Files
mgmt/lang/interpret_test.go
James Shubin f53376cea1 lang: Add function values and lambdas
This adds a giant missing piece of the language: proper function values!
It is lovely to now understand why early programming language designers
didn't implement these, but a joy to now reap the benefits of them. In
adding these, many other changes had to be made to get them to "fit"
correctly. This improved the code and fixed a number of bugs.
Unfortunately this touched many areas of the code, and since I was
learning how to do all of this for the first time, I've squashed most of
my work into a single commit. Some more information:

* This adds over 70 new tests to verify the new functionality.

* Functions, global variables, and classes can all be implemented
natively in mcl and built into core packages.

* A new compiler step called "Ordering" was added. It is called by the
SetScope step, and determines statement ordering and shadowing
precedence formally. It helped remove at least one bug and provided the
additional analysis required to properly capture variables when
implementing function generators and closures.

* The type unification code was improved to handle the new cases.

* Light copying of Node's allowed our function graphs to be more optimal
and share common vertices and edges. For example, if two different
closures capture a variable $x, they'll both use the same copy when
running the function, since the compiler can prove if they're identical.

* Some areas still need improvements, but this is ready for mainstream
testing and use!
2019-07-17 00:27:09 -04:00

1707 lines
46 KiB
Go

// Mgmt
// Copyright (C) 2013-2019+ James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
// +build !root
package lang
import (
"bytes"
"fmt"
"io/ioutil"
"os"
"sort"
"strings"
"testing"
"github.com/purpleidea/mgmt/engine"
"github.com/purpleidea/mgmt/engine/resources"
"github.com/purpleidea/mgmt/lang/funcs"
"github.com/purpleidea/mgmt/lang/interfaces"
"github.com/purpleidea/mgmt/lang/unification"
"github.com/purpleidea/mgmt/pgraph"
"github.com/purpleidea/mgmt/util"
"github.com/kylelemons/godebug/pretty"
"github.com/spf13/afero"
)
func vertexAstCmpFn(v1, v2 pgraph.Vertex) (bool, error) {
//fmt.Printf("V1: %T %+v\n", v1, v1)
//node := v1.(*funcs.Node)
//fmt.Printf("node: %T %+v\n", node, node)
//fmt.Printf("V2: %T %+v\n", v2, v2)
if v1.String() == "" || v2.String() == "" {
return false, fmt.Errorf("oops, empty vertex")
}
return v1.String() == v2.String(), nil
}
func edgeAstCmpFn(e1, e2 pgraph.Edge) (bool, error) {
if e1.String() == "" || e2.String() == "" {
return false, fmt.Errorf("oops, empty edge")
}
return e1.String() == e2.String(), nil
}
type vtex string
func (obj *vtex) String() string {
return string(*obj)
}
type edge string
func (obj *edge) String() string {
return string(*obj)
}
func TestAstFunc0(t *testing.T) {
scope := &interfaces.Scope{ // global scope
Variables: map[string]interfaces.Expr{
"hello": &ExprStr{V: "world"},
"answer": &ExprInt{V: 42},
},
// all the built-in top-level, core functions enter here...
Functions: FuncPrefixToFunctionsScope(""), // runs funcs.LookupPrefix
}
type test struct { // an individual test
name string
code string
fail bool
scope *interfaces.Scope
graph *pgraph.Graph
}
testCases := []test{}
{
graph, _ := pgraph.NewGraph("g")
testCases = append(testCases, test{ // 0
"nil",
``,
false,
nil,
graph,
})
}
{
graph, _ := pgraph.NewGraph("g")
testCases = append(testCases, test{
name: "scope only",
code: ``,
fail: false,
scope: scope, // use the scope defined above
graph: graph,
})
}
{
graph, _ := pgraph.NewGraph("g")
// empty graph at the moment, because they're all unused!
//v1, v2 := vtex("int(42)"), vtex("var(x)")
//e1 := edge("var:x")
//graph.AddVertex(&v1, &v2)
//graph.AddEdge(&v1, &v2, &e1)
testCases = append(testCases, test{
name: "two vars",
code: `
$x = 42
$y = $x
`,
// TODO: this should fail with an unused variable error!
