type // this is the type of the elements in our output list
init *interfaces.Init
last types.Value // last value received to use for diff
function func([]types.Value) (types.Value, error)
inputs types.Value
result types.Value // last calculated output
closeChan chan struct{}
}
// ArgGen returns the Nth arg name for this function.
func (obj *MapFunc) ArgGen(index int) (string, error) {
seq := []string{argNameFunction, argNameInputs}
if l := len(seq); index >= l {
return "", fmt.Errorf("index %d exceeds arg length of %d", index, l)
}
return seq[index], nil
}
// Polymorphisms returns the list of possible function signatures available for
// this static polymorphic function. It relies on type and value hints to limit
// the number of returned possibilities.
func (obj *MapFunc) Polymorphisms(partialType *types.Type, partialValues []types.Value) ([]*types.Type, error) {
// TODO: look at partialValues to gleam type information?
if partialType == nil {
return nil, fmt.Errorf("zero type information given")
}
if partialType.Kind != types.KindFunc {
return nil, fmt.Errorf("partial type must be of kind func")
}
// If we figure out both of these two types, we'll know the full type...
var t1 *types.Type // type
var t2 *types.Type // rtype
// Look at the returned "out" type if it's known.
if tOut := partialType.Out; tOut != nil {
if tOut.Kind != types.KindList {
return nil, fmt.Errorf("partial out type must be of kind list")
}
t2 = tOut.Val // found (if not nil)
}
ord := partialType.Ord
if partialType.Map != nil {
// TODO: is it okay to assume this?
//if len(ord) == 0 {
// return nil, fmt.Errorf("must have two args in func")
//}
if len(ord) != 2 {
return nil, fmt.Errorf("must have two args in func")
}
if tInputs, exists := partialType.Map[ord[1]]; exists && tInputs != nil {
if tInputs.Kind != types.KindList {
return nil, fmt.Errorf("second input arg must be of kind list")
}
t1 = tInputs.Val // found (if not nil)
}
if tFunction, exists := partialType.Map[ord[0]]; exists && tFunction != nil {
if tFunction.Kind != types.KindFunc {
return nil, fmt.Errorf("first input arg must be a func")
}
fOrd := tFunction.Ord
if fMap := tFunction.Map; fMap != nil {
if len(fOrd) != 1 {
return nil, fmt.Errorf("first input arg func, must have only one arg")
}
if fIn, exists := fMap[fOrd[0]]; exists && fIn != nil {
if err := fIn.Cmp(t1); t1 != nil && err != nil {
return nil, errwrap.Wrapf(err, "first arg function in type is inconsistent")
}
t1 = fIn // found
}
}
if fOut := tFunction.Out; fOut != nil {
if err := fOut.Cmp(t2); t2 != nil && err != nil {
return nil, errwrap.Wrapf(err, "first arg function out type is inconsistent")
}
t2 = fOut // found
}
}
}
if t1 == nil || t2 == nil {
return nil, fmt.Errorf("not enough type information given")
}
tI := types.NewType(fmt.Sprintf("[]%s", t1.String())) // in
tO := types.NewType(fmt.Sprintf("[]%s", t2.String())) // out
tF := types.NewType(fmt.Sprintf("func(%s) %s", t1.String(), t2.String()))
s := fmt.Sprintf("func(%s %s, %s %s) %s", argNameFunction, tF, argNameInputs, tI, tO)
typ := types.NewType(s) // yay!
// TODO: type check that the partialValues are compatible
return []*types.Type{typ}, nil // solved!
}
// Build is run to turn the polymorphic, undetermined function, into the
// specific statically typed version. It is usually run after Unify completes,
// and must be run before Info() and any of the other Func interface methods are
// used. This function is idempotent, as long as the arg isn't changed between
// runs.
func (obj *MapFunc) Build(typ *types.Type) error {
// typ is the KindFunc signature we're trying to build...
if typ.Kind != types.KindFunc {
return fmt.Errorf("input type must be of kind func")
}
if len(typ.Ord) != 2 {
return fmt.Errorf("the map needs exactly two args")
}
if typ.Map == nil {
return fmt.Errorf("the map is nil")
}
tFunction, exists := typ.Map[typ.Ord[0]]
if !exists || tFunction == nil {
return fmt.Errorf("first argument was missing")
}
tInputs, exists := typ.Map[typ.Ord[1]]
if !exists || tInputs == nil {
return fmt.Errorf("second argument was missing")
}
if tFunction.Kind != types.KindFunc {
return fmt.Errorf("first argument must be of kind func")
}
if tInputs.Kind != types.KindList {
return fmt.Errorf("second argument must be of kind list")
}
if typ.Out == nil {
return fmt.Errorf("return type must be specified")
}
if typ.Out.Kind != types.KindList {
return fmt.Errorf("return argument must be a list")
}
if len(tFunction.Ord) != 1 {
return fmt.Errorf("the functions map needs exactly one arg")
}
if tFunction.Map == nil {
return fmt.Errorf("the functions map is nil")
}
tArg, exists := tFunction.Map[tFunction.Ord[0]]
if !exists || tArg == nil {
return fmt.Errorf("the functions first argument was missing")
}
if err := tArg.Cmp(tInputs.Val); err != nil {
return errwrap.Wrapf(err, "the functions arg type must match the input list contents type")
}
if tFunction.Out == nil {
return fmt.Errorf("return type of function must be specified")
}
if err := tFunction.Out.Cmp(typ.Out.Val); err != nil {
return errwrap.Wrapf(err, "return type of function must match returned list contents type")
}
obj.Type = tInputs.Val // or tArg
obj.RType = tFunction.Out // or typ.Out.Val
return nil
}
// Validate tells us if the input struct takes a valid form.
func (obj *MapFunc) Validate() error {
if obj.Type == nil || obj.RType == nil {
return fmt.Errorf("type is not yet known")
}
return nil
}
// Info returns some static info about itself. Build must be called before this
// will return correct data.
func (obj *MapFunc) Info() *interfaces.Info {
// TODO: what do we put if this is unknown?
tIi := types.TypeVariant
if obj.Type != nil {
tIi = obj.Type
}
tI := types.NewType(fmt.Sprintf("[]%s", tIi.String())) // type of 2nd arg
tOi := types.TypeVariant
if obj.RType != nil {
tOi = obj.RType
}
tO := types.NewType(fmt.Sprintf("[]%s", tOi.String())) // return type
// type of 1st arg (the function)
tF := types.NewType(fmt.Sprintf("func(%s) %s", tIi.String(), tOi.String()))
s := fmt.Sprintf("func(%s %s, %s %s) %s", argNameFunction, tF, argNameInputs, tI, tO)
typ := types.NewType(s) // yay!
return &interfaces.Info{
Pure: false, // TODO: what if the input function isn't pure?
Memo: false,
Sig: typ,
Err: obj.Validate(),
}
}
// Init runs some startup code for this function.
func (obj *MapFunc) Init(init *interfaces.Init) error {
obj.init = init
obj.closeChan = make(chan struct{})
return nil
}
// Stream returns the changing values that this func has over time.
func (obj *MapFunc) Stream() error {
defer close(obj.init.Output) // the sender closes
rtyp := types.NewType(fmt.Sprintf("[]%s", obj.RType.String()))
for {
select {
case input, ok := <-obj.init.Input:
if !ok {
obj.init.Input = nil // don't infinite loop back
continue // no more inputs, but don't return!
}
//if err := input.Type().Cmp(obj.Info().Sig.Input); err != nil {
// return errwrap.Wrapf(err, "wrong function input")
//}
if obj.last != nil && input.Cmp(obj.last) == nil {
continue // value didn't change, skip it
}
obj.last = input // store for next
function := input.Struct()[argNameFunction].Func() // func([]Value) (Value, error)
//if function == obj.function { // TODO: how can we cmp?
// continue // nothing changed
//}
obj.function = function
inputs := input.Struct()[argNameInputs]
if obj.inputs != nil && obj.inputs.Cmp(inputs) == nil {
continue // nothing changed
}
obj.inputs = inputs
// run the function on each index
output := []types.Value{}
for ix, v := range inputs.List() { // []Value
args := []types.Value{v} // only one input arg!
x, err := function(args)
if err != nil {
return errwrap.Wrapf(err, "error running map function on index %d", ix)
}
output = append(output, x)
}
result := &types.ListValue{
V: output,
T: rtyp,
}
if obj.result != nil && obj.result.Cmp(result) == nil {
continue // result didn't change
}
obj.result = result // store new result
case <-obj.closeChan:
return nil
}
select {
case obj.init.Output <- obj.result: // send
// pass
case <-obj.closeChan:
return nil
}
}
}
// Close runs some shutdown code for this function and turns off the stream.
func (obj *MapFunc) Close() error {
close(obj.closeChan)
return nil
}

