Files
mgmt/lang/funcs/structlookup_polyfunc.go
James Shubin a7624a2bf9 legal: Happy 2023 everyone...
Done with:

ack '2022+' -l | xargs sed -i -e 's/2022+/2023+/g'

Checked manually with:

git add -p

Hello to future James from 2024, and Happy Hacking!
2023-03-05 18:31:52 -05:00

538 lines
16 KiB
Go

// Mgmt
// Copyright (C) 2013-2023+ James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
package funcs
import (
"fmt"
"github.com/purpleidea/mgmt/lang/interfaces"
"github.com/purpleidea/mgmt/lang/types"
"github.com/purpleidea/mgmt/util/errwrap"
)
const (
// StructLookupFuncName is the name this function is registered as. This
// starts with an underscore so that it cannot be used from the lexer.
// XXX: change to _structlookup and add syntax in the lexer/parser
StructLookupFuncName = "structlookup"
)
func init() {
Register(StructLookupFuncName, func() interfaces.Func { return &StructLookupPolyFunc{} }) // must register the func and name
}
// StructLookupPolyFunc is a key map lookup function.
type StructLookupPolyFunc struct {
Type *types.Type // Kind == Struct, that is used as the struct we lookup
Out *types.Type // type of field we're extracting
init *interfaces.Init
last types.Value // last value received to use for diff
field string
result types.Value // last calculated output
closeChan chan struct{}
}
// String returns a simple name for this function. This is needed so this struct
// can satisfy the pgraph.Vertex interface.
func (obj *StructLookupPolyFunc) String() string {
return StructLookupFuncName
}
// ArgGen returns the Nth arg name for this function.
func (obj *StructLookupPolyFunc) ArgGen(index int) (string, error) {
seq := []string{"struct", "field"}
if l := len(seq); index >= l {
return "", fmt.Errorf("index %d exceeds arg length of %d", index, l)
}
return seq[index], nil
}
// Unify returns the list of invariants that this func produces.
func (obj *StructLookupPolyFunc) Unify(expr interfaces.Expr) ([]interfaces.Invariant, error) {
var invariants []interfaces.Invariant
var invar interfaces.Invariant
// func(struct T1, field str) T2
structName, err := obj.ArgGen(0)
if err != nil {
return nil, err
}
fieldName, err := obj.ArgGen(1)
if err != nil {
return nil, err
}
dummyStruct := &interfaces.ExprAny{} // corresponds to the struct type
dummyField := &interfaces.ExprAny{} // corresponds to the field type
dummyOut := &interfaces.ExprAny{} // corresponds to the out string
// field arg type of string
invar = &interfaces.EqualsInvariant{
Expr: dummyField,
Type: types.TypeStr,
}
invariants = append(invariants, invar)
// XXX: we could use this relationship *if* our solver could understand
// different fields, and partial struct matches. I guess we'll leave it
// for another day!
//mapped := make(map[string]interfaces.Expr)
//ordered := []string{???}
//mapped[???] = dummyField
//invar = &interfaces.EqualityWrapStructInvariant{
// Expr1: dummyStruct,
// Expr2Map: mapped,
// Expr2Ord: ordered,
//}
//invariants = append(invariants, invar)
// full function
mapped := make(map[string]interfaces.Expr)
ordered := []string{structName, fieldName}
mapped[structName] = dummyStruct
mapped[fieldName] = dummyField
invar = &interfaces.EqualityWrapFuncInvariant{
Expr1: expr, // maps directly to us!