fail: false,
graph: graph,
})
}
{
graph, _ := pgraph.NewGraph("g")
testCases = append(testCases, test{
name: "self-referential vars",
code: `
$x = $y
$y = $x
`,
fail: true,
graph: graph,
})
}
{
graph, _ := pgraph.NewGraph("g")
v1, v2, v3, v4, v5 := vtex("int(42)"), vtex("var(a)"), vtex("var(b)"), vtex("var(c)"), vtex(`str("t")`)
e1, e2, e3 := edge("var:a"), edge("var:b"), edge("var:c")
graph.AddVertex(&v1, &v2, &v3, &v4, &v5)
graph.AddEdge(&v1, &v2, &e1)
graph.AddEdge(&v2, &v3, &e2)
graph.AddEdge(&v3, &v4, &e3)
testCases = append(testCases, test{
name: "chained vars",
code: `
test "t" {
int64ptr => $c,
}
$c = $b
$b = $a
$a = 42
`,
fail: false,
graph: graph,
})
}
{
graph, _ := pgraph.NewGraph("g")
v1, v2 := vtex("bool(true)"), vtex("var(b)")
graph.AddVertex(&v1, &v2)
e1 := edge("var:b")
graph.AddEdge(&v1, &v2, &e1)
testCases = append(testCases, test{
name: "simple bool",
code: `
if $b {
}
$b = true
`,
fail: false,
graph: graph,
})
}
{
graph, _ := pgraph.NewGraph("g")
v1, v2, v3, v4, v5 := vtex(`str("t")`), vtex(`str("+")`), vtex("int(42)"), vtex("int(13)"), vtex(fmt.Sprintf(`call:%s(str("+"), int(42), int(13))`, operatorFuncName))
graph.AddVertex(&v1, &v2, &v3, &v4, &v5)
e1, e2, e3 := edge("op"), edge("a"), edge("b")
graph.AddEdge(&v2, &v5, &e1)
graph.AddEdge(&v3, &v5, &e2)
graph.AddEdge(&v4, &v5, &e3)
testCases = append(testCases, test{
name: "simple operator",
code: `
test "t" {
int64ptr => 42 + 13,
}
`,
fail: false,
scope: scope,
graph: graph,
})
}
{
graph, _ := pgraph.NewGraph("g")
v1, v2, v3 := vtex(`str("t")`), vtex(`str("-")`), vtex(`str("+")`)
v4, v5, v6 := vtex("int(42)"), vtex("int(13)"), vtex("int(99)")
v7 := vtex(fmt.Sprintf(`call:%s(str("+"), int(42), int(13))`, operatorFuncName))
v8 := vtex(fmt.Sprintf(`call:%s(str("-"), call:%s(str("+"), int(42), int(13)), int(99))`, operatorFuncName, operatorFuncName))
graph.AddVertex(&v1, &v2, &v3, &v4, &v5, &v6, &v7, &v8)
e1, e2, e3 := edge("op"), edge("a"), edge("b")
graph.AddEdge(&v3, &v7, &e1)
graph.AddEdge(&v4, &v7, &e2)
graph.AddEdge(&v5, &v7, &e3)
e4, e5, e6 := edge("op"), edge("a"), edge("b")
graph.AddEdge(&v2, &v8, &e4)
graph.AddEdge(&v7, &v8, &e5)
graph.AddEdge(&v6, &v8, &e6)
testCases = append(testCases, test{
name: "simple operators",
code: `
test "t" {
int64ptr => 42 + 13 - 99,
}
`,
fail: false,
scope: scope,
graph: graph,
})
}
{
graph, _ := pgraph.NewGraph("g")
v1, v2 := vtex("bool(true)"), vtex(`str("t")`)
v3, v4 := vtex("int(13)"), vtex("int(42)")
v5, v6 := vtex("var(i)"), vtex("var(x)")
v7, v8 := vtex(`str("+")`), vtex(fmt.Sprintf(`call:%s(str("+"), int(42), var(i))`, operatorFuncName))
e1, e2, e3, e4, e5 := edge("op"), edge("a"), edge("b"), edge("var:i"), edge("var:x")
graph.AddVertex(&v1, &v2, &v3, &v4, &v5, &v6, &v7, &v8)
graph.AddEdge(&v3, &v5, &e4)
graph.AddEdge(&v7, &v8, &e1)
graph.AddEdge(&v4, &v8, &e2)
graph.AddEdge(&v5, &v8, &e3)
graph.AddEdge(&v8, &v6, &e5)
testCases = append(testCases, test{
name: "nested resource and scoped var",
code: `
if true {
test "t" {
int64ptr => $x,
}
$x = 42 + $i
}
$i = 13
`,
fail: false,
scope: scope,
graph: graph,
})
}
{
testCases = append(testCases, test{
name: "out of scope error",
code: `
# should be out of scope, and a compile error!
if $b {
}
if true {
$b = true
}
`,
fail: true,
})
}
{
testCases = append(testCases, test{
name: "variable re-declaration error",
code: `
# this should fail b/c of variable re-declaration
$x = "hello"
$x = "world" # woops
`,
fail: true,
})
}
{
graph, _ := pgraph.NewGraph("g")
v1, v2, v3 := vtex(`str("hello")`), vtex(`str("world")`), vtex("bool(true)")
v4, v5 := vtex("var(x)"), vtex(`str("t")`)
graph.AddVertex(&v1, &v3, &v4, &v5)
_ = v2 // v2 is not used because it's shadowed!
e1 := edge("var:x")
// only one edge! (cool)
graph.AddEdge(&v1, &v4, &e1)
testCases = append(testCases, test{
name: "variable shadowing",
code: `
# this should be okay, because var is shadowed
$x = "hello"
if true {
$x = "world" # shadowed
}
test "t" {
stringptr => $x,
}
`,
fail: false,
graph: graph,
})
}
{
graph, _ := pgraph.NewGraph("g")
v1, v2, v3 := vtex(`str("hello")`), vtex(`str("world")`), vtex("bool(true)")
v4, v5 := vtex("var(x)"), vtex(`str("t")`)
graph.AddVertex(&v2, &v3, &v4, &v5)
_ = v1 // v1 is not used because it's shadowed!
e1 := edge("var:x")
// only one edge! (cool)
graph.AddEdge(&v2, &v4, &e1)
testCases = append(testCases, test{
name: "variable shadowing inner",
code: `
# this should be okay, because var is shadowed
$x = "hello"
if true {
$x = "world" # shadowed
test "t" {
stringptr => $x,
}
}
`,
fail: false,
graph: graph,
})
}
// // FIXME: blocked by: https://github.com/purpleidea/mgmt/issues/199
//{
// graph, _ := pgraph.NewGraph("g")
// v0 := vtex("bool(true)")
// v1, v2 := vtex(`str("hello")`), vtex(`str("world")`)
// v3, v4 := vtex("var(x)"), vtex("var(x)") // different vertices!
