Files
mgmt/lang/core/collect.go
James Shubin fddebb2474 engine, lang: core: Match exported resources properly
I inverted the logic for complex setups and forgot to handle the zero
cases. I also didn't notice my loop continue error. This cleans all this
up so that we can have proper exported resource matching.
2025-05-08 22:29:03 -04:00

511 lines
17 KiB
Go

// Mgmt
// Copyright (C) James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
//
// Additional permission under GNU GPL version 3 section 7
//
// If you modify this program, or any covered work, by linking or combining it
// with embedded mcl code and modules (and that the embedded mcl code and
// modules which link with this program, contain a copy of their source code in
// the authoritative form) containing parts covered by the terms of any other
// license, the licensors of this program grant you additional permission to
// convey the resulting work. Furthermore, the licensors of this program grant
// the original author, James Shubin, additional permission to update this
// additional permission if he deems it necessary to achieve the goals of this
// additional permission.
package core
import (
"context"
"fmt"
"github.com/purpleidea/mgmt/engine"
"github.com/purpleidea/mgmt/lang/funcs"
"github.com/purpleidea/mgmt/lang/interfaces"
"github.com/purpleidea/mgmt/lang/types"
"github.com/purpleidea/mgmt/util/errwrap"
)
const (
// CollectFuncName is the name this function is registered as. This
// starts with an underscore so that it cannot be used from the lexer.
CollectFuncName = funcs.CollectFuncName
// arg names...
collectArgNameKind = "kind"
collectArgNameNames = "names"
//collectFuncInType = "[]struct{kind str; name str; host str}"
//collectFuncInFieldKind = "kind" // must match above struct field
collectFuncInFieldName = funcs.CollectFuncInFieldName
collectFuncInFieldHost = funcs.CollectFuncInFieldHost
// collectFuncInType is the most complex of the three possible input
// types. The other two possible ones are str or []str.
collectFuncInType = funcs.CollectFuncInType // "[]struct{name str; host str}"
collectFuncOutFieldName = funcs.CollectFuncOutFieldName
collectFuncOutFieldHost = funcs.CollectFuncOutFieldHost
collectFuncOutFieldData = funcs.CollectFuncOutFieldData
// collectFuncOutStruct is the struct type that we return a list of.
collectFuncOutStruct = funcs.CollectFuncOutStruct
// collectFuncOutType is the expected return type, the data field is an
// encoded resource blob.
// XXX: Once structs can be real map keys in mcl, could this instead be:
// map{struct{name str; host str}: str} // key => $data (efficiency!)
collectFuncOutType = funcs.CollectFuncOutType // "[]struct{name str; host str; data str}"
)
func init() {
funcs.Register(CollectFuncName, func() interfaces.Func { return &CollectFunc{} }) // must register the func and name
}
var _ interfaces.InferableFunc = &CollectFunc{} // ensure it meets this expectation
// CollectFunc is a special internal function which gets given information about
// incoming resource collection data. For example, to collect, that "pseudo
// resource" will need to know what resource "kind" it's collecting, the names
// of those resources, and the corresponding hostnames that they are getting the
// data from. With that three-tuple of data, it can pull all of that from etcd
// and pass it into a hidden resource body field so that the collect "pseudo
// resource" can use it to build the exported resource!
//
// The "kind" comes in as the first arg. The second arg (in its complex form) is
// []struct{name str; host str} is what the end user is _asking_ this function
// for.
// TODO: We could have a second version of this collect function which takes a
// single arg which receives []struct{kind str; name str; host str} which would
// let us write a truly dynamic collector. It's unlikely we want to allow this
// in most cases because it lets you play type games since the field name in one
// resource kind might be a different type in another.
type CollectFunc struct {
// Type is the type of the second arg that we receive. (When known.)
