Files
mgmt/lang/funcs/core/fmt/printf_func.go
James Shubin f368f75209 lang: funcs: core: Drop unnecessary core prefix from imports
This unbreaks the mcl bindata code. Of course we could change the parser
to allow this prefix, but this is cleaner. The packages still have a
core prefix, which it seems we could also remove, but this isn't
particularly important for anything.
2019-02-07 09:33:20 -05:00

368 lines
10 KiB
Go

// Mgmt
// Copyright (C) 2013-2018+ James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
package corefmt
import (
"fmt"
"github.com/purpleidea/mgmt/lang/funcs"
"github.com/purpleidea/mgmt/lang/interfaces"
"github.com/purpleidea/mgmt/lang/types"
"github.com/purpleidea/mgmt/util"
errwrap "github.com/pkg/errors"
)
func init() {
// FIXME: should this be named sprintf instead?
funcs.ModuleRegister(moduleName, "printf", func() interfaces.Func { return &PrintfFunc{} })
}
const (
// XXX: does this need to be `a` ? -- for now yes, fix this compiler bug
//formatArgName = "format" // name of the first arg
formatArgName = "a" // name of the first arg
)
// PrintfFunc is a static polymorphic function that compiles a format string and
// returns the output as a string. It bases its output on the values passed in
// to it. It examines the type of the arguments at compile time and then
// determines the static function signature by parsing the format string and
// using that to determine the final function signature. One consequence of this
// is that the format string must be a static string which is known at compile
// time. This is reasonable, because if it was a reactive, changing string, then
// we could expect the type signature to change, which is not allowed in our
// statically typed language.
type PrintfFunc struct {
Type *types.Type // final full type of our function
init *interfaces.Init
last types.Value // last value received to use for diff
result string // last calculated output
closeChan chan struct{}
}
// Polymorphisms returns the possible type signature for this function. In this
// case, since the number of arguments can be infinite, it returns the final
// precise type if it can be gleamed from the format argument. If it cannot, it
// is because either the format argument was not known statically, or because
// it had an invalid format string.
func (obj *PrintfFunc) Polymorphisms(partialType *types.Type, partialValues []types.Value) ([]*types.Type, error) {
if partialType == nil || len(partialValues) < 1 {
return nil, fmt.Errorf("first argument must be a static format string")
}
if partialType.Out != nil && partialType.Out.Cmp(types.TypeStr) != nil {
return nil, fmt.Errorf("return value of printf must be str")
}
ord := partialType.Ord
if partialType.Map != nil {
if len(ord) < 1 {
return nil, fmt.Errorf("must have at least one arg in printf func")
}
if t, exists := partialType.Map[ord[0]]; exists && t != nil {
if t.Cmp(types.TypeStr) != nil {
return nil, fmt.Errorf("first arg for printf must be an str")
}
}
}
format := partialValues[0].Str() // must not panic
typList, err := parseFormatToTypeList(format)
if err != nil {
return nil, errwrap.Wrapf(err, "could not parse format string")
}
typ := &types.Type{
Kind: types.KindFunc, // function type
Map: make(map[string]*types.Type),
Ord: []string{},
Out: types.TypeStr,
}
// add first arg
typ.Map[formatArgName] = types.TypeStr
typ.Ord = append(typ.Ord, formatArgName)
for i, x := range typList {
name := util.NumToAlpha(i + 1) // +1 to skip the format arg
if name == formatArgName {
return nil, fmt.Errorf("could not build function with %d args", i+1)
}
// if we also had even more partial type information, check it!
if t, exists := partialType.Map[ord[i+1]]; exists && t != nil {
if err := t.Cmp(x); err != nil {
return nil, errwrap.Wrapf(err, "arg %d does not match expected type", i+1)
}
}
typ.Map[name] = x
typ.Ord = append(typ.Ord, name)
}
return []*types.Type{typ}, nil // return a list with a single possibility
}
// Build takes the now known function signature and stores it so that this
// function can appear to be static. That type is used to build our function
// statically.
func (obj *PrintfFunc) Build(typ *types.Type) error {
if typ.Kind != types.KindFunc {
return fmt.Errorf("input type must be of kind func")
}
if len(typ.Ord) < 1 {
return fmt.Errorf("the printf function needs at least one arg")
}
if typ.Out == nil {
return fmt.Errorf("return type of function must be specified")
}
if typ.Out.Cmp(types.TypeStr) != nil {
return fmt.Errorf("return type of function must be an str")
}
if typ.Map == nil {
return fmt.Errorf("invalid input type")
}
t0, exists := typ.Map[typ.Ord[0]]
if !exists || t0 == nil {
return fmt.Errorf("first arg must be specified")
}
if t0.Cmp(types.TypeStr) != nil {
return fmt.Errorf("first arg for printf must be an str")
}
obj.Type = typ // function type is now known!