// v5, v6 := vtex(`str("t1")`), vtex(`str("t2")`)
//
// graph.AddVertex(&v0, &v1, &v2, &v3, &v4, &v5, &v6)
// e1, e2 := edge("var:x"), edge("var:x")
// graph.AddEdge(&v1, &v3, &e1)
// graph.AddEdge(&v2, &v4, &e2)
//
// testCases = append(testCases, test{
// name: "variable shadowing both",
// code: `
// # this should be okay, because var is shadowed
// $x = "hello"
// if true {
// $x = "world" # shadowed
// test "t2" {
// stringptr => $x,
// }
// }
// test "t1" {
// stringptr => $x,
// }
// `,
// fail: false,
// graph: graph,
// })
//}
// // FIXME: blocked by: https://github.com/purpleidea/mgmt/issues/199
//{
// graph, _ := pgraph.NewGraph("g")
// v1, v2 := vtex(`str("cowsay")`), vtex(`str("cowsay")`)
// v3, v4 := vtex(`str("installed)`), vtex(`str("newest")`)
//
// graph.AddVertex(&v1, &v2, &v3, &v4)
//
// testCases = append(testCases, test{
// name: "duplicate resource",
// code: `
// # these two are allowed because they are compatible
// pkg "cowsay" {
// state => "installed",
// }
// pkg "cowsay" {
// state => "newest",
// }
// `,
// fail: false,
// graph: graph,
// })
//}
{
testCases = append(testCases, test{
name: "variable re-declaration and type change error",
code: `
# this should fail b/c of variable re-declaration
$x = "wow"
$x = 99 # woops, but also a change of type :P
`,
fail: true,
})
}
names := []string{}
for index, tc := range testCases { // run all the tests
if tc.name == "" {
t.Errorf("test #%d: not named", index)
continue
}
if util.StrInList(tc.name, names) {
t.Errorf("test #%d: duplicate sub test name of: %s", index, tc.name)
continue
}
names = append(names, tc.name)
//if index != 3 { // hack to run a subset (useful for debugging)
//if tc.name != "simple operators" {
// continue
//}
t.Run(fmt.Sprintf("test #%d (%s)", index, tc.name), func(t *testing.T) {
name, code, fail, scope, exp := tc.name, tc.code, tc.fail, tc.scope, tc.graph
t.Logf("\n\ntest #%d (%s) ----------------\n\n", index, name)
str := strings.NewReader(code)
ast, err := LexParse(str)
if err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: lex/parse failed with: %+v", index, err)
return
}
t.Logf("test #%d: AST: %+v", index, ast)
data := &interfaces.Data{
Debug: testing.Verbose(), // set via the -test.v flag to `go test`
Logf: func(format string, v ...interface{}) {
t.Logf("ast: "+format, v...)
},
}
// some of this might happen *after* interpolate in SetScope or Unify...
if err := ast.Init(data); err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: could not init and validate AST: %+v", index, err)
return
}
iast, err := ast.Interpolate()
if err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: interpolate failed with: %+v", index, err)
return
}
// propagate the scope down through the AST...
err = iast.SetScope(scope)
if !fail && err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: could not set scope: %+v", index, err)
return
}
if fail && err != nil {
return // fail happened during set scope, don't run unification!
}
// apply type unification
logf := func(format string, v ...interface{}) {
t.Logf(fmt.Sprintf("test #%d", index)+": unification: "+format, v...)
}
unifier := &unification.Unifier{
AST: iast,
Solver: unification.SimpleInvariantSolverLogger(logf),
Debug: testing.Verbose(),
Logf: logf,
}
err = unifier.Unify()
if !fail && err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: could not unify types: %+v", index, err)
return
}
// maybe it will fail during graph below instead?
//if fail && err == nil {
// t.Errorf("test #%d: FAIL", index)
// t.Errorf("test #%d: unification passed, expected fail", index)
// continue
//}
if fail && err != nil {
return // fail happened during unification, don't run Graph!
}
// build the function graph
graph, err := iast.Graph()
if !fail && err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: functions failed with: %+v", index, err)
return
}
if fail && err == nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: functions passed, expected fail", index)
return
}
if fail { // can't process graph if it's nil
// TODO: match against expected error
t.Logf("test #%d: error: %+v", index, err)
return
}
t.Logf("test #%d: graph: %+v", index, graph)
// TODO: improve: https://github.com/purpleidea/mgmt/issues/199
if err := graph.GraphCmp(exp, vertexAstCmpFn, edgeAstCmpFn); err != nil {
t.Errorf("test #%d: FAIL\n\n", index)
t.Logf("test #%d: actual (g1): %v%s\n\n", index, graph, fullPrint(graph))
t.Logf("test #%d: expected (g2): %v%s\n\n", index, exp, fullPrint(exp))
t.Errorf("test #%d: cmp error:\n%v", index, err)
return
}
for i, v := range graph.Vertices() {
t.Logf("test #%d: vertex(%d): %+v", index, i, v)
}
for v1 := range graph.Adjacency() {
for v2, e := range graph.Adjacency()[v1] {
t.Logf("test #%d: edge(%+v): %+v -> %+v", index, e, v1, v2)
}
}
})
}
}
// TestAstFunc1 is a more advanced version which pulls code from physical dirs.
func TestAstFunc1(t *testing.T) {
const magicError = "# err: "
const magicError1 = "err1: "
const magicError2 = "err2: "
const magicError3 = "err3: "
const magicError4 = "err4: "
const magicEmpty = "# empty!"
dir, err := util.TestDirFull()
if err != nil {
t.Errorf("FAIL: could not get tests directory: %+v", err)
return
}
t.Logf("tests directory is: %s", dir)
scope := &interfaces.Scope{ // global scope
Variables: map[string]interfaces.Expr{
"purpleidea": &ExprStr{V: "hello world!"}, // james says hi
// TODO: change to a func when we can change hostname dynamically!
"hostname": &ExprStr{V: ""}, // NOTE: empty b/c not used
},
// all the built-in top-level, core functions enter here...