Type *types.Type
init *interfaces.Init
last types.Value // last value received to use for diff
args []types.Value
kind string
result types.Value // last calculated output
watchChan chan error
}
// String returns a simple name for this function. This is needed so this struct
// can satisfy the pgraph.Vertex interface.
func (obj *CollectFunc) String() string {
return CollectFuncName
}
// ArgGen returns the Nth arg name for this function.
func (obj *CollectFunc) ArgGen(index int) (string, error) {
seq := []string{collectArgNameKind, collectArgNameNames}
if l := len(seq); index >= l {
return "", fmt.Errorf("index %d exceeds arg length of %d", index, l)
}
return seq[index], nil
}
// helper
func (obj *CollectFunc) sig() *types.Type {
arg := "?1"
if obj.Type != nil {
arg = obj.Type.String()
}
return types.NewType(fmt.Sprintf(
"func(%s str, %s %s) %s",
collectArgNameKind,
collectArgNameNames,
arg,
collectFuncOutType,
))
}
// check determines if our arg type is valid.
func (obj *CollectFunc) check(typ *types.Type) error {
if typ.Cmp(types.TypeStr) == nil {
return nil
}
if typ.Cmp(types.TypeListStr) == nil {
return nil
}
if typ.Cmp(types.NewType(collectFuncInType)) == nil {
return nil
}
return fmt.Errorf("unexpected type: %s", typ.String())
}
// FuncInfer takes partial type and value information from the call site of this
// function so that it can build an appropriate type signature for it. The type
// signature may include unification variables.
func (obj *CollectFunc) FuncInfer(partialType *types.Type, partialValues []types.Value) (*types.Type, []*interfaces.UnificationInvariant, error) {
// There are many variants which we could allow... These variants are
// what the user specifies in the $name field when they collect. They
// will often get the third form from helper functions that filter the
// data from the world graph, so that they can programmatically match
// using our mcl language rather than hard-coding a mini matcher lang.
//
// XXX: Do we want to allow all these variants?
//
// func(str, str) out # matches all hostnames
// OR
// func(str, []str) out # matches all hostnames
// OR
// func(str, []struct{name str; host str} ) out # matches exact tuples or all hostnames if host is ""
// SO
// func(str, ?1) out
// AND
// out = []struct{name str; host str; data str} # it could have kind too, but not needed right now
//
// NOTE: map[str]str (name => host) is NOT a good choice because even
// though we nominally have one host exporting a given name, it's valid
// to have that same name come from more than one host and for them to
// be compatible, almost like an "exported resources redundancy".
//
// NOTE map[str][]str (name => []host) is sensible, BUT it makes it
// harder to express that we want "every host", which we can do with the
// struct variant above by having host be the empty string. It's also
// easier for the mcl programmer to understand that variant.
if l := 2; len(partialValues) != l {
return nil, nil, fmt.Errorf("function must have %d args", l)
}
if err := partialValues[0].Type().Cmp(types.TypeStr); err != nil {
return nil, nil, errwrap.Wrapf(err, "function arg kind must be a str")
}
kind := partialValues[0].Str() // must not panic
if kind == "" {
return nil, nil, fmt.Errorf("function must not have an empty kind arg")
}
if !engine.IsKind(kind) {
return nil, nil, fmt.Errorf("invalid resource kind: %s", kind)
}
// If second arg is one of what we're expecting, then we are solved!
if len(partialType.Ord) == 2 && partialType.Map[partialType.Ord[1]] != nil {
typ := partialType.Map[partialType.Ord[1]]
if err := obj.check(typ); err == nil {
obj.Type = typ // success!
}
}
return obj.sig(), []*interfaces.UnificationInvariant{}, nil
}
// Build is run to turn the polymorphic, undetermined function, into the
// specific statically typed version. It is usually run after Unify completes,
// and must be run before Info() and any of the other Func interface methods are
// used. This function is idempotent, as long as the arg isn't changed between
// runs.
func (obj *CollectFunc) Build(typ *types.Type) (*types.Type, error) {
// typ is the KindFunc signature we're trying to build...
