Files
mgmt/lang/core/world/schedule_func.go
James Shubin d6cf595899 lang: Unnested the core package from the functions dir
The core package could contain non-functions, so we might as well move
it upwards.
2024-02-22 17:19:02 -05:00

719 lines
22 KiB
Go

// Mgmt
// Copyright (C) 2013-2024+ James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
// test with:
// time ./mgmt run --hostname h1 --tmp-prefix --no-pgp lang examples/lang/schedule0.mcl
// time ./mgmt run --hostname h2 --seeds http://127.0.0.1:2379 --client-urls http://127.0.0.1:2381 --server-urls http://127.0.0.1:2382 --tmp-prefix --no-pgp lang examples/lang/schedule0.mcl
// time ./mgmt run --hostname h3 --seeds http://127.0.0.1:2379 --client-urls http://127.0.0.1:2383 --server-urls http://127.0.0.1:2384 --tmp-prefix --no-pgp lang examples/lang/schedule0.mcl
// kill h2 (should see h1 and h3 pick [h1, h3] instead)
// restart h2 (should see [h1, h3] as before)
// kill h3 (should see h1 and h2 pick [h1, h2] instead)
// restart h3 (should see [h1, h2] as before)
// kill h3
// kill h2
// kill h1... all done!
package coreworld
import (
"context"
"fmt"
"sort"
"github.com/purpleidea/mgmt/etcd/scheduler" // TODO: is it okay to import this without abstraction?
"github.com/purpleidea/mgmt/lang/funcs"
"github.com/purpleidea/mgmt/lang/interfaces"
"github.com/purpleidea/mgmt/lang/types"
"github.com/purpleidea/mgmt/util/errwrap"
)
const (
// ScheduleFuncName is the name this function is registered as.
ScheduleFuncName = "schedule"
// DefaultStrategy is the strategy to use if none has been specified.
DefaultStrategy = "rr"
// StrictScheduleOpts specifies whether the opts passed into the
// scheduler must be strictly what we're expecting, and nothing more.
// If this was false, then we'd allow an opts struct that had a field
// that wasn't used by the scheduler. This could be useful if we need to
// migrate to a newer version of the function. It's probably best to
// keep this strict.
StrictScheduleOpts = true
// arg names...
scheduleArgNameNamespace = "namespace"
scheduleArgNameOpts = "opts"
)
func init() {
funcs.ModuleRegister(ModuleName, ScheduleFuncName, func() interfaces.Func { return &ScheduleFunc{} })
}
var _ interfaces.PolyFunc = &ScheduleFunc{} // ensure it meets this expectation
// ScheduleFunc is special function which determines where code should run in
// the cluster.
type ScheduleFunc struct {
Type *types.Type // this is the type of opts used if specified
built bool // was this function built yet?
init *interfaces.Init
namespace string
scheduler *scheduler.Result
last types.Value
result types.Value // last calculated output
watchChan chan *schedulerResult
}
// String returns a simple name for this function. This is needed so this struct
// can satisfy the pgraph.Vertex interface.
func (obj *ScheduleFunc) String() string {
return ScheduleFuncName
}
// validOpts returns the available mapping of valid opts fields to types.
func (obj *ScheduleFunc) validOpts() map[string]*types.Type {
return map[string]*types.Type{
"strategy": types.TypeStr,
"max": types.TypeInt,
"reuse": types.TypeBool,
"ttl": types.TypeInt,
}
}
// ArgGen returns the Nth arg name for this function.
func (obj *ScheduleFunc) ArgGen(index int) (string, error) {
seq := []string{scheduleArgNameNamespace, scheduleArgNameOpts} // 2nd arg is optional
if l := len(seq); index >= l {
return "", fmt.Errorf("index %d exceeds arg length of %d", index, l)
}
return seq[index], nil
}
// Unify returns the list of invariants that this func produces.