Functions: FuncPrefixToFunctionsScope(""), // runs funcs.LookupPrefix
}
type errs struct {
fail1 bool
fail2 bool
fail3 bool
fail4 bool
}
type test struct { // an individual test
name string
path string // relative sub directory path inside tests dir
fail bool
//graph *pgraph.Graph
expstr string // expected graph in string format
errs errs
}
testCases := []test{}
//{
// graph, _ := pgraph.NewGraph("g")
// testCases = append(testCases, test{
// name: "simple hello world",
// path: "hello0/",
// fail: false,
// expstr: graph.Sprint(),
// })
//}
// build test array automatically from reading the dir
files, err := ioutil.ReadDir(dir)
if err != nil {
t.Errorf("FAIL: could not read through tests directory: %+v", err)
return
}
sorted := []string{}
for _, f := range files {
if !f.IsDir() {
continue
}
sorted = append(sorted, f.Name())
}
sort.Strings(sorted)
for _, f := range sorted {
graphFile := f + ".graph" // expected graph file
graphFileFull := dir + graphFile
info, err := os.Stat(graphFileFull)
if err != nil || info.IsDir() {
t.Errorf("FAIL: missing: %s", graphFile)
t.Errorf("(err: %+v)", err)
continue
}
content, err := ioutil.ReadFile(graphFileFull)
if err != nil {
t.Errorf("FAIL: could not read graph file: %+v", err)
return
}
str := string(content) // expected graph
// if the graph file has a magic error string, it's a failure
errStr := ""
fail1 := false
fail2 := false
fail3 := false
fail4 := false
if strings.HasPrefix(str, magicError) {
errStr = strings.TrimPrefix(str, magicError)
str = errStr
if strings.HasPrefix(str, magicError1) {
errStr = strings.TrimPrefix(str, magicError1)
str = errStr
fail1 = true
}
if strings.HasPrefix(str, magicError2) {
errStr = strings.TrimPrefix(str, magicError2)
str = errStr
fail2 = true
}
if strings.HasPrefix(str, magicError3) {
errStr = strings.TrimPrefix(str, magicError3)
str = errStr
fail3 = true
}
if strings.HasPrefix(str, magicError4) {
errStr = strings.TrimPrefix(str, magicError4)
str = errStr
fail4 = true
}
}
// add automatic test case
testCases = append(testCases, test{
name: fmt.Sprintf("dir: %s", f),
path: f + "/",
fail: errStr != "",
expstr: str,
errs: errs{
fail1: fail1,
fail2: fail2,
fail3: fail3,
fail4: fail4,
},
})
//t.Logf("adding: %s", f + "/")
}
if testing.Short() {
t.Logf("available tests:")
}
names := []string{}
for index, tc := range testCases { // run all the tests
if tc.name == "" {
t.Errorf("test #%d: not named", index)
continue
}
if util.StrInList(tc.name, names) {
t.Errorf("test #%d: duplicate sub test name of: %s", index, tc.name)
continue
}
names = append(names, tc.name)
//if index != 3 { // hack to run a subset (useful for debugging)
//if tc.name != "simple operators" {
// continue
//}
testName := fmt.Sprintf("test #%d (%s)", index, tc.name)
if testing.Short() { // make listing tests easier
t.Logf("%s", testName)
continue
}
t.Run(testName, func(t *testing.T) {
name, path, fail, expstr, errs := tc.name, tc.path, tc.fail, strings.Trim(tc.expstr, "\n"), tc.errs
src := dir + path // location of the test
fail1 := errs.fail1
fail2 := errs.fail2
fail3 := errs.fail3
fail4 := errs.fail4
t.Logf("\n\ntest #%d (%s) ----------------\npath: %s\n\n", index, name, src)
logf := func(format string, v ...interface{}) {
t.Logf(fmt.Sprintf("test #%d", index)+": "+format, v...)
}
mmFs := afero.NewMemMapFs()
afs := &afero.Afero{Fs: mmFs} // wrap so that we're implementing ioutil
fs := &util.Fs{Afero: afs}
// use this variant, so that we don't copy the dir name
// this is the equivalent to running `rsync -a src/ /`
if err := util.CopyDiskContentsToFs(fs, src, "/", false); err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: CopyDiskContentsToFs failed: %+v", index, err)
return
}
// this shows us what we pulled in from the test dir:
tree0, err := util.FsTree(fs, "/")
if err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: FsTree failed: %+v", index, err)
return
}
logf("tree:\n%s", tree0)
input := "/"
logf("input: %s", input)
output, err := parseInput(input, fs) // raw code can be passed in
if err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: parseInput failed: %+v", index, err)
return
}
for _, fn := range output.Workers {
if err := fn(fs); err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: worker execution failed: %+v", index, err)
return
}
}
tree, err := util.FsTree(fs, "/")
if err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: FsTree failed: %+v", index, err)
return
}
logf("tree:\n%s", tree)
logf("main:\n%s", output.Main) // debug
reader := bytes.NewReader(output.Main)
ast, err := LexParse(reader)
if (!fail || !fail1) && err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: lex/parse failed with: %+v", index, err)
return
}
if fail1 && err != nil {
// TODO: %+v instead?
s := fmt.Sprintf("%s", err) // convert to string
if s != expstr {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: expected different error", index)
t.Logf("test #%d: err: %s", index, s)
t.Logf("test #%d: exp: %s", index, expstr)
}
return // fail happened during lex parse, don't run init/interpolate!
}
if fail1 && err == nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: lex/parse passed, expected fail", index)
return
}
t.Logf("test #%d: AST: %+v", index, ast)
importGraph, err := pgraph.NewGraph("importGraph")
if err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: could not create graph: %+v", index, err)
return
}
importVertex := &pgraph.SelfVertex{
Name: "", // first node is the empty string
Graph: importGraph, // store a reference to ourself
}
importGraph.AddVertex(importVertex)
data := &interfaces.Data{
Fs: fs,
Base: output.Base, // base dir (absolute path) the metadata file is in
Files: output.Files, // no really needed here afaict
Imports: importVertex,
Metadata: output.Metadata,
Modules: "/" + interfaces.ModuleDirectory, // not really needed here afaict
Debug: testing.Verbose(), // set via the -test.v flag to `go test`
Logf: func(format string, v ...interface{}) {
logf("ast: "+format, v...)