if typ.Kind != types.KindFunc {
return nil, fmt.Errorf("input type must be of kind func")
}
if len(typ.Ord) != 2 {
return nil, fmt.Errorf("the collect function needs two args")
}
tStr, exists := typ.Map[typ.Ord[0]]
if !exists || tStr == nil {
return nil, fmt.Errorf("first arg must be specified")
}
if tStr.Cmp(types.TypeStr) != nil {
return nil, fmt.Errorf("first arg must be a str")
}
tArg, exists := typ.Map[typ.Ord[1]]
if !exists || tArg == nil {
return nil, fmt.Errorf("second arg must be specified")
}
if err := obj.check(tArg); err != nil {
return nil, err
}
obj.Type = tArg // store it!
return obj.sig(), nil
}
// Copy is implemented so that the obj.Type value is not lost if we copy this
// function. That value is learned during FuncInfer, and previously would have
// been lost by the time we used it in Build.
func (obj *CollectFunc) Copy() interfaces.Func {
return &CollectFunc{
Type: obj.Type, // don't copy because we use this after unification
init: obj.init, // likely gets overwritten anyways
}
}
// Validate tells us if the input struct takes a valid form.
func (obj *CollectFunc) Validate() error {
if obj.Type == nil {
return fmt.Errorf("the Type is unknown")
}
if err := obj.check(obj.Type); err != nil {
return err
}
return nil
}
// Info returns some static info about itself. Build must be called before this
// will return correct data.
func (obj *CollectFunc) Info() *interfaces.Info {
// Since this function implements FuncInfer we want sig to return nil to
// avoid an accidental return of unification variables when we should be
// getting them from FuncInfer, and not from here. (During unification!)
var sig *types.Type
if obj.Type != nil && obj.check(obj.Type) == nil {
sig = obj.sig() // helper
}
return &interfaces.Info{
Pure: false,
Memo: false,
Fast: false,
Spec: false,
Sig: sig,
Err: obj.Validate(),
}
}
// Init runs some startup code for this function.
func (obj *CollectFunc) Init(init *interfaces.Init) error {
obj.init = init
obj.watchChan = make(chan error) // XXX: sender should close this, but did I implement that part yet???
return nil
}
// Stream returns the changing values that this func has over time.
func (obj *CollectFunc) Stream(ctx context.Context) error {
defer close(obj.init.Output) // the sender closes
ctx, cancel := context.WithCancel(ctx)
defer cancel() // important so that we cleanup the watch when exiting
for {
select {
// TODO: should this first chan be run as a priority channel to
// avoid some sort of glitch? is that even possible? can our
// hostname check with reality (below) fix that?
case input, ok := <-obj.init.Input:
if !ok {
obj.init.Input = nil // don't infinite loop back
continue // no more inputs, but don't return!
}
//if err := input.Type().Cmp(obj.Info().Sig.Input); err != nil {
// return errwrap.Wrapf(err, "wrong function input")
//}
if obj.last != nil && input.Cmp(obj.last) == nil {
continue // value didn't change, skip it
}
obj.last = input // store for next
args, err := interfaces.StructToCallableArgs(input) // []types.Value, error)
if err != nil {
return err
}
obj.args = args
kind := args[0].Str()
if kind == "" {
return fmt.Errorf("can't use an empty kind")
}
if obj.init.Debug {
obj.init.Logf("kind: %s", kind)
}
// TODO: support changing the key over time?
if obj.kind == "" {
obj.kind = kind // store it
var err error
// Don't send a value right away, wait for the
// first Watch startup event to get one!
obj.watchChan, err = obj.init.World.ResWatch(ctx, obj.kind) // watch for var changes
if err != nil {
return err
}
} else if obj.kind != kind {
return fmt.Errorf("can't change kind, previously: `%s`", obj.kind)
}
continue // we get values on the watch chan, not here!
case err, ok := <-obj.watchChan:
if !ok { // closed
// XXX: if we close, perhaps the engine is
// switching etcd hosts and we should retry?