func (obj *ScheduleFunc) Unify(expr interfaces.Expr) ([]interfaces.Invariant, error) {
var invariants []interfaces.Invariant
var invar interfaces.Invariant
// func(namespace str) []str
// OR
// func(namespace str, opts T1) []str
namespaceName, err := obj.ArgGen(0)
if err != nil {
return nil, err
}
dummyNamespace := &interfaces.ExprAny{} // corresponds to the namespace type
dummyOut := &interfaces.ExprAny{} // corresponds to the out string
// namespace arg type of string
invar = &interfaces.EqualsInvariant{
Expr: dummyNamespace,
Type: types.TypeStr,
}
invariants = append(invariants, invar)
// return type of []string
invar = &interfaces.EqualsInvariant{
Expr: dummyOut,
Type: types.NewType("[]str"),
}
invariants = append(invariants, invar)
// generator function
fn := func(fnInvariants []interfaces.Invariant, solved map[interfaces.Expr]*types.Type) ([]interfaces.Invariant, error) {
for _, invariant := range fnInvariants {
// search for this special type of invariant
cfavInvar, ok := invariant.(*interfaces.CallFuncArgsValueInvariant)
if !ok {
continue
}
// did we find the mapping from us to ExprCall ?
if cfavInvar.Func != expr {
continue
}
// cfavInvar.Expr is the ExprCall! (the return pointer)
// cfavInvar.Args are the args that ExprCall uses!
if len(cfavInvar.Args) == 0 {
return nil, fmt.Errorf("unable to build function with no args")
}
if l := len(cfavInvar.Args); l > 2 {
return nil, fmt.Errorf("unable to build function with %d args", l)
}
// we can either have one arg or two
var invariants []interfaces.Invariant
var invar interfaces.Invariant
// add the relationship to the returned value
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Expr,
Expr2: dummyOut,
}
invariants = append(invariants, invar)
// add the relationships to the called args
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Args[0],
Expr2: dummyNamespace,
}
invariants = append(invariants, invar)
// first arg must be a string
invar = &interfaces.EqualsInvariant{
Expr: cfavInvar.Args[0],
Type: types.TypeStr,
}
invariants = append(invariants, invar)
// full function
mapped := make(map[string]interfaces.Expr)
ordered := []string{namespaceName}
mapped[namespaceName] = dummyNamespace
if len(cfavInvar.Args) == 2 { // two args is more complex
dummyOpts := &interfaces.ExprAny{}
optsTypeKnown := false
// speculate about the type?
if typ, exists := solved[cfavInvar.Args[1]]; exists {
optsTypeKnown = true
if typ.Kind != types.KindStruct {
return nil, fmt.Errorf("second arg must be of kind struct")
}
// XXX: the problem is that I can't
// currently express the opts struct as
// an invariant, without building a big
// giant, unusable exclusive...
validOpts := obj.validOpts()
if StrictScheduleOpts {
// strict opts field checking!
for _, name := range typ.Ord {
t := typ.Map[name]
value, exists := validOpts[name]
if !exists {
return nil, fmt.Errorf("unexpected opts field: `%s`", name)
}
if err := t.Cmp(value); err != nil {
return nil, errwrap.Wrapf(err, "expected different type for opts field: `%s`", name)
}
}
} else {
// permissive field checking...
validOptsSorted := []string{}
for name := range validOpts {
validOptsSorted = append(validOptsSorted, name)
}
sort.Strings(validOptsSorted)
for _, name := range validOptsSorted {
value := validOpts[name] // type
t, exists := typ.Map[name]
if !exists {
continue // ignore it
}
// if it exists, check the type
if err := t.Cmp(value); err != nil {
return nil, errwrap.Wrapf(err, "expected different type for opts field: `%s`", name)
}
}
}
invar := &interfaces.EqualsInvariant{
Expr: dummyOpts,
Type: typ,
}
invariants = append(invariants, invar)
}
// redundant?
if typ, err := cfavInvar.Args[1].Type(); err == nil {
invar := &interfaces.EqualsInvariant{
Expr: cfavInvar.Args[1],
Type: typ,
}
invariants = append(invariants, invar)
}
// If we're strict, require it, otherwise let
// in whatever, and let Build() deal with it.
if StrictScheduleOpts && !optsTypeKnown {
return nil, fmt.Errorf("the type of the opts struct is not known")
}
// expression must match type of the input arg
invar := &interfaces.EqualityInvariant{
Expr1: dummyOpts,
Expr2: cfavInvar.Args[1],
}
invariants = append(invariants, invar)
mapped[scheduleArgNameOpts] = dummyOpts
ordered = append(ordered, scheduleArgNameOpts)
}
invar = &interfaces.EqualityWrapFuncInvariant{
Expr1: expr, // maps directly to us!