},
}
// some of this might happen *after* interpolate in SetScope or Unify...
if err := ast.Init(data); err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: could not init and validate AST: %+v", index, err)
return
}
iast, err := ast.Interpolate()
if err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: interpolate failed with: %+v", index, err)
return
}
// propagate the scope down through the AST...
err = iast.SetScope(scope)
if (!fail || !fail2) && err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: could not set scope: %+v", index, err)
return
}
if fail2 && err != nil {
// TODO: %+v instead?
s := fmt.Sprintf("%s", err) // convert to string
if s != expstr {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: expected different error", index)
t.Logf("test #%d: err: %s", index, s)
t.Logf("test #%d: exp: %s", index, expstr)
}
return // fail happened during set scope, don't run unification!
}
if fail2 && err == nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: set scope passed, expected fail", index)
return
}
// apply type unification
xlogf := func(format string, v ...interface{}) {
logf("unification: "+format, v...)
}
unifier := &unification.Unifier{
AST: iast,
Solver: unification.SimpleInvariantSolverLogger(xlogf),
Debug: testing.Verbose(),
Logf: xlogf,
}
err = unifier.Unify()
if (!fail || !fail3) && err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: could not unify types: %+v", index, err)
return
}
if fail3 && err != nil {
// TODO: %+v instead?
s := fmt.Sprintf("%s", err) // convert to string
if s != expstr {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: expected different error", index)
t.Logf("test #%d: err: %s", index, s)
t.Logf("test #%d: exp: %s", index, expstr)
}
return // fail happened during unification, don't run Graph!
}
if fail3 && err == nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: unification passed, expected fail", index)
return
}
// build the function graph
graph, err := iast.Graph()
if (!fail || !fail4) && err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: functions failed with: %+v", index, err)
return
}
if fail4 && err != nil { // can't process graph if it's nil
// TODO: %+v instead?
s := fmt.Sprintf("%s", err) // convert to string
if s != expstr {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: expected different error", index)
t.Logf("test #%d: err: %s", index, s)
t.Logf("test #%d: exp: %s", index, expstr)
}
return
}
if fail4 && err == nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: functions passed, expected fail", index)
return
}
t.Logf("test #%d: graph: %s", index, graph)
for i, v := range graph.Vertices() {
t.Logf("test #%d: vertex(%d): %+v", index, i, v)
}
for v1 := range graph.Adjacency() {
for v2, e := range graph.Adjacency()[v1] {
t.Logf("test #%d: edge(%+v): %+v -> %+v", index, e, v1, v2)
}
}
t.Logf("test #%d: Running graphviz...", index)
if err := graph.ExecGraphviz("dot", "/tmp/graphviz.dot", ""); err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: writing graph failed: %+v", index, err)
return
}
str := strings.Trim(graph.Sprint(), "\n") // text format of graph
if expstr == magicEmpty {
expstr = ""
}
// XXX: something isn't consistent, and I can't figure
// out what, so workaround this by sorting these :(
sortHack := func(x string) string {
l := strings.Split(x, "\n")
sort.Strings(l)
return strings.Join(l, "\n")
}
str = sortHack(str)
expstr = sortHack(expstr)
if expstr != str {
t.Errorf("test #%d: FAIL\n\n", index)
t.Logf("test #%d: actual (g1):\n%s\n\n", index, str)
t.Logf("test #%d: expected (g2):\n%s\n\n", index, expstr)
diff := pretty.Compare(str, expstr)
if diff != "" { // bonus
t.Logf("test #%d: diff:\n%s", index, diff)
}
return
}
for i, v := range graph.Vertices() {
t.Logf("test #%d: vertex(%d): %+v", index, i, v)
}
for v1 := range graph.Adjacency() {
for v2, e := range graph.Adjacency()[v1] {
t.Logf("test #%d: edge(%+v): %+v -> %+v", index, e, v1, v2)
}
}
})
}
if testing.Short() {
t.Skip("skipping all tests...")
}
}
// TestAstFunc2 is a more advanced version which pulls code from physical dirs.
// It also briefly runs the function engine and captures output. Only use with
// stable, static output.
func TestAstFunc2(t *testing.T) {
const magicError = "# err: "
const magicError1 = "err1: "
const magicError2 = "err2: "
const magicError3 = "err3: "
const magicError4 = "err4: "
const magicError5 = "err5: "
const magicEmpty = "# empty!"
dir, err := util.TestDirFull()
if err != nil {
t.Errorf("FAIL: could not get tests directory: %+v", err)
return
}
t.Logf("tests directory is: %s", dir)
scope := &interfaces.Scope{ // global scope
Variables: map[string]interfaces.Expr{
"purpleidea": &ExprStr{V: "hello world!"}, // james says hi
// TODO: change to a func when we can change hostname dynamically!
"hostname": &ExprStr{V: ""}, // NOTE: empty b/c not used
},
// all the built-in top-level, core functions enter here...
