This ensures that docstring comments are wrapped to 80 chars. ffrank seemed to be making this mistake far too often, and it's a silly thing to look for manually. As it turns out, I've made it too, as have many others. Now we have a test that checks for most cases. There are still a few stray cases that aren't checked automatically, but this can be improved upon if someone is motivated to do so. Before anyone complains about the 80 character limit: this only checks docstring comments, not source code length or inline source code comments. There's no excuse for having docstrings that are badly reflowed or over 80 chars, particularly if you have an automated test.
380 lines
11 KiB
Go
380 lines
11 KiB
Go
// Mgmt
|
|
// Copyright (C) 2013-2020+ James Shubin and the project contributors
|
|
// Written by James Shubin <james@shubin.ca> and the project contributors
|
|
//
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
package corefmt
|
|
|
|
import (
|
|
"fmt"
|
|
|
|
"github.com/purpleidea/mgmt/lang/funcs"
|
|
"github.com/purpleidea/mgmt/lang/interfaces"
|
|
"github.com/purpleidea/mgmt/lang/types"
|
|
"github.com/purpleidea/mgmt/util"
|
|
"github.com/purpleidea/mgmt/util/errwrap"
|
|
)
|
|
|
|
func init() {
|
|
// FIXME: should this be named sprintf instead?
|
|
funcs.ModuleRegister(ModuleName, "printf", func() interfaces.Func { return &PrintfFunc{} })
|
|
}
|
|
|
|
const (
|
|
formatArgName = "format" // name of the first arg
|
|
)
|
|
|
|
// PrintfFunc is a static polymorphic function that compiles a format string and
|
|
// returns the output as a string. It bases its output on the values passed in
|
|
// to it. It examines the type of the arguments at compile time and then
|
|
// determines the static function signature by parsing the format string and
|
|
// using that to determine the final function signature. One consequence of this
|
|
// is that the format string must be a static string which is known at compile
|
|
// time. This is reasonable, because if it was a reactive, changing string, then
|
|
// we could expect the type signature to change, which is not allowed in our
|
|
// statically typed language.
|
|
type PrintfFunc struct {
|
|
Type *types.Type // final full type of our function
|
|
|
|
init *interfaces.Init
|
|
last types.Value // last value received to use for diff
|
|
|
|
result *string // last calculated output
|
|
|
|
closeChan chan struct{}
|
|
}
|
|
|
|
// ArgGen returns the Nth arg name for this function.
|
|
func (obj *PrintfFunc) ArgGen(index int) (string, error) {
|
|
if index == 0 {
|
|
return formatArgName, nil
|
|
}
|
|
return util.NumToAlpha(index - 1), nil
|
|
}
|
|
|
|
// Polymorphisms returns the possible type signature for this function. In this
|
|
// case, since the number of arguments can be infinite, it returns the final
|
|
// precise type if it can be gleamed from the format argument. If it cannot, it
|
|
// is because either the format argument was not known statically, or because it
|
|
// had an invalid format string.
|
|
func (obj *PrintfFunc) Polymorphisms(partialType *types.Type, partialValues []types.Value) ([]*types.Type, error) {
|
|
if partialType == nil || len(partialValues) < 1 {
|
|
return nil, fmt.Errorf("first argument must be a static format string")
|
|
}
|
|
|
|
if partialType.Out != nil && partialType.Out.Cmp(types.TypeStr) != nil {
|
|
return nil, fmt.Errorf("return value of printf must be str")
|
|
}
|
|
|
|
ord := partialType.Ord
|
|
if partialType.Map != nil {
|
|
if len(ord) < 1 {
|
|
return nil, fmt.Errorf("must have at least one arg in printf func")
|
|
}
|
|
if t, exists := partialType.Map[ord[0]]; exists && t != nil {
|
|
if t.Cmp(types.TypeStr) != nil {
|
|
return nil, fmt.Errorf("first arg for printf must be an str")
|
|
}
|
|
}
|
|
}
|
|
|
|
// FIXME: we'd like to pre-compute the interpolation if we can, so that
|
|
// we can run this code properly... for now, we can't, so it's a compile
|
|
// time error...
|
|
if partialValues[0] == nil {
|
|
return nil, fmt.Errorf("could not determine type from format string")
|
|
}
|
|
|
|
format := partialValues[0].Str() // must not panic
|
|
typList, err := parseFormatToTypeList(format)
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "could not parse format string")
|
|
}
|
|
|
|
typ := &types.Type{
|
|
Kind: types.KindFunc, // function type
|
|
Map: make(map[string]*types.Type),
|
|
Ord: []string{},
|
|
Out: types.TypeStr,
|
|
}
|
|
// add first arg
|
|
typ.Map[formatArgName] = types.TypeStr
|
|
typ.Ord = append(typ.Ord, formatArgName)
|
|
|
|
for i, x := range typList {
|
|
name := util.NumToAlpha(i) // start with a...