View File

@@ -0,0 +1,4 @@
Vertex: test[out1: [10 8 6 4 2]]
Vertex: test[out2: [aa bb cc dd ee]]
Vertex: test[out3: [10 8 6 4 2]]
Vertex: test[out4: [aa bb cc dd ee]]

View File

@@ -0,0 +1,27 @@
import "iter"
func iterxmap($a, $b) { # XXX: change to map
iter.xmap($a, $b) # XXX: change to map
}
$fn = func($x) {
$x + $x
}
$in1 = [5, 4, 3, 2, 1,]
$in2 = ["a", "b", "c", "d", "e",]
$out1 = iter.xmap($fn, $in1) # XXX: change to map
$out2 = iter.xmap($fn, $in2) # XXX: change to map
$out3 = iterxmap($fn, $in1) # XXX: change to map
$out4 = iterxmap($fn, $in2) # XXX: change to map
$t1 = template("out1: {{ . }}", $out1)
$t2 = template("out2: {{ . }}", $out2)
$t3 = template("out3: {{ . }}", $out3)
$t4 = template("out4: {{ . }}", $out4)
test $t1 {}
test $t2 {}
test $t3 {}
test $t4 {}

View File

@@ -0,0 +1 @@
Vertex: test[out: [42 42 42 42 42]]

View File

@@ -0,0 +1,13 @@
import "iter"
$fn = func($x) { # ignore arg
42
}
$in = [5, 4, 3, 2, 1,]
$out = iter.xmap($fn, $in) # XXX: change to map
$t = template("out: {{ . }}", $out)
test $t {}