Functions: FuncPrefixToFunctionsScope(""), // runs funcs.LookupPrefix
}
type errs struct {
fail1 bool
fail2 bool
fail3 bool
fail4 bool
fail5 bool
}
type test struct { // an individual test
name string
path string // relative sub directory path inside tests dir
fail bool
//graph *pgraph.Graph
expstr string // expected output graph in string format
errs errs
}
testCases := []test{}
//{
// graph, _ := pgraph.NewGraph("g")
// testCases = append(testCases, test{
// name: "simple hello world",
// path: "hello0/",
// fail: false,
// expstr: graph.Sprint(),
// })
//}
// build test array automatically from reading the dir
files, err := ioutil.ReadDir(dir)
if err != nil {
t.Errorf("FAIL: could not read through tests directory: %+v", err)
return
}
sorted := []string{}
for _, f := range files {
if !f.IsDir() {
continue
}
sorted = append(sorted, f.Name())
}
sort.Strings(sorted)
for _, f := range sorted {
graphFile := f + ".output" // expected output graph file
graphFileFull := dir + graphFile
info, err := os.Stat(graphFileFull)
if err != nil || info.IsDir() {
t.Errorf("FAIL: missing: %s", graphFile)
t.Errorf("(err: %+v)", err)
continue
}
content, err := ioutil.ReadFile(graphFileFull)
if err != nil {
t.Errorf("FAIL: could not read graph file: %+v", err)
return
}
str := string(content) // expected graph
// if the graph file has a magic error string, it's a failure
errStr := ""
fail1 := false
fail2 := false
fail3 := false
fail4 := false
fail5 := false
if strings.HasPrefix(str, magicError) {
errStr = strings.TrimPrefix(str, magicError)
str = errStr
if strings.HasPrefix(str, magicError1) {
errStr = strings.TrimPrefix(str, magicError1)
str = errStr
fail1 = true
}
if strings.HasPrefix(str, magicError2) {
errStr = strings.TrimPrefix(str, magicError2)
str = errStr
fail2 = true
}
if strings.HasPrefix(str, magicError3) {
errStr = strings.TrimPrefix(str, magicError3)
str = errStr
fail3 = true
}
if strings.HasPrefix(str, magicError4) {
errStr = strings.TrimPrefix(str, magicError4)
str = errStr
fail4 = true
}
if strings.HasPrefix(str, magicError5) {
errStr = strings.TrimPrefix(str, magicError5)
str = errStr
fail5 = true
}
}
// add automatic test case
testCases = append(testCases, test{
name: fmt.Sprintf("dir: %s", f),
path: f + "/",
fail: errStr != "",
expstr: str,
errs: errs{
fail1: fail1,
fail2: fail2,
fail3: fail3,
fail4: fail4,
fail5: fail5,
},
})
//t.Logf("adding: %s", f + "/")
}
if testing.Short() {
t.Logf("available tests:")
}
names := []string{}
for index, tc := range testCases { // run all the tests
if tc.name == "" {
t.Errorf("test #%d: not named", index)
continue
}
if util.StrInList(tc.name, names) {
t.Errorf("test #%d: duplicate sub test name of: %s", index, tc.name)
continue
}
names = append(names, tc.name)
//if index != 3 { // hack to run a subset (useful for debugging)
//if tc.name != "simple operators" {
// continue
//}
testName := fmt.Sprintf("test #%d (%s)", index, tc.name)
if testing.Short() { // make listing tests easier
t.Logf("%s", testName)
continue
}
t.Run(testName, func(t *testing.T) {
name, path, fail, expstr, errs := tc.name, tc.path, tc.fail, strings.Trim(tc.expstr, "\n"), tc.errs
src := dir + path // location of the test
fail1 := errs.fail1
fail2 := errs.fail2
fail3 := errs.fail3
fail4 := errs.fail4
fail5 := errs.fail5
t.Logf("\n\ntest #%d (%s) ----------------\npath: %s\n\n", index, name, src)
logf := func(format string, v ...interface{}) {
t.Logf(fmt.Sprintf("test #%d", index)+": "+format, v...)
}
mmFs := afero.NewMemMapFs()
afs := &afero.Afero{Fs: mmFs} // wrap so that we're implementing ioutil
fs := &util.Fs{Afero: afs}
// use this variant, so that we don't copy the dir name
// this is the equivalent to running `rsync -a src/ /`
if err := util.CopyDiskContentsToFs(fs, src, "/", false); err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: CopyDiskContentsToFs failed: %+v", index, err)
return
}
// this shows us what we pulled in from the test dir:
tree0, err := util.FsTree(fs, "/")
if err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: FsTree failed: %+v", index, err)
return
}
logf("tree:\n%s", tree0)
input := "/"
logf("input: %s", input)
output, err := parseInput(input, fs) // raw code can be passed in
if err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: parseInput failed: %+v", index, err)
return
}
for _, fn := range output.Workers {
if err := fn(fs); err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: worker execution failed: %+v", index, err)
return
}
}
tree, err := util.FsTree(fs, "/")
if err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: FsTree failed: %+v", index, err)
return
}
logf("tree:\n%s", tree)
logf("main:\n%s", output.Main) // debug
reader := bytes.NewReader(output.Main)
ast, err := LexParse(reader)
if (!fail || !fail1) && err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: lex/parse failed with: %+v", index, err)
return
}
if fail1 && err != nil {
// TODO: %+v instead?
s := fmt.Sprintf("%s", err) // convert to string
if s != expstr {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: expected different error", index)
t.Logf("test #%d: err: %s", index, s)
t.Logf("test #%d: exp: %s", index, expstr)
}
return // fail happened during lex parse, don't run init/interpolate!
}
if fail1 && err == nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: lex/parse passed, expected fail", index)
return
}
t.Logf("test #%d: AST: %+v", index, ast)
importGraph, err := pgraph.NewGraph("importGraph")
if err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: could not create graph: %+v", index, err)
return
}
importVertex := &pgraph.SelfVertex{
Name: "", // first node is the empty string
Graph: importGraph, // store a reference to ourself
}
importGraph.AddVertex(importVertex)
data := &interfaces.Data{
Fs: fs,
Base: output.Base, // base dir (absolute path) the metadata file is in
Files: output.Files, // no really needed here afaict
Imports: importVertex,
Metadata: output.Metadata,
Modules: "/" + interfaces.ModuleDirectory, // not really needed here afaict
Debug: testing.Verbose(), // set via the -test.v flag to `go test`
Logf: func(format string, v ...interface{}) {
logf("ast: "+format, v...)
},
}
// some of this might happen *after* interpolate in SetScope or Unify...
if err := ast.Init(data); err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: could not init and validate AST: %+v", index, err)
return
}
iast, err := ast.Interpolate()
if err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: interpolate failed with: %+v", index, err)
return
}
// propagate the scope down through the AST...
err = iast.SetScope(scope)
if (!fail || !fail2) && err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: could not set scope: %+v", index, err)
return
}
if fail2 && err != nil {
// TODO: %+v instead?
s := fmt.Sprintf("%s", err) // convert to string
if s != expstr {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: expected different error", index)
t.Logf("test #%d: err: %s", index, s)
t.Logf("test #%d: exp: %s", index, expstr)
}
return // fail happened during set scope, don't run unification!