|
|
if name == formatArgName {
|
|
return nil, fmt.Errorf("could not build function with %d args", i+1) // +1 for format arg
|
|
}
|
|
|
|
// if we also had even more partial type information, check it!
|
|
if t, exists := partialType.Map[ord[i+1]]; exists && t != nil {
|
|
if err := t.Cmp(x); err != nil {
|
|
return nil, errwrap.Wrapf(err, "arg %d does not match expected type", i+1)
|
|
}
|
|
}
|
|
|
|
typ.Map[name] = x
|
|
typ.Ord = append(typ.Ord, name)
|
|
}
|
|
|
|
return []*types.Type{typ}, nil // return a list with a single possibility
|
|
}
|
|
|
|
// Build takes the now known function signature and stores it so that this
|
|
// function can appear to be static. That type is used to build our function
|
|
// statically.
|
|
func (obj *PrintfFunc) Build(typ *types.Type) error {
|
|
if typ.Kind != types.KindFunc {
|
|
return fmt.Errorf("input type must be of kind func")
|
|
}
|
|
if len(typ.Ord) < 1 {
|
|
return fmt.Errorf("the printf function needs at least one arg")
|
|
}
|
|
if typ.Out == nil {
|
|
return fmt.Errorf("return type of function must be specified")
|
|
}
|
|
if typ.Out.Cmp(types.TypeStr) != nil {
|
|
return fmt.Errorf("return type of function must be an str")
|
|
}
|
|
if typ.Map == nil {
|
|
return fmt.Errorf("invalid input type")
|
|
}
|
|
|
|
t0, exists := typ.Map[typ.Ord[0]]
|
|
if !exists || t0 == nil {
|
|
return fmt.Errorf("first arg must be specified")
|
|
}
|
|
if t0.Cmp(types.TypeStr) != nil {
|
|
return fmt.Errorf("first arg for printf must be an str")
|
|
}
|
|
|
|
obj.Type = typ // function type is now known!
|
|
return nil
|
|
}
|
|
|
|
// Validate makes sure we've built our struct properly. It is usually unused for
|
|
// normal functions that users can use directly.
|
|
func (obj *PrintfFunc) Validate() error {
|
|
if obj.Type == nil { // build must be run first
|
|
return fmt.Errorf("type is still unspecified")
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Info returns some static info about itself.
|
|
func (obj *PrintfFunc) Info() *interfaces.Info {
|
|
return &interfaces.Info{
|
|
Pure: true,
|
|
Memo: false,
|
|
Sig: obj.Type,
|
|
Err: obj.Validate(),
|
|
}
|
|
}
|
|
|
|
// Init runs some startup code for this function.
|
|
func (obj *PrintfFunc) Init(init *interfaces.Init) error {
|
|
obj.init = init
|
|
obj.closeChan = make(chan struct{})
|
|
return nil
|
|
}
|
|
|
|
// Stream returns the changing values that this func has over time.
|
|
func (obj *PrintfFunc) Stream() error {
|
|
defer close(obj.init.Output) // the sender closes
|
|
for {
|
|
select {
|
|
case input, ok := <-obj.init.Input:
|
|
if !ok {
|
|
return nil // can't output any more
|
|
}
|
|
//if err := input.Type().Cmp(obj.Info().Sig.Input); err != nil {
|
|
// return errwrap.Wrapf(err, "wrong function input")
|
|
//}
|
|
|
|
if obj.last != nil && input.Cmp(obj.last) == nil {
|
|
continue // value didn't change, skip it
|
|
}
|
|
obj.last = input // store for next
|
|
|
|
format := input.Struct()[formatArgName].Str()
|
|
values := []types.Value{}
|
|
for _, name := range obj.Type.Ord {
|
|
if name == formatArgName { // skip format arg
|
|
continue
|
|
}
|
|
x := input.Struct()[name]
|
|
values = append(values, x)
|
|
}
|
|
|
|
result, err := compileFormatToString(format, values)
|
|
if err != nil {
|
|
return err // no errwrap needed b/c helper func
|
|
}
|
|
|
|
if obj.result != nil && *obj.result == result {
|
|
continue // result didn't change
|
|
}
|
|
obj.result = &result // store new result
|
|
|
|
case <-obj.closeChan:
|
|
return nil
|
|
}
|
|
|
|
select {
|
|
case obj.init.Output <- &types.StrValue{
|
|
V: *obj.result,
|
|
}:
|
|
case <-obj.closeChan:
|
|
return nil
|
|
}
|
|
}
|
|
}
|
|
|
|
// Close runs some shutdown code for this function and turns off the stream.
