Files
mgmt/lang/funcs/contains_polyfunc.go
James Shubin f53376cea1 lang: Add function values and lambdas
This adds a giant missing piece of the language: proper function values!
It is lovely to now understand why early programming language designers
didn't implement these, but a joy to now reap the benefits of them. In
adding these, many other changes had to be made to get them to "fit"
correctly. This improved the code and fixed a number of bugs.
Unfortunately this touched many areas of the code, and since I was
learning how to do all of this for the first time, I've squashed most of
my work into a single commit. Some more information:

* This adds over 70 new tests to verify the new functionality.

* Functions, global variables, and classes can all be implemented
natively in mcl and built into core packages.

* A new compiler step called "Ordering" was added. It is called by the
SetScope step, and determines statement ordering and shadowing
precedence formally. It helped remove at least one bug and provided the
additional analysis required to properly capture variables when
implementing function generators and closures.

* The type unification code was improved to handle the new cases.

* Light copying of Node's allowed our function graphs to be more optimal
and share common vertices and edges. For example, if two different
closures capture a variable $x, they'll both use the same copy when
running the function, since the compiler can prove if they're identical.

* Some areas still need improvements, but this is ready for mainstream
testing and use!
2019-07-17 00:27:09 -04:00

236 lines
7.1 KiB
Go

// Mgmt
// Copyright (C) 2013-2019+ James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
package funcs
import (
"fmt"
"github.com/purpleidea/mgmt/lang/interfaces"
"github.com/purpleidea/mgmt/lang/types"
"github.com/purpleidea/mgmt/util/errwrap"
)
const (
// ContainsFuncName is the name this function is registered as. This
// starts with an underscore so that it cannot be used from the lexer.
// XXX: change to _contains and add syntax in the lexer/parser
ContainsFuncName = "contains"
)
func init() {
Register(ContainsFuncName, func() interfaces.Func { return &ContainsPolyFunc{} }) // must register the func and name
}
// ContainsPolyFunc returns true if a value is found in a list. Otherwise false.
type ContainsPolyFunc struct {
Type *types.Type // this is the type of value stored in our list
init *interfaces.Init
last types.Value // last value received to use for diff
result types.Value // last calculated output
closeChan chan struct{}
}
// ArgGen returns the Nth arg name for this function.
func (obj *ContainsPolyFunc) ArgGen(index int) (string, error) {
seq := []string{"needle", "haystack"}
if l := len(seq); index >= l {
return "", fmt.Errorf("index %d exceeds arg length of %d", index, l)
}
return seq[index], nil
}
// Polymorphisms returns the list of possible function signatures available for
// this static polymorphic function. It relies on type and value hints to limit
// the number of returned possibilities.
func (obj *ContainsPolyFunc) Polymorphisms(partialType *types.Type, partialValues []types.Value) ([]*types.Type, error) {
// TODO: return `variant` as arg for now -- maybe there's a better way?
variant := []*types.Type{types.NewType("func(needle variant, haystack variant) bool")}
if partialType == nil {
return variant, nil
}
var typ *types.Type
ord := partialType.Ord
if partialType.Map != nil {
if len(ord) != 2 {
return nil, fmt.Errorf("must have exactly three args in contains func")
}
if tNeedle, exists := partialType.Map[ord[0]]; exists && tNeedle != nil {
typ = tNeedle // solved
}
if tHaystack, exists := partialType.Map[ord[1]]; exists && tHaystack != nil {
if tHaystack.Kind != types.KindList {
return nil, fmt.Errorf("second arg must be of kind list")
}
if typ != nil && typ.Cmp(tHaystack.Val) != nil {
return nil, fmt.Errorf("list contents in second arg for contains must match search type")