}
if fail2 && err == nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: interpolation passed, expected fail", index)
return
}
// apply type unification
xlogf := func(format string, v ...interface{}) {
logf("unification: "+format, v...)
}
unifier := &unification.Unifier{
AST: iast,
Solver: unification.SimpleInvariantSolverLogger(xlogf),
Debug: testing.Verbose(),
Logf: xlogf,
}
err = unifier.Unify()
if (!fail || !fail3) && err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: could not unify types: %+v", index, err)
return
}
if fail3 && err != nil {
// TODO: %+v instead?
s := fmt.Sprintf("%s", err) // convert to string
if s != expstr {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: expected different error", index)
t.Logf("test #%d: err: %s", index, s)
t.Logf("test #%d: exp: %s", index, expstr)
}
return // fail happened during unification, don't run Graph!
}
if fail3 && err == nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: unification passed, expected fail", index)
return
}
// build the function graph
graph, err := iast.Graph()
if (!fail || !fail4) && err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: functions failed with: %+v", index, err)
return
}
if fail4 && err != nil { // can't process graph if it's nil
// TODO: %+v instead?
s := fmt.Sprintf("%s", err) // convert to string
if s != expstr {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: expected different error", index)
t.Logf("test #%d: err: %s", index, s)
t.Logf("test #%d: exp: %s", index, expstr)
}
return
}
if fail4 && err == nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: functions passed, expected fail", index)
return
}
if graph.NumVertices() == 0 { // no funcs to load!
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: function graph is empty", index)
return
}
t.Logf("test #%d: graph: %s", index, graph)
for i, v := range graph.Vertices() {
t.Logf("test #%d: vertex(%d): %+v", index, i, v)
}
for v1 := range graph.Adjacency() {
for v2, e := range graph.Adjacency()[v1] {
t.Logf("test #%d: edge(%+v): %+v -> %+v", index, e, v1, v2)
}
}
t.Logf("test #%d: Running graphviz...", index)
if err := graph.ExecGraphviz("dot", "/tmp/graphviz.dot", ""); err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: writing graph failed: %+v", index, err)
return
}
// run the function engine once to get some real output
funcs := &funcs.Engine{
Graph: graph, // not the same as the output graph!
Hostname: "", // NOTE: empty b/c not used
World: nil, // NOTE: nil b/c not used
Debug: testing.Verbose(), // set via the -test.v flag to `go test`
Logf: func(format string, v ...interface{}) {
logf("funcs: "+format, v...)
},
Glitch: false, // FIXME: verify this functionality is perfect!
}
logf("function engine initializing...")
if err := funcs.Init(); err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: init error with func engine: %+v", index, err)
return
}
logf("function engine validating...")
if err := funcs.Validate(); err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: validate error with func engine: %+v", index, err)
return
}
logf("function engine starting...")
// On failure, we expect the caller to run Close() to shutdown all of
// the currently initialized (and running) funcs... This is needed if
// we successfully ran `Run` but isn't needed only for Init/Validate.
if err := funcs.Run(); err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: run error with func engine: %+v", index, err)
return
}
// TODO: cleanup before we print any test failures...
defer funcs.Close() // cleanup
// wait for some activity
logf("stream...")
stream := funcs.Stream()
select {
case err, ok := <-stream:
if !ok {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: stream closed", index)
return
}
if err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: stream errored: %+v", index, err)
return
}
}
// run interpret!
funcs.RLock() // in case something is actually changing
ograph, err := interpret(iast)
funcs.RUnlock()
if (!fail || !fail5) && err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: interpret failed with: %+v", index, err)
return
}
if fail5 && err != nil { // can't process graph if it's nil
// TODO: %+v instead?
s := fmt.Sprintf("%s", err) // convert to string
if s != expstr {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: expected different error", index)
t.Logf("test #%d: err: %s", index, s)
t.Logf("test #%d: exp: %s", index, expstr)
}
return
}
if fail5 && err == nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: interpret passed, expected fail", index)
return
}
t.Logf("test #%d: graph: %+v", index, ograph)
str := strings.Trim(ograph.Sprint(), "\n") // text format of output graph
if expstr == magicEmpty {
expstr = ""
}
// XXX: something isn't consistent, and I can't figure
// out what, so workaround this by sorting these :(
sortHack := func(x string) string {
l := strings.Split(x, "\n")
sort.Strings(l)
return strings.Join(l, "\n")
}
str = sortHack(str)
expstr = sortHack(expstr)
if expstr != str {
t.Errorf("test #%d: FAIL\n\n", index)
t.Logf("test #%d: actual (g1):\n%s\n\n", index, str)
t.Logf("test #%d: expected (g2):\n%s\n\n", index, expstr)
diff := pretty.Compare(str, expstr)
if diff != "" { // bonus
t.Logf("test #%d: diff:\n%s", index, diff)
}
return
}
for i, v := range ograph.Vertices() {
t.Logf("test #%d: vertex(%d): %+v", index, i, v)
}
for v1 := range ograph.Adjacency() {
for v2, e := range ograph.Adjacency()[v1] {
t.Logf("test #%d: edge(%+v): %+v -> %+v", index, e, v1, v2)
}
}
})
}
if testing.Short() {
t.Skip("skipping all tests...")