return nil
}
// Validate makes sure we've built our struct properly. It is usually unused for
// normal functions that users can use directly.
func (obj *PrintfFunc) Validate() error {
if obj.Type == nil { // build must be run first
return fmt.Errorf("type is still unspecified")
}
return nil
}
// Info returns some static info about itself.
func (obj *PrintfFunc) Info() *interfaces.Info {
return &interfaces.Info{
Pure: true,
Memo: false,
Sig: obj.Type,
Err: obj.Validate(),
}
}
// Init runs some startup code for this function.
func (obj *PrintfFunc) Init(init *interfaces.Init) error {
obj.init = init
obj.closeChan = make(chan struct{})
return nil
}
// Stream returns the changing values that this func has over time.
func (obj *PrintfFunc) Stream() error {
defer close(obj.init.Output) // the sender closes
for {
select {
case input, ok := <-obj.init.Input:
if !ok {
return nil // can't output any more
}
//if err := input.Type().Cmp(obj.Info().Sig.Input); err != nil {
// return errwrap.Wrapf(err, "wrong function input")
//}
if obj.last != nil && input.Cmp(obj.last) == nil {
continue // value didn't change, skip it
}
obj.last = input // store for next
format := input.Struct()[formatArgName].Str()
values := []types.Value{}
for _, name := range obj.Type.Ord {
if name == formatArgName { // skip format arg
continue
}
x := input.Struct()[name]
values = append(values, x)
}
result, err := compileFormatToString(format, values)
if err != nil {
return err // no errwrap needed b/c helper func
}
if obj.result == result {
continue // result didn't change
}
obj.result = result // store new result
case <-obj.closeChan:
return nil
}
select {
case obj.init.Output <- &types.StrValue{
V: obj.result,
}:
case <-obj.closeChan:
return nil
}
}
}
// Close runs some shutdown code for this function and turns off the stream.
func (obj *PrintfFunc) Close() error {
close(obj.closeChan)
return nil
}
// valueToString prints our values how we expect for printf.
// FIXME: if this turns out to be useful, add it to the types package.
func valueToString(value types.Value) string {
// FIXME: this is just an "easy-out" implementation for now...
return fmt.Sprintf("%v", value.Value())
//switch x := value.Type().Kind; x {
//case types.KindBool:
// return value.String()
//case types.KindStr:
// return value.Str() // use this since otherwise it adds " & "
//case types.KindInt:
// return value.String()
//case types.KindFloat:
// // TODO: use formatting flags ?
// return value.String()
//}
//panic("unhandled type") // TODO: not fully implemented yet
}
// parseFormatToTypeList takes a format string and returns a list of types that
// it expects to use in the order found in the format string.
// FIXME: add support for more types, and add tests!
func parseFormatToTypeList(format string) ([]*types.Type, error) {
typList := []*types.Type{}
inType := false
for i := 0; i < len(format); i++ {
// some normal char...
if !inType && format[i] != '%' {
continue
}
// in a type or we're a %
if format[i] == '%' {
if inType {
// it's a %%
inType = false
} else {
// start looking for type specification!
inType = true
}
continue
}
// we must be in a type
switch format[i] {
case 't':
typList = append(typList, types.TypeBool)
case 's':
typList = append(typList, types.TypeStr)
case 'd':
typList = append(typList, types.TypeInt)
// TODO: parse fancy formats like %0.2f and stuff
case 'f':
typList = append(typList, types.TypeFloat)
// FIXME: add fancy types like: %[]s, %[]f, %{s:f}, etc...
default:
return nil, fmt.Errorf("invalid format string at %d", i)
}
inType = false // done
}
return typList, nil
}
// compileFormatToString takes a format string and a list of values and returns
// the compiled/templated output.
// FIXME: add support for more types, and add tests!
func compileFormatToString(format string, values []types.Value) (string, error) {
output := ""
ix := 0
inType := false
for i := 0; i < len(format); i++ {
// some normal char...
if !inType && format[i] != '%' {
output += string(format[i])
continue
}
// in a type or we're a %
if format[i] == '%' {
if inType {
// it's a %%
output += string(format[i])
inType = false
} else {
// start looking for type specification!
inType = true
}
continue
}
// we must be in a type
var typ *types.Type
switch format[i] {
case 't':
typ = types.TypeBool
case 's':
typ = types.TypeStr
case 'd':
typ = types.TypeInt
// TODO: parse fancy formats like %0.2f and stuff
case 'f':
typ = types.TypeFloat
// FIXME: add fancy types like: %[]s, %[]f, %{s:f}, etc...
default:
return "", fmt.Errorf("invalid format string at %d", i)
}
inType = false // done
if err := typ.Cmp(values[ix].Type()); err != nil {
return "", errwrap.Wrapf(err, "unexpected type")
}
output += valueToString(values[ix])
ix++ // consume one value
}
return output, nil
}