Files
mgmt/lang/funcs/core/fmt/printf_func.go
James Shubin e9791ff92c lang: funcs: core: fmt: Add variant verb for printf
There's no reason we can't support a %v variant verb. Of course it makes
type unification more difficult, and certain uses of this will produce
unsolvable situations, but it's useful for debugging, and fun to have.
2021-10-11 00:36:29 -04:00

572 lines
16 KiB
Go

// Mgmt
// Copyright (C) 2013-2021+ James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
package corefmt
import (
"fmt"
"github.com/purpleidea/mgmt/lang/funcs"
"github.com/purpleidea/mgmt/lang/interfaces"
"github.com/purpleidea/mgmt/lang/types"
"github.com/purpleidea/mgmt/util"
"github.com/purpleidea/mgmt/util/errwrap"
)
func init() {
// FIXME: should this be named sprintf instead?
funcs.ModuleRegister(ModuleName, "printf", func() interfaces.Func { return &PrintfFunc{} })
}
const (
formatArgName = "format" // name of the first arg
)
// PrintfFunc is a static polymorphic function that compiles a format string and
// returns the output as a string. It bases its output on the values passed in
// to it. It examines the type of the arguments at compile time and then
// determines the static function signature by parsing the format string and
// using that to determine the final function signature. One consequence of this
// is that the format string must be a static string which is known at compile
// time. This is reasonable, because if it was a reactive, changing string, then
// we could expect the type signature to change, which is not allowed in our
// statically typed language.
type PrintfFunc struct {
Type *types.Type // final full type of our function
init *interfaces.Init
last types.Value // last value received to use for diff
result *string // last calculated output
closeChan chan struct{}
}
// ArgGen returns the Nth arg name for this function.
func (obj *PrintfFunc) ArgGen(index int) (string, error) {
if index == 0 {
return formatArgName, nil
}
return util.NumToAlpha(index - 1), nil
}
// Unify returns the list of invariants that this func produces.
func (obj *PrintfFunc) Unify(expr interfaces.Expr) ([]interfaces.Invariant, error) {
var invariants []interfaces.Invariant
var invar interfaces.Invariant
// func(format string, args... variant) string
formatName, err := obj.ArgGen(0)
if err != nil {
return nil, err
}
dummyFormat := &interfaces.ExprAny{} // corresponds to the format type
dummyOut := &interfaces.ExprAny{} // corresponds to the out string
// format arg type of string
invar = &interfaces.EqualsInvariant{
Expr: dummyFormat,
Type: types.TypeStr,
}
invariants = append(invariants, invar)
// return type of string
invar = &interfaces.EqualsInvariant{
Expr: dummyOut,
Type: types.TypeStr,
}
invariants = append(invariants, invar)
// generator function
fn := func(fnInvariants []interfaces.Invariant, solved map[interfaces.Expr]*types.Type) ([]interfaces.Invariant, error) {
for _, invariant := range fnInvariants {
// search for this special type of invariant
cfavInvar, ok := invariant.(*interfaces.CallFuncArgsValueInvariant)
if !ok {
continue
}
// did we find the mapping from us to ExprCall ?
if cfavInvar.Func != expr {
continue
}
// cfavInvar.Expr is the ExprCall! (the return pointer)
// cfavInvar.Args are the args that ExprCall uses!
if len(cfavInvar.Args) == 0 {
return nil, fmt.Errorf("unable to build function with no args")
}
var invariants []interfaces.Invariant
var invar interfaces.Invariant
// add the relationship to the returned value
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Expr,
Expr2: dummyOut,
}
invariants = append(invariants, invar)
// add the relationships to the called args
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Args[0],
Expr2: dummyFormat,
}
invariants = append(invariants, invar)
// first arg must be a string
invar = &interfaces.EqualsInvariant{
Expr: cfavInvar.Args[0],
Type: types.TypeStr,
}
invariants = append(invariants, invar)
// XXX: We could add an alternate mode for this
// function where instead of knowing args[0]
// statically, if we happen to know all of the input
// arg types, we build the function, without verifying
// that the format string is valid... In this case, if
// it was built dynamically or happened to not be in
// the right format, we'd just print out some yucky
// result. The golang printf does something similar
// when it can't catch things statically at compile
// time.