Expr2Map: mapped,
Expr2Ord: ordered,
Expr2Out: dummyOut,
}
invariants = append(invariants, invar)
// generator function
fn := func(fnInvariants []interfaces.Invariant, solved map[interfaces.Expr]*types.Type) ([]interfaces.Invariant, error) {
for _, invariant := range fnInvariants {
// search for this special type of invariant
cfavInvar, ok := invariant.(*interfaces.CallFuncArgsValueInvariant)
if !ok {
continue
}
// did we find the mapping from us to ExprCall ?
if cfavInvar.Func != expr {
continue
}
// cfavInvar.Expr is the ExprCall! (the return pointer)
// cfavInvar.Args are the args that ExprCall uses!
if l := len(cfavInvar.Args); l != 2 {
return nil, fmt.Errorf("unable to build function with %d args", l)
}
// add the relationship to the returned value
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Expr,
Expr2: dummyOut,
}
invariants = append(invariants, invar)
// add the relationships to the called args
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Args[0],
Expr2: dummyStruct,
}
invariants = append(invariants, invar)
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Args[1],
Expr2: dummyField,
}
invariants = append(invariants, invar)
var invariants []interfaces.Invariant
var invar interfaces.Invariant
// second arg must be a string
invar = &interfaces.EqualsInvariant{
Expr: cfavInvar.Args[1],
Type: types.TypeStr,
}
invariants = append(invariants, invar)
value, err := cfavInvar.Args[1].Value() // is it known?
if err != nil {
return nil, fmt.Errorf("field string is not known statically")
}
if k := value.Type().Kind; k != types.KindStr {
return nil, fmt.Errorf("unable to build function with 1st arg of kind: %s", k)
}
field := value.Str() // must not panic
// If we figure out both of these two types, we'll know
// the full type...
var t1 *types.Type // struct type
var t2 *types.Type // return type
// validateArg0 checks: struct T1
validateArg0 := func(typ *types.Type) error {
if typ == nil { // unknown so far
return nil
}
// we happen to have a struct!
if k := typ.Kind; k != types.KindStruct {
return fmt.Errorf("unable to build function with 0th arg of kind: %s", k)
}
// check both Ord and Map for safety
found := false
for _, s := range typ.Ord {
if s == field {
found = true
break
}
}
t, exists := typ.Map[field] // type found is T2
if !exists || !found {
return fmt.Errorf("struct is missing field: %s", field)
}
if err := typ.Cmp(t1); t1 != nil && err != nil {
return errwrap.Wrapf(err, "input type was inconsistent")
}
if err := t.Cmp(t2); t2 != nil && err != nil {
return errwrap.Wrapf(err, "input type was inconsistent")
}
// learn!
t1 = typ
t2 = t
return nil
}
if typ, err := cfavInvar.Args[0].Type(); err == nil { // is it known?
// this sets t1 and t2 on success if it learned
if err := validateArg0(typ); err != nil {
return nil, errwrap.Wrapf(err, "first struct arg type is inconsistent")
}
}
if typ, exists := solved[cfavInvar.Args[0]]; exists { // alternate way to lookup type
// this sets t1 and t2 on success if it learned
if err := validateArg0(typ); err != nil {
return nil, errwrap.Wrapf(err, "first struct arg type is inconsistent")
}
}
// XXX: if the struct type/value isn't know statically?
if t1 != nil {
invar = &interfaces.EqualsInvariant{
Expr: dummyStruct,
Type: t1,
}
invariants = append(invariants, invar)
// We know *some* information about the struct!
// Let's hope the unusedField expr won't trip
// up the solver...
mapped := make(map[string]interfaces.Expr)
ordered := []string{}
for _, x := range t1.Ord {
// We *don't* need to solve unusedField
unusedField := &interfaces.ExprAny{}
mapped[x] = unusedField
if x == field { // the one we care about
mapped[x] = dummyOut
}
ordered = append(ordered, x)
}
// We map to dummyOut which is the return type
// and has the same type of the field we want!
mapped[field] = dummyOut // redundant =D
invar = &interfaces.EqualityWrapStructInvariant{
Expr1: dummyStruct,
Expr2Map: mapped,
Expr2Ord: ordered,
}
invariants = append(invariants, invar)
}
if t2 != nil {
invar := &interfaces.EqualsInvariant{
Expr: dummyOut,
Type: t2,
}
invariants = append(invariants, invar)
}
// XXX: if t1 or t2 are missing, we could also return a
// new generator for later if we learn new information,
// but we'd have to be careful to not do the infinitely
// TODO: do we return this relationship with ExprCall?
invar = &interfaces.EqualityWrapCallInvariant{
// TODO: should Expr1 and Expr2 be reversed???