Expr2Map: mapped,
Expr2Ord: ordered,
Expr2Out: dummyOut,
}
invariants = append(invariants, invar)
// TODO: do we return this relationship with ExprCall?
invar = &interfaces.EqualityWrapCallInvariant{
// TODO: should Expr1 and Expr2 be reversed???
Expr1: cfavInvar.Expr,
//Expr2Func: cfavInvar.Func, // same as below
Expr2Func: expr,
}
invariants = append(invariants, invar)
// TODO: are there any other invariants we should build?
return invariants, nil // generator return
}
// We couldn't tell the solver anything it didn't already know!
return nil, fmt.Errorf("couldn't generate new invariants")
}
invar = &interfaces.GeneratorInvariant{
Func: fn,
}
invariants = append(invariants, invar)
return invariants, nil
}
// Polymorphisms returns the list of possible function signatures available for
// this static polymorphic function. It relies on type and value hints to limit
// the number of returned possibilities.
func (obj *ScheduleFunc) Polymorphisms(partialType *types.Type, partialValues []types.Value) ([]*types.Type, error) {
// TODO: technically, we could generate all permutations of the struct!
//variant := []*types.Type{}
//t0 := types.NewType("func(namespace str) []str")
//variant = append(variant, t0)
//validOpts := obj.validOpts()
//for ? := ? range { // generate all permutations of the struct...
// t := types.NewType(fmt.Sprintf("func(namespace str, opts %s) []str", ?))
// variant = append(variant, t)
//}
//if partialType == nil {
// return variant, nil
//}
if partialType == nil {
return nil, fmt.Errorf("zero type information given")
}
var typ *types.Type
if tOut := partialType.Out; tOut != nil {
if err := tOut.Cmp(types.NewType("[]str")); err != nil {
return nil, errwrap.Wrapf(err, "return type must be a list of strings")
}
}
ord := partialType.Ord
if partialType.Map != nil {
if len(ord) == 0 {
return nil, fmt.Errorf("must have at least one arg in schedule func")
}
if tNamespace, exists := partialType.Map[ord[0]]; exists && tNamespace != nil {
if err := tNamespace.Cmp(types.TypeStr); err != nil {
return nil, errwrap.Wrapf(err, "first arg must be an str")
}
}
if len(ord) == 1 {
return []*types.Type{types.NewType("func(namespace str) []str")}, nil // done!
}
if len(ord) != 2 {
return nil, fmt.Errorf("must have either one or two args in schedule func")
}
if tOpts, exists := partialType.Map[ord[1]]; exists {
if tOpts == nil { // usually a `struct{}`
typFunc := types.NewType("func(namespace str, opts variant) []str")
return []*types.Type{typFunc}, nil // solved!
}
if tOpts.Kind != types.KindStruct {
return nil, fmt.Errorf("second arg must be of kind struct")
}
validOpts := obj.validOpts()
for _, name := range tOpts.Ord {
t := tOpts.Map[name]
value, exists := validOpts[name]
if !exists {
return nil, fmt.Errorf("unexpected opts field: `%s`", name)
}
if err := t.Cmp(value); err != nil {
return nil, errwrap.Wrapf(err, "expected different type for opts field: `%s`", name)
}
}
typ = tOpts // solved
}
}
if typ == nil {
return nil, fmt.Errorf("not enough type information")
}
typFunc := types.NewType(fmt.Sprintf("func(namespace str, opts %s) []str", typ.String()))
// TODO: type check that the partialValues are compatible
return []*types.Type{typFunc}, nil // solved!
}
// Build is run to turn the polymorphic, undetermined function, into the
// specific statically typed version. It is usually run after Unify completes,
// and must be run before Info() and any of the other Func interface methods are
// used. This function is idempotent, as long as the arg isn't changed between
// runs.
func (obj *ScheduleFunc) Build(typ *types.Type) (*types.Type, error) {
// typ is the KindFunc signature we're trying to build...
if typ.Kind != types.KindFunc {
return nil, fmt.Errorf("input type must be of kind func")
}
if len(typ.Ord) != 1 && len(typ.Ord) != 2 {
return nil, fmt.Errorf("the schedule function needs either one or two args")
}
if typ.Out == nil {
return nil, fmt.Errorf("return type of function must be specified")
}
if typ.Map == nil {
return nil, fmt.Errorf("invalid input type")
}
if err := typ.Out.Cmp(types.NewType("[]str")); err != nil {
return nil, errwrap.Wrapf(err, "return type must be a list of strings")
}
tNamespace, exists := typ.Map[typ.Ord[0]]
if !exists || tNamespace == nil {
return nil, fmt.Errorf("first arg must be specified")
}
if len(typ.Ord) == 1 {
obj.Type = nil
obj.built = true
return obj.sig(), nil // done early, 2nd arg is absent!