}
typ = tHaystack.Val // solved
}
}
if tOut := partialType.Out; tOut != nil {
if tOut.Kind != types.KindBool {
return nil, fmt.Errorf("return type must be a bool")
}
}
if typ == nil {
return variant, nil
}
typFunc := types.NewType(fmt.Sprintf("func(needle %s, haystack []%s) bool", typ.String(), typ.String()))
// TODO: type check that the partialValues are compatible
return []*types.Type{typFunc}, nil // solved!
}
// Build is run to turn the polymorphic, undetermined function, into the
// specific statically typed version. It is usually run after Unify completes,
// and must be run before Info() and any of the other Func interface methods are
// used. This function is idempotent, as long as the arg isn't changed between
// runs.
func (obj *ContainsPolyFunc) Build(typ *types.Type) error {
// typ is the KindFunc signature we're trying to build...
if typ.Kind != types.KindFunc {
return fmt.Errorf("input type must be of kind func")
}
if len(typ.Ord) != 2 {
return fmt.Errorf("the contains function needs exactly two args")
}
if typ.Out == nil {
return fmt.Errorf("return type of function must be specified")
}
if typ.Map == nil {
return fmt.Errorf("invalid input type")
}
tNeedle, exists := typ.Map[typ.Ord[0]]
if !exists || tNeedle == nil {
return fmt.Errorf("first arg must be specified")
}
tHaystack, exists := typ.Map[typ.Ord[1]]
if !exists || tHaystack == nil {
return fmt.Errorf("second arg must be specified")
}
if tHaystack.Kind != types.KindList {
return fmt.Errorf("second argument must be of kind list")
}
if err := tHaystack.Val.Cmp(tNeedle); err != nil {
return errwrap.Wrapf(err, "type of first arg must match type of list elements in second arg")
}
if err := typ.Out.Cmp(types.TypeBool); err != nil {
return errwrap.Wrapf(err, "return type must be a boolean")
}
obj.Type = tNeedle // type of value stored in our list
return nil
}
// Validate tells us if the input struct takes a valid form.
func (obj *ContainsPolyFunc) Validate() error {
if obj.Type == nil { // build must be run first
return fmt.Errorf("type is still unspecified")
}
return nil
}
// Info returns some static info about itself. Build must be called before this
// will return correct data.
func (obj *ContainsPolyFunc) Info() *interfaces.Info {
var sig *types.Type
if obj.Type != nil { // don't panic if called speculatively
s := obj.Type.String()
sig = types.NewType(fmt.Sprintf("func(needle %s, haystack []%s) bool", s, s))
}
return &interfaces.Info{
Pure: true,
Memo: false,
Sig: sig, // func kind
Err: obj.Validate(),
}
}
// Init runs some startup code for this function.
func (obj *ContainsPolyFunc) Init(init *interfaces.Init) error {
obj.init = init
obj.closeChan = make(chan struct{})
return nil
}
// Stream returns the changing values that this func has over time.
func (obj *ContainsPolyFunc) Stream() error {
defer close(obj.init.Output) // the sender closes
for {
select {
case input, ok := <-obj.init.Input:
if !ok {
return nil // can't output any more
}
//if err := input.Type().Cmp(obj.Info().Sig.Input); err != nil {
// return errwrap.Wrapf(err, "wrong function input")
//}
if obj.last != nil && input.Cmp(obj.last) == nil {
continue // value didn't change, skip it
}
obj.last = input // store for next
needle := input.Struct()["needle"]
haystack := (input.Struct()["haystack"]).(*types.ListValue)
_, exists := haystack.Contains(needle)
var result types.Value = &types.BoolValue{V: exists}
// if previous input was `2 + 4`, but now it
// changed to `1 + 5`, the result is still the
// same, so we can skip sending an update...
if obj.result != nil && result.Cmp(obj.result) == nil {
continue // result didn't change
}
obj.result = result // store new result
case <-obj.closeChan:
return nil
}
select {
case obj.init.Output <- obj.result: // send
case <-obj.closeChan:
return nil
}
}
}
// Close runs some shutdown code for this function and turns off the stream.
func (obj *ContainsPolyFunc) Close() error {
close(obj.closeChan)
return nil
}