Expr1: cfavInvar.Expr,
//Expr2Func: cfavInvar.Func, // same as below
Expr2Func: expr,
}
invariants = append(invariants, invar)
// TODO: are there any other invariants we should build?
return invariants, nil // generator return
}
// We couldn't tell the solver anything it didn't already know!
return nil, fmt.Errorf("couldn't generate new invariants")
}
invar = &interfaces.GeneratorInvariant{
Func: fn,
}
invariants = append(invariants, invar)
return invariants, nil
}
// Polymorphisms returns the list of possible function signatures available for
// this static polymorphic function. It relies on type and value hints to limit
// the number of returned possibilities.
func (obj *StructLookupPolyFunc) Polymorphisms(partialType *types.Type, partialValues []types.Value) ([]*types.Type, error) {
// TODO: return `variant` as arg for now -- maybe there's a better way?
variant := []*types.Type{types.NewType("func(struct variant, field str) variant")}
if partialType == nil {
return variant, nil
}
var typ *types.Type // struct type of the first argument
var out *types.Type // type of the field
// TODO: if partialValue[0] exists, check it matches the type we expect
ord := partialType.Ord
if partialType.Map != nil {
if len(ord) != 2 {
return nil, fmt.Errorf("must have exactly two args in structlookup func")
}
if tStruct, exists := partialType.Map[ord[0]]; exists && tStruct != nil {
if tStruct.Kind != types.KindStruct {
return nil, fmt.Errorf("first arg for structlookup must be a struct")
}
if !tStruct.HasVariant() {
typ = tStruct // found
}
}
if tField, exists := partialType.Map[ord[1]]; exists && tField != nil {
if tField.Cmp(types.TypeStr) != nil {
return nil, fmt.Errorf("second arg for structlookup must be a string")
}
}
if len(partialValues) == 2 && partialValues[1] != nil {
if types.TypeStr.Cmp(partialValues[1].Type()) != nil {
return nil, fmt.Errorf("second value must be an str")
}
structType, exists := partialType.Map[ord[0]]
if !exists {
return nil, fmt.Errorf("missing struct field")
}
if structType != nil {
field := partialValues[1].Str()
fieldType, exists := structType.Map[field]
if !exists {
return nil, fmt.Errorf("field: `%s` does not exist in struct", field)
}
if fieldType != nil {
if partialType.Out != nil && fieldType.Cmp(partialType.Out) != nil {
return nil, fmt.Errorf("field `%s` must have same type as return type", field)
}
out = fieldType // found!
}
}
}
if tOut := partialType.Out; tOut != nil {
// TODO: we could check that at least one of the types
// in struct.Map was our type, but not very useful...
}
}
typFunc := &types.Type{
Kind: types.KindFunc, // function type
Map: make(map[string]*types.Type),
Ord: []string{"struct", "field"},
Out: out,
}
typFunc.Map["struct"] = typ
typFunc.Map["field"] = types.TypeStr
// set variant instead of nil
if typFunc.Map["struct"] == nil {
typFunc.Map["struct"] = types.TypeVariant
}
if out == nil {
typFunc.Out = types.TypeVariant
}
return []*types.Type{typFunc}, nil
}
// Build is run to turn the polymorphic, undetermined function, into the
// specific statically typed version. It is usually run after Unify completes,
// and must be run before Info() and any of the other Func interface methods are
// used. This function is idempotent, as long as the arg isn't changed between
// runs.
func (obj *StructLookupPolyFunc) Build(typ *types.Type) error {
// typ is the KindFunc signature we're trying to build...