// XXX: In the above scenario, we'd have to also change
// the compileFormatToString function to handle a list
// of values with a badly matched string. Maybe best to
// just not allow this entirely? Or set this behaviour
// with a constant?
value, err := cfavInvar.Args[0].Value() // is it known?
if err != nil {
return nil, fmt.Errorf("format string is not known statically")
}
if k := value.Type().Kind; k != types.KindStr {
return nil, fmt.Errorf("unable to build function with 0th arg of kind: %s", k)
}
format := value.Str() // must not panic
typList, err := parseFormatToTypeList(format)
if err != nil {
return nil, errwrap.Wrapf(err, "could not parse format string")
}
// full function
mapped := make(map[string]interfaces.Expr)
ordered := []string{formatName}
mapped[formatName] = dummyFormat
for i, x := range typList {
argName, err := obj.ArgGen(i + 1) // skip 0th
if err != nil {
return nil, err
}
if argName == formatArgName {
return nil, fmt.Errorf("could not build function with %d args", i+1) // +1 for format arg
}
dummyArg := &interfaces.ExprAny{}
// if it's a variant, we can't add the invariant
if x != types.TypeVariant {
invar = &interfaces.EqualsInvariant{
Expr: dummyArg,
Type: x,
}
invariants = append(invariants, invar)
}
// add the relationships to the called args
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Args[i+1],
Expr2: dummyArg,
}
invariants = append(invariants, invar)
mapped[argName] = dummyArg
ordered = append(ordered, argName)
}
invar = &interfaces.EqualityWrapFuncInvariant{
Expr1: expr, // maps directly to us!
Expr2Map: mapped,
Expr2Ord: ordered,
Expr2Out: dummyOut,
}
invariants = append(invariants, invar)
// TODO: do we return this relationship with ExprCall?
invar = &interfaces.EqualityWrapCallInvariant{
// TODO: should Expr1 and Expr2 be reversed???
Expr1: cfavInvar.Expr,
//Expr2Func: cfavInvar.Func, // same as below
Expr2Func: expr,
}
invariants = append(invariants, invar)
// TODO: are there any other invariants we should build?
return invariants, nil // generator return
}
// We couldn't tell the solver anything it didn't already know!
return nil, fmt.Errorf("couldn't generate new invariants")
}
invar = &interfaces.GeneratorInvariant{
Func: fn,
}
invariants = append(invariants, invar)
return invariants, nil
}
// Polymorphisms returns the possible type signature for this function. In this
// case, since the number of arguments can be infinite, it returns the final
// precise type if it can be gleamed from the format argument. If it cannot, it
// is because either the format argument was not known statically, or because it
// had an invalid format string.
// XXX: This version of the function does not handle any variants returned from
// the parseFormatToTypeList helper function.
func (obj *PrintfFunc) Polymorphisms(partialType *types.Type, partialValues []types.Value) ([]*types.Type, error) {
if partialType == nil || len(partialValues) < 1 {
return nil, fmt.Errorf("first argument must be a static format string")
}
if partialType.Out != nil && partialType.Out.Cmp(types.TypeStr) != nil {
return nil, fmt.Errorf("return value of printf must be str")
}
ord := partialType.Ord
if partialType.Map != nil {
if len(ord) < 1 {
return nil, fmt.Errorf("must have at least one arg in printf func")
}
if t, exists := partialType.Map[ord[0]]; exists && t != nil {
if t.Cmp(types.TypeStr) != nil {
return nil, fmt.Errorf("first arg for printf must be an str")
}
}
}
// FIXME: we'd like to pre-compute the interpolation if we can, so that
// we can run this code properly... for now, we can't, so it's a compile
// time error...