|
|
func (obj *PrintfFunc) Close() error {
|
|
close(obj.closeChan)
|
|
return nil
|
|
}
|
|
|
|
// valueToString prints our values how we expect for printf.
|
|
// FIXME: if this turns out to be useful, add it to the types package.
|
|
func valueToString(value types.Value) string {
|
|
// FIXME: this is just an "easy-out" implementation for now...
|
|
return fmt.Sprintf("%v", value.Value())
|
|
|
|
//switch x := value.Type().Kind; x {
|
|
//case types.KindBool:
|
|
// return value.String()
|
|
//case types.KindStr:
|
|
// return value.Str() // use this since otherwise it adds " & "
|
|
//case types.KindInt:
|
|
// return value.String()
|
|
//case types.KindFloat:
|
|
// // TODO: use formatting flags ?
|
|
// return value.String()
|
|
//}
|
|
//panic("unhandled type") // TODO: not fully implemented yet
|
|
}
|
|
|
|
// parseFormatToTypeList takes a format string and returns a list of types that
|
|
// it expects to use in the order found in the format string.
|
|
// FIXME: add support for more types, and add tests!
|
|
func parseFormatToTypeList(format string) ([]*types.Type, error) {
|
|
typList := []*types.Type{}
|
|
inType := false
|
|
for i := 0; i < len(format); i++ {
|
|
|
|
// some normal char...
|
|
if !inType && format[i] != '%' {
|
|
continue
|
|
}
|
|
|
|
// in a type or we're a %
|
|
if format[i] == '%' {
|
|
if inType {
|
|
// it's a %%
|
|
inType = false
|
|
} else {
|
|
// start looking for type specification!
|
|
inType = true
|
|
}
|
|
continue
|
|
}
|
|
|
|
// we must be in a type
|
|
switch format[i] {
|
|
case 't':
|
|
typList = append(typList, types.TypeBool)
|
|
case 's':
|
|
typList = append(typList, types.TypeStr)
|
|
case 'd':
|
|
typList = append(typList, types.TypeInt)
|
|
|
|
// TODO: parse fancy formats like %0.2f and stuff
|
|
case 'f':
|
|
typList = append(typList, types.TypeFloat)
|
|
|
|
// FIXME: add fancy types like: %[]s, %[]f, %{s:f}, etc...
|
|
|
|
default:
|
|
return nil, fmt.Errorf("invalid format string at %d", i)
|
|
}
|
|
inType = false // done
|
|
}
|
|
|
|
return typList, nil
|
|
}
|
|
|
|
// compileFormatToString takes a format string and a list of values and returns
|
|
// the compiled/templated output.
|
|
// FIXME: add support for more types, and add tests!
|
|
func compileFormatToString(format string, values []types.Value) (string, error) {
|
|
output := ""
|
|
ix := 0
|
|
inType := false
|
|
for i := 0; i < len(format); i++ {
|
|
|
|
// some normal char...
|
|
if !inType && format[i] != '%' {
|
|
output += string(format[i])
|
|
continue
|
|
}
|
|
|
|
// in a type or we're a %
|
|
if format[i] == '%' {
|
|
if inType {
|
|
// it's a %%
|
|
output += string(format[i])
|
|
inType = false
|
|
} else {
|
|
// start looking for type specification!
|
|
inType = true
|
|
}
|
|
continue
|
|
}
|
|
|
|
// we must be in a type
|
|
var typ *types.Type
|
|
switch format[i] {
|
|
case 't':
|
|
typ = types.TypeBool
|
|
case 's':
|
|
typ = types.TypeStr
|
|
case 'd':
|
|
typ = types.TypeInt
|
|
|
|
// TODO: parse fancy formats like %0.2f and stuff
|
|
case 'f':
|
|
typ = types.TypeFloat
|
|
|
|
// FIXME: add fancy types like: %[]s, %[]f, %{s:f}, etc...
|
|
|
|
default:
|
|
return "", fmt.Errorf("invalid format string at %d", i)
|
|
}
|
|
inType = false // done
|
|
|
|
if err := typ.Cmp(values[ix].Type()); err != nil {
|
|
return "", errwrap.Wrapf(err, "unexpected type")
|
|
}
|
|
|
|
output += valueToString(values[ix])
|
|
ix++ // consume one value
|
|
}
|
|
|
|
return output, nil
|
|
}
|