if typ.Kind != types.KindFunc {
return fmt.Errorf("input type must be of kind func")
}
if len(typ.Ord) != 2 {
return fmt.Errorf("the structlookup function needs exactly two args")
}
if typ.Out == nil {
return fmt.Errorf("return type of function must be specified")
}
if typ.Map == nil {
return fmt.Errorf("invalid input type")
}
tStruct, exists := typ.Map[typ.Ord[0]]
if !exists || tStruct == nil {
return fmt.Errorf("first arg must be specified")
}
tField, exists := typ.Map[typ.Ord[1]]
if !exists || tField == nil {
return fmt.Errorf("second arg must be specified")
}
if err := tField.Cmp(types.TypeStr); err != nil {
return errwrap.Wrapf(err, "field must be an str")
}
// NOTE: We actually don't know which field this is, only its type! we
// could have cached the discovered field during Polymorphisms(), but it
// turns out it's not actually necessary for us to know it to build the
// struct.
obj.Type = tStruct // struct type
obj.Out = typ.Out // type of return value
return nil
}
// Validate tells us if the input struct takes a valid form.
func (obj *StructLookupPolyFunc) Validate() error {
if obj.Type == nil { // build must be run first
return fmt.Errorf("type is still unspecified")
}
if obj.Type.Kind != types.KindStruct {
return fmt.Errorf("type must be a kind of struct")
}
if obj.Out == nil {
return fmt.Errorf("return type must be specified")
}
for _, t := range obj.Type.Map {
if obj.Out.Cmp(t) == nil {
return nil // found at least one match
}
}
return fmt.Errorf("return type is not in the list of available struct fields")
}
// Info returns some static info about itself. Build must be called before this
// will return correct data.
func (obj *StructLookupPolyFunc) Info() *interfaces.Info {
var sig *types.Type
if obj.Type != nil { // don't panic if called speculatively
// TODO: can obj.Out be nil (a partial) ?
sig = types.NewType(fmt.Sprintf("func(struct %s, field str) %s", obj.Type.String(), obj.Out.String()))
}
return &interfaces.Info{
Pure: true,
Memo: false,
Sig: sig, // func kind
Err: obj.Validate(),
}
}
// Init runs some startup code for this function.
func (obj *StructLookupPolyFunc) Init(init *interfaces.Init) error {
obj.init = init
obj.closeChan = make(chan struct{})
return nil
}
// Stream returns the changing values that this func has over time.
func (obj *StructLookupPolyFunc) Stream() error {
defer close(obj.init.Output) // the sender closes
for {
select {
case input, ok := <-obj.init.Input:
if !ok {
return nil // can't output any more
}
//if err := input.Type().Cmp(obj.Info().Sig.Input); err != nil {
// return errwrap.Wrapf(err, "wrong function input")
//}
if obj.last != nil && input.Cmp(obj.last) == nil {
continue // value didn't change, skip it
}
obj.last = input // store for next
st := (input.Struct()["struct"]).(*types.StructValue)
field := input.Struct()["field"].Str()
if field == "" {
return fmt.Errorf("received empty field")
}
result, exists := st.Lookup(field)
if !exists {
return fmt.Errorf("could not lookup field: `%s` in struct", field)
}
if obj.field == "" {
obj.field = field // store first field
}
if field != obj.field {
return fmt.Errorf("input field changed from: `%s`, to: `%s`", obj.field, field)
}
// if previous input was `2 + 4`, but now it
// changed to `1 + 5`, the result is still the
// same, so we can skip sending an update...
if obj.result != nil && result.Cmp(obj.result) == nil {
continue // result didn't change
}
obj.result = result // store new result
case <-obj.closeChan:
return nil
}
select {
case obj.init.Output <- obj.result: // send
case <-obj.closeChan:
return nil
}
}
}
// Close runs some shutdown code for this function and turns off the stream.
func (obj *StructLookupPolyFunc) Close() error {
close(obj.closeChan)
return nil
}