if partialValues[0] == nil {
return nil, fmt.Errorf("could not determine type from format string")
}
format := partialValues[0].Str() // must not panic
typList, err := parseFormatToTypeList(format)
if err != nil {
return nil, errwrap.Wrapf(err, "could not parse format string")
}
typ := &types.Type{
Kind: types.KindFunc, // function type
Map: make(map[string]*types.Type),
Ord: []string{},
Out: types.TypeStr,
}
// add first arg
typ.Map[formatArgName] = types.TypeStr
typ.Ord = append(typ.Ord, formatArgName)
for i, x := range typList {
name := util.NumToAlpha(i) // start with a...
if name == formatArgName {
return nil, fmt.Errorf("could not build function with %d args", i+1) // +1 for format arg
}
// if we also had even more partial type information, check it!
if t, exists := partialType.Map[ord[i+1]]; exists && t != nil {
if err := t.Cmp(x); err != nil {
return nil, errwrap.Wrapf(err, "arg %d does not match expected type", i+1)
}
}
typ.Map[name] = x
typ.Ord = append(typ.Ord, name)
}
return []*types.Type{typ}, nil // return a list with a single possibility
}
// Build takes the now known function signature and stores it so that this
// function can appear to be static. That type is used to build our function
// statically.
func (obj *PrintfFunc) Build(typ *types.Type) error {
if typ.Kind != types.KindFunc {
return fmt.Errorf("input type must be of kind func")
}
if len(typ.Ord) < 1 {
return fmt.Errorf("the printf function needs at least one arg")
}
if typ.Out == nil {
return fmt.Errorf("return type of function must be specified")
}
if typ.Out.Cmp(types.TypeStr) != nil {
return fmt.Errorf("return type of function must be an str")
}
if typ.Map == nil {
return fmt.Errorf("invalid input type")
}
t0, exists := typ.Map[typ.Ord[0]]
if !exists || t0 == nil {
return fmt.Errorf("first arg must be specified")
}
if t0.Cmp(types.TypeStr) != nil {
return fmt.Errorf("first arg for printf must be an str")
}
obj.Type = typ // function type is now known!
return nil
}
// Validate makes sure we've built our struct properly. It is usually unused for
// normal functions that users can use directly.
func (obj *PrintfFunc) Validate() error {
if obj.Type == nil { // build must be run first
return fmt.Errorf("type is still unspecified")
}
return nil
}
// Info returns some static info about itself.
func (obj *PrintfFunc) Info() *interfaces.Info {
return &interfaces.Info{
Pure: true,
Memo: false,
Sig: obj.Type,
Err: obj.Validate(),
}
}
// Init runs some startup code for this function.
func (obj *PrintfFunc) Init(init *interfaces.Init) error {
obj.init = init
obj.closeChan = make(chan struct{})
return nil
}
// Stream returns the changing values that this func has over time.
func (obj *PrintfFunc) Stream() error {
defer close(obj.init.Output) // the sender closes
for {
select {
case input, ok := <-obj.init.Input:
if !ok {
return nil // can't output any more
}
//if err := input.Type().Cmp(obj.Info().Sig.Input); err != nil {
// return errwrap.Wrapf(err, "wrong function input")
//}
if obj.last != nil && input.Cmp(obj.last) == nil {
continue // value didn't change, skip it
}
obj.last = input // store for next
format := input.Struct()[formatArgName].Str()
values := []types.Value{}
for _, name := range obj.Type.Ord {
if name == formatArgName { // skip format arg
continue
}
x := input.Struct()[name]
values = append(values, x)
}
result, err := compileFormatToString(format, values)
if err != nil {
return err // no errwrap needed b/c helper func
}
if obj.result != nil && *obj.result == result {
continue // result didn't change
}
obj.result = &result // store new result
case <-obj.closeChan:
return nil
}
select {
case obj.init.Output <- &types.StrValue{
V: *obj.result,
}:
case <-obj.closeChan:
return nil
}
}
}
// Close runs some shutdown code for this function and turns off the stream.
func (obj *PrintfFunc) Close() error {
close(obj.closeChan)
return nil
}
// valueToString prints our values how we expect for printf.