// maybe instead we should get an "etcd
// reconnect" signal, and the lang will restart?
return nil
}
if err != nil {
return errwrap.Wrapf(err, "channel watch failed on `%s`", obj.kind)
}
result, err := obj.Call(ctx, obj.args) // get the value...
if err != nil {
return err
}
// if the result is still the same, skip sending an update...
if obj.result != nil && result.Cmp(obj.result) == nil {
continue // result didn't change
}
obj.result = result // store new result
case <-ctx.Done():
return nil
}
select {
case obj.init.Output <- obj.result: // send
// pass
case <-ctx.Done():
return nil
}
}
}
// Call this function with the input args and return the value if it is possible
// to do so at this time. This was previously getValue which gets the value
// we're looking for.
func (obj *CollectFunc) Call(ctx context.Context, args []types.Value) (types.Value, error) {
if len(args) < 2 {
return nil, fmt.Errorf("not enough args")
}
kind := args[0].Str()
if kind == "" {
return nil, fmt.Errorf("resource kind is empty")
}
if !engine.IsKind(kind) {
return nil, fmt.Errorf("invalid resource kind: %s", kind)
}
filters := []*engine.ResFilter{}
arg := args[1]
typ := arg.Type()
// Can be one of: str, []str, []struct{name str; host str} for matching.
if typ.Cmp(types.TypeStr) == nil { // it must be a name only
filter := &engine.ResFilter{
Kind: kind,
Name: arg.Str(),
Host: "", // any
}
filters = append(filters, filter)
}
if typ.Cmp(types.TypeListStr) == nil {
for _, x := range arg.List() {
filter := &engine.ResFilter{
Kind: kind,
Name: x.Str(),
Host: "", // any
}
filters = append(filters, filter)
}
}
if typ.Cmp(types.NewType(collectFuncInType)) == nil {
for _, x := range arg.List() {
st, ok := x.(*types.StructValue)
if !ok {
// programming error
return nil, fmt.Errorf("value is not a struct")
}
name, exists := st.Lookup(collectFuncInFieldName)
if !exists {
// programming error?
return nil, fmt.Errorf("name field is missing")
}
host, exists := st.Lookup(collectFuncInFieldHost)
if !exists {
// programming error?
return nil, fmt.Errorf("host field is missing")
}
filter := &engine.ResFilter{
Kind: kind,
Name: name.Str(),
Host: host.Str(),
}
filters = append(filters, filter)
}
}
if obj.init == nil {
return nil, funcs.ErrCantSpeculate
}
list := types.NewList(obj.Info().Sig.Out) // collectFuncOutType
if len(filters) == 0 {
// If we have no filters, it means we're matching on nothing,
// which happens if we've pre-filtered away all the resources
// that we'd want to collect, so here we return absolutely zero!
return list, nil
}
resOutput, err := obj.init.World.ResCollect(ctx, filters)
if err != nil {
return nil, err
}
for _, x := range resOutput {
// programming error if any of these error...
if x.Kind != kind {
return nil, fmt.Errorf("unexpected kind: %s", x.Kind)
}
if x.Name == "" {
return nil, fmt.Errorf("unexpected empty name")
}
if x.Host == "" {
return nil, fmt.Errorf("unexpected empty host")
}
if x.Data == "" {
return nil, fmt.Errorf("unexpected empty data")
}
name := &types.StrValue{V: x.Name}
host := &types.StrValue{V: x.Host} // from
data := &types.StrValue{V: x.Data}
st := types.NewStruct(types.NewType(collectFuncOutStruct))
if err := st.Set(collectFuncOutFieldName, name); err != nil {
return nil, errwrap.Wrapf(err, "struct could not add field `%s`, val: `%s`", collectFuncOutFieldName, name)
}
if err := st.Set(collectFuncOutFieldHost, host); err != nil {
return nil, errwrap.Wrapf(err, "struct could not add field `%s`, val: `%s`", collectFuncOutFieldHost, host)
}
if err := st.Set(collectFuncOutFieldData, data); err != nil {
return nil, errwrap.Wrapf(err, "struct could not add field `%s`, val: `%s`", collectFuncOutFieldData, data)
}
if err := list.Add(st); err != nil { // XXX: improve perf of Add
return nil, err
}
}
return list, nil // put struct into interface type
}