This adds a modern type unification algorithm, which drastically improves performance, particularly for bigger programs. This required a change to the AST to add TypeCheck methods (for Stmt) and Infer/Check methods (for Expr). This also changed how the functions express their invariants, and as a result this was changed as well. This greatly improves the way we express these invariants, and as a result it makes adding new polymorphic functions significantly easier. This also makes error output for the user a lot better in pretty much all scenarios. The one downside of this patch is that a good chunk of it is merged in this giant single commit since it was hard to do it step-wise. That's not the end of the world. This couldn't be done without the guidance of Sam who helped me in explaining, debugging, and writing all the sneaky algorithmic parts and much more. Thanks again Sam! Co-authored-by: Samuel Gélineau <gelisam@gmail.com>
213 lines
7.4 KiB
Go
213 lines
7.4 KiB
Go
// Mgmt
|
|
// Copyright (C) 2013-2024+ James Shubin and the project contributors
|
|
// Written by James Shubin <james@shubin.ca> and the project contributors
|
|
//
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
//
|
|
// Additional permission under GNU GPL version 3 section 7
|
|
//
|
|
// If you modify this program, or any covered work, by linking or combining it
|
|
// with embedded mcl code and modules (and that the embedded mcl code and
|
|
// modules which link with this program, contain a copy of their source code in
|
|
// the authoritative form) containing parts covered by the terms of any other
|
|
// license, the licensors of this program grant you additional permission to
|
|
// convey the resulting work. Furthermore, the licensors of this program grant
|
|
// the original author, James Shubin, additional permission to update this
|
|
// additional permission if he deems it necessary to achieve the goals of this
|
|
// additional permission.
|
|
|
|
// Package fastsolver implements very fast type unification.
|
|
package fastsolver
|
|
|
|
import (
|
|
"context"
|
|
"fmt"
|
|
"sort"
|
|
"strconv"
|
|
"strings"
|
|
|
|
"github.com/purpleidea/mgmt/lang/interfaces"
|
|
"github.com/purpleidea/mgmt/lang/types"
|
|
"github.com/purpleidea/mgmt/lang/unification"
|
|
unificationUtil "github.com/purpleidea/mgmt/lang/unification/util"
|
|
"github.com/purpleidea/mgmt/util/errwrap"
|
|
)
|
|
|
|
const (
|
|
// Name is the prefix for our solver log messages.
|
|
Name = "fast"
|
|
|
|
// OptimizationNotImplemented is a placeholder magic flag we can use.
|
|
OptimizationNotImplemented = "not-implemented"
|
|
)
|
|
|
|
func init() {
|
|
unification.Register(Name, func() unification.Solver { return &FastInvariantSolver{} })
|
|
unification.Register("", func() unification.Solver { return &FastInvariantSolver{} }) // default
|
|
}
|
|
|
|
// FastInvariantSolver is a fast invariant solver based on union find. It is
|
|
// intended to be computationally efficient.
|
|
type FastInvariantSolver struct {
|
|
// Strategy is a series of methodologies to heuristically improve the
|
|
// solver.
|
|
Strategy map[string]string
|
|
|
|
// UnifiedState stores a common representation of our unification vars.
|
|
UnifiedState *types.UnifiedState
|
|
|
|
Debug bool
|
|
Logf func(format string, v ...interface{})
|
|
|
|
// notImplemented tells the solver to behave differently somehow...
|
|
notImplemented bool
|
|
}
|
|
|
|
// Init contains some handles that are used to initialize the solver.
|
|
func (obj *FastInvariantSolver) Init(init *unification.Init) error {
|
|
obj.Strategy = init.Strategy
|
|
obj.UnifiedState = init.UnifiedState
|
|
obj.Debug = init.Debug
|
|
obj.Logf = init.Logf
|
|
|
|
optimizations, exists := init.Strategy[unification.StrategyOptimizationsKey]
|
|
if !exists {
|
|
return nil
|
|
}
|
|
// TODO: use a query string parser instead?
|
|
for _, x := range strings.Split(optimizations, ",") {
|
|
if x == OptimizationNotImplemented {
|
|
obj.notImplemented = true
|
|
continue
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// Solve runs the invariant solver. It mutates the .Data field in the .Uni
|
|
// unification variables, so that each set contains a single type. If each of
|
|
// the sets contains a complete type that no longer contains any ?1 type fields,
|
|
// then we have succeeded to unify all of our invariants. If not, then our list
|
|
// of invariants must be ambiguous. This is O(N*K) where N is the number of
|
|
// invariants, and K is the size of the maximum type. Eg a list of list of map
|
|
// of int to str would be of size three. (TODO: or is it four?)
|
|
func (obj *FastInvariantSolver) Solve(ctx context.Context, data *unification.Data) (*unification.InvariantSolution, error) {
|
|
u := func(typ *types.Type) string {
|
|
return obj.UnifiedState.String(typ)
|
|
}
|
|
|
|
// Build a "list" (map) of what we think we need to solve for exactly.
|
|
exprs := make(map[interfaces.Expr]struct{})
|
|
|
|
// TODO: Make better padding for debug output if we end up caring a lot!
|
|
pad := strconv.Itoa(len(strconv.Itoa(max(0, len(data.UnificationInvariants)-1)))) // hack
|
|
for i, x := range data.UnificationInvariants { // []*UnificationInvariant
|
|
// TODO: Is this a good break point for ctx?
|
|
select {
|
|
case <-ctx.Done():
|
|
return nil, ctx.Err()
|
|
default:
|
|
// pass
|
|
}
|
|
|
|
if x.Expr == nil {
|
|
return nil, fmt.Errorf("unexpected nil expr")
|
|
}
|
|
exprs[x.Expr] = struct{}{} // Add to the set of what I must solve!
|
|
|
|
// TODO: Should we pass ctx into Unify?
|
|
if obj.Debug {
|
|
obj.Logf("#%"+pad+"d unify(%s): %s -- %s", i, x.Expr, u(x.Expect), u(x.Actual))
|
|
}
|
|
if err := unificationUtil.Unify(x.Expect, x.Actual); err != nil {
|
|
// Storing the Expr with this invariant is so that we
|
|
// can generate this more helpful error message here.
|
|
// TODO: Improve this error message!
|
|
return nil, errwrap.Wrapf(err, "unify error