// FIXME: if this turns out to be useful, add it to the types package.
func valueToString(value types.Value) string {
switch x := value.Type().Kind; x {
// FIXME: floats don't print nicely: https://github.com/golang/go/issues/46118
case types.KindFloat:
// TODO: use formatting flags ?
// FIXME: Our String() method in FloatValue doesn't print nicely
return value.String()
}
// FIXME: this is just an "easy-out" implementation for now...
return fmt.Sprintf("%v", value.Value())
//switch x := value.Type().Kind; x {
//case types.KindBool:
// return value.String()
//case types.KindStr:
// return value.Str() // use this since otherwise it adds " & "
//case types.KindInt:
// return value.String()
//case types.KindFloat:
// // TODO: use formatting flags ?
// return value.String()
//}
//panic("unhandled type") // TODO: not fully implemented yet
}
// parseFormatToTypeList takes a format string and returns a list of types that
// it expects to use in the order found in the format string. This can also
// handle the %v special variant type in the format string.
// FIXME: add support for more types, and add tests!
func parseFormatToTypeList(format string) ([]*types.Type, error) {
typList := []*types.Type{}
inType := false
for i := 0; i < len(format); i++ {
// some normal char...
if !inType && format[i] != '%' {
continue
}
// in a type or we're a %
if format[i] == '%' {
if inType {
// it's a %%
inType = false
} else {
// start looking for type specification!
inType = true
}
continue
}
// we must be in a type
switch format[i] {
case 't':
typList = append(typList, types.TypeBool)
case 's':
typList = append(typList, types.TypeStr)
case 'd':
typList = append(typList, types.TypeInt)
// TODO: parse fancy formats like %0.2f and stuff
case 'f':
typList = append(typList, types.TypeFloat)
// FIXME: add fancy types like: %[]s, %[]f, %{s:f}, etc...
// special!
case 'v':
typList = append(typList, types.TypeVariant)
default:
return nil, fmt.Errorf("invalid format string at %d", i)
}
inType = false // done
}
return typList, nil
}
// compileFormatToString takes a format string and a list of values and returns
// the compiled/templated output. This can also handle the %v special variant
// type in the format string. Of course the corresponding value to those %v
// entries must have a static, fixed, precise type.
// FIXME: add support for more types, and add tests!
func compileFormatToString(format string, values []types.Value) (string, error) {
output := ""
ix := 0
inType := false
for i := 0; i < len(format); i++ {
// some normal char...
if !inType && format[i] != '%' {
output += string(format[i])
continue
}
// in a type or we're a %
if format[i] == '%' {
if inType {
// it's a %%
output += string(format[i])
inType = false
} else {
// start looking for type specification!
inType = true
}
continue
}
// we must be in a type
var typ *types.Type
switch format[i] {
case 't':
typ = types.TypeBool
case 's':
typ = types.TypeStr
case 'd':
typ = types.TypeInt
// TODO: parse fancy formats like %0.2f and stuff
case 'f':
typ = types.TypeFloat
// FIXME: add fancy types like: %[]s, %[]f, %{s:f}, etc...
case 'v':
typ = types.TypeVariant
default:
return "", fmt.Errorf("invalid format string at %d", i)
}
inType = false // done
// check the type (if not a variant) matches what we have...
if typ == types.TypeVariant {
if values[ix].Type() == nil {
return "", fmt.Errorf("unexpected nil type")
}
} else if err := typ.Cmp(values[ix].Type()); err != nil {
return "", errwrap.Wrapf(err, "unexpected type")
}
output += valueToString(values[ix])
ix++ // consume one value
}
return output, nil
}