}
}
// TestAstInterpret0 should only be run in limited circumstances. Read the code
// comments below to see how it is run.
func TestAstInterpret0(t *testing.T) {
type test struct { // an individual test
name string
code string
fail bool
graph *pgraph.Graph
}
testCases := []test{}
{
graph, _ := pgraph.NewGraph("g")
testCases = append(testCases, test{ // 0
"nil",
``,
false,
graph,
})
}
{
testCases = append(testCases, test{
name: "wrong res field type",
code: `
test "t1" {
stringptr => 42, # int, not str
}
`,
fail: true,
})
}
{
graph, _ := pgraph.NewGraph("g")
t1, _ := engine.NewNamedResource("test", "t1")
x := t1.(*resources.TestRes)
int64ptr := int64(42)
x.Int64Ptr = &int64ptr
str := "okay cool"
x.StringPtr = &str
int8ptr := int8(127)
int8ptrptr := &int8ptr
int8ptrptrptr := &int8ptrptr
x.Int8PtrPtrPtr = &int8ptrptrptr
graph.AddVertex(t1)
testCases = append(testCases, test{
name: "resource with three pointer fields",
code: `
test "t1" {
int64ptr => 42,
stringptr => "okay cool",
int8ptrptrptr => 127, # super nested
}
`,
fail: false,
graph: graph,
})
}
{
graph, _ := pgraph.NewGraph("g")
t1, _ := engine.NewNamedResource("test", "t1")
x := t1.(*resources.TestRes)
stringptr := "wow"
x.StringPtr = &stringptr
graph.AddVertex(t1)
testCases = append(testCases, test{
name: "resource with simple string pointer field",
code: `
test "t1" {
stringptr => "wow",
}
`,
graph: graph,
})
}
{
// FIXME: add a better vertexCmpFn so we can compare send/recv!
graph, _ := pgraph.NewGraph("g")
t1, _ := engine.NewNamedResource("test", "t1")
{
x := t1.(*resources.TestRes)
int64Ptr := int64(42)
x.Int64Ptr = &int64Ptr
graph.AddVertex(t1)
}
t2, _ := engine.NewNamedResource("test", "t2")
{
x := t2.(*resources.TestRes)
int64Ptr := int64(13)
x.Int64Ptr = &int64Ptr
graph.AddVertex(t2)
}
edge := &engine.Edge{
Name: fmt.Sprintf("%s -> %s", t1, t2),
Notify: false,
}
graph.AddEdge(t1, t2, edge)
testCases = append(testCases, test{
name: "two resources and send/recv edge",
code: `
test "t1" {
int64ptr => 42,
}
test "t2" {
int64ptr => 13,
}
Test["t1"].hello -> Test["t2"].stringptr # send/recv
`,
graph: graph,
})
}
{
graph, _ := pgraph.NewGraph("g")
t1, _ := engine.NewNamedResource("test", "t1")
x := t1.(*resources.TestRes)
stringptr := "this is meta"
x.StringPtr = &stringptr
m := &engine.MetaParams{
Noop: true, // overwritten
Retry: -1,
Delay: 0,
Poll: 5,
Limit: 4.2,
Burst: 3,
Sema: []string{"foo:1", "bar:3"},
Rewatch: false,
Realize: true,
}
x.SetMetaParams(m)
graph.AddVertex(t1)
testCases = append(testCases, test{
name: "resource with meta params",
code: `
test "t1" {
stringptr => "this is meta",
Meta => struct{
noop => false,
retry => -1,
delay => 0,
poll => 5,
limit => 4.2,
burst => 3,
sema => ["foo:1", "bar:3",],
rewatch => false,
realize => true,
reverse => true,
autoedge => true,
autogroup => true,
},
Meta:noop => true,
Meta:reverse => true,
Meta:autoedge => true,
Meta:autogroup => true,
}
`,
graph: graph,
})
}
names := []string{}
for index, tc := range testCases { // run all the tests
name, code, fail, exp := tc.name, tc.code, tc.fail, tc.graph
if name == "" {
name = "<sub test not named>"
}
if util.StrInList(name, names) {
t.Errorf("test #%d: duplicate sub test name of: %s", index, name)
continue
}
names = append(names, name)
//if index != 3 { // hack to run a subset (useful for debugging)
//if tc.name != "nil" {
// continue
//}
t.Logf("\n\ntest #%d (%s) ----------------\n\n", index, name)
str := strings.NewReader(code)
ast, err := LexParse(str)
if err != nil {
t.Errorf("test #%d: lex/parse failed with: %+v", index, err)
continue
}
t.Logf("test #%d: AST: %+v", index, ast)
data := &interfaces.Data{
Debug: testing.Verbose(), // set via the -test.v flag to `go test`
Logf: func(format string, v ...interface{}) {
t.Logf("ast: "+format, v...)
},
}
// some of this might happen *after* interpolate in SetScope or Unify...
if err := ast.Init(data); err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: could not init and validate AST: %+v", index, err)
return
}
// these tests only work in certain cases, since this does not
// perform type unification, run the function graph engine, and
// only gives you limited results... don't expect normal code to
// run and produce meaningful things in this test...
graph, err := interpret(ast)
if !fail && err != nil {
t.Errorf("test #%d: interpret failed with: %+v", index, err)
continue
}
if fail && err == nil {
t.Errorf("test #%d: interpret passed, expected fail", index)
continue
}
if fail { // can't process graph if it's nil
// TODO: match against expected error
t.Logf("test #%d: expected fail, error: %+v", index, err)
continue
}
t.Logf("test #%d: graph: %+v", index, graph)
// TODO: improve: https://github.com/purpleidea/mgmt/issues/199
if err := graph.GraphCmp(exp, vertexCmpFn, edgeCmpFn); err != nil {
t.Logf("test #%d: actual (g1): %v%s", index, graph, fullPrint(graph))
t.Logf("test #%d: expected (g2): %v%s", index, exp, fullPrint(exp))
t.Errorf("test #%d: cmp error:\n%v", index, err)
continue
}
for i, v := range graph.Vertices() {
t.Logf("test #%d: vertex(%d): %+v", index, i, v)
}
for v1 := range graph.Adjacency() {
for v2, e := range graph.Adjacency()[v1] {
t.Logf("test #%d: edge(%+v): %+v -> %+v", index, e, v1, v2)
}
}
}
}