}
tOpts, exists := typ.Map[typ.Ord[1]]
if !exists || tOpts == nil {
return nil, fmt.Errorf("second argument was missing")
}
if tOpts.Kind != types.KindStruct {
return nil, fmt.Errorf("second argument must be of kind struct")
}
validOpts := obj.validOpts()
if StrictScheduleOpts {
// strict opts field checking!
for _, name := range tOpts.Ord {
t := tOpts.Map[name]
value, exists := validOpts[name]
if !exists {
return nil, fmt.Errorf("unexpected opts field: `%s`", name)
}
if err := t.Cmp(value); err != nil {
return nil, errwrap.Wrapf(err, "expected different type for opts field: `%s`", name)
}
}
} else {
// permissive field checking...
validOptsSorted := []string{}
for name := range validOpts {
validOptsSorted = append(validOptsSorted, name)
}
sort.Strings(validOptsSorted)
for _, name := range validOptsSorted {
value := validOpts[name] // type
t, exists := tOpts.Map[name]
if !exists {
continue // ignore it
}
// if it exists, check the type
if err := t.Cmp(value); err != nil {
return nil, errwrap.Wrapf(err, "expected different type for opts field: `%s`", name)
}
}
}
obj.Type = tOpts // type of opts struct, even an empty: `struct{}`
obj.built = true
return obj.sig(), nil
}
// Validate tells us if the input struct takes a valid form.
func (obj *ScheduleFunc) Validate() error {
if !obj.built {
return fmt.Errorf("function wasn't built yet")
}
// obj.Type can be nil if no 2nd arg is given, or a struct (even empty!)
if obj.Type != nil && obj.Type.Kind != types.KindStruct { // build must be run first
return fmt.Errorf("type must be nil or a struct")
}
return nil
}
// Info returns some static info about itself. Build must be called before this
// will return correct data.
func (obj *ScheduleFunc) Info() *interfaces.Info {
// It's important that you don't return a non-nil sig if this is called
// before you're built. Type unification may call it opportunistically.
var sig *types.Type
if obj.built {
sig = obj.sig() // helper
}
return &interfaces.Info{
Pure: false, // definitely false
Memo: false,
// output is list of hostnames chosen
Sig: sig, // func kind
Err: obj.Validate(),
}
}
// helper
func (obj *ScheduleFunc) sig() *types.Type {
sig := types.NewType(fmt.Sprintf("func(%s str) []str", scheduleArgNameNamespace)) // simplest form
if obj.Type != nil {
sig = types.NewType(fmt.Sprintf("func(%s str, %s %s) []str", scheduleArgNameNamespace, scheduleArgNameOpts, obj.Type.String()))
}
return sig
}
// Init runs some startup code for this function.
func (obj *ScheduleFunc) Init(init *interfaces.Init) error {
obj.init = init
obj.watchChan = make(chan *schedulerResult)
//obj.init.Debug = true // use this for local debugging
return nil
}
// Stream returns the changing values that this func has over time.
func (obj *ScheduleFunc) Stream(ctx context.Context) error {
defer close(obj.init.Output) // the sender closes
for {
select {
// TODO: should this first chan be run as a priority channel to
// avoid some sort of glitch? is that even possible? can our
// hostname check with reality (below) fix that?
case input, ok := <-obj.init.Input:
if !ok {
obj.init.Input = nil // don't infinite loop back
continue // no more inputs, but don't return!
}
//if err := input.Type().Cmp(obj.Info().Sig.Input); err != nil {
// return errwrap.Wrapf(err, "wrong function input")
//}
if obj.last != nil && input.Cmp(obj.last) == nil {
continue // value didn't change, skip it
}
obj.last = input // store for next
namespace := input.Struct()[scheduleArgNameNamespace].Str()
if namespace == "" {
return fmt.Errorf("can't use an empty namespace")
}
opts := make(map[string]types.Value) // empty "struct"
if val, exists := input.Struct()[scheduleArgNameOpts]; exists {
opts = val.Struct()
}
if obj.init.Debug {
obj.init.Logf("namespace: %s", namespace)
}
schedulerOpts := []scheduler.Option{}
// don't add bad or zero-value options
defaultStrategy := true
if val, exists := opts["strategy"]; exists {
if strategy := val.Str(); strategy != "" {
if obj.init.Debug {
obj.init.Logf("opts: strategy: %s", strategy)
}
defaultStrategy = false
schedulerOpts = append(schedulerOpts, scheduler.StrategyKind(strategy))
}
}
if defaultStrategy { // we always need to add one!
schedulerOpts = append(schedulerOpts, scheduler.StrategyKind(DefaultStrategy))
}
if val, exists := opts["max"]; exists {
// TODO: check for overflow
if max := int(val.Int()); max > 0 {
if obj.init.Debug {
obj.init.Logf("opts: max: %d", max)
}
schedulerOpts = append(schedulerOpts, scheduler.MaxCount(max))
}
}
if val, exists := opts["reuse"]; exists {
reuse := val.Bool()
if obj.init.Debug {
obj.init.Logf("opts: reuse: %t", reuse)
}
schedulerOpts = append(schedulerOpts, scheduler.ReuseLease(reuse))
}
if val, exists := opts["ttl"]; exists {
// TODO: check for overflow
if ttl := int(val.Int()); ttl > 0 {
if obj.init.Debug {
obj.init.Logf("opts: ttl: %d", ttl)
}
schedulerOpts = append(schedulerOpts, scheduler.SessionTTL(ttl))
}
}
// TODO: support changing the namespace over time...
// TODO: possibly removing our stored value there first!
if obj.namespace == "" {
obj.namespace = namespace // store it
if obj.init.Debug {
obj.init.Logf("starting scheduler...")
}
var err error
obj.scheduler, err = obj.init.World.Scheduler(obj.namespace, schedulerOpts...)
if err != nil {
return errwrap.Wrapf(err, "can't create scheduler")
}
// process the stream of scheduling output...
go func() {
defer close(obj.watchChan)
// XXX: maybe we could share the parent
// ctx, but I have to work out the
// ordering logic first. For now this is
// just a port of what it was before.
newCtx, cancel := context.WithCancel(context.Background())
go func() {
defer cancel() // unblock Next()
defer obj.scheduler.Shutdown()
select {
case <-ctx.Done():
return
}
}()
for {
hosts, err := obj.scheduler.Next(newCtx)
select {
case obj.watchChan <- &schedulerResult{
hosts: hosts,
err: err,
}:
case <-ctx.Done():
return
}
}
}()
} else if obj.namespace != namespace {
return fmt.Errorf("can't change namespace, previously: `%s`", obj.namespace)
}
continue // we send values on the watch chan, not here!
case schedulerResult, ok := <-obj.watchChan:
if !ok { // closed
// XXX: maybe etcd reconnected? (fix etcd implementation)
// XXX: if we close, perhaps the engine is
// switching etcd hosts and we should retry?
// maybe instead we should get an "etcd
// reconnect" signal, and the lang will restart?
return nil
}
if err := schedulerResult.err; err != nil {
if err == scheduler.ErrEndOfResults {
//return nil // TODO: we should probably fix the reconnect issue and use this here
return fmt.Errorf("scheduler shutdown, reconnect bug?") // XXX: fix etcd reconnects
}
return errwrap.Wrapf(err, "channel watch failed on `%s`", obj.namespace)
}
if obj.init.Debug {
obj.init.Logf("got hosts: %+v", schedulerResult.hosts)
}
var result types.Value
l := types.NewList(obj.Info().Sig.Out)
for _, val := range schedulerResult.hosts {
if err := l.Add(&types.StrValue{V: val}); err != nil {
return errwrap.Wrapf(err, "list could not add val: `%s`", val)
}
}
result = l // set list as result
if obj.init.Debug {
obj.init.Logf("result: %+v", result)
}
// if the result is still the same, skip sending an update...
if obj.result != nil && result.Cmp(obj.result) == nil {
continue // result didn't change
}
obj.result = result // store new result
case <-ctx.Done():
return nil
}
select {
case obj.init.Output <- obj.result: // send
// pass
case <-ctx.Done():
return nil
}
}
}
// schedulerResult combines our internal events into a single message packet.
type schedulerResult struct {
hosts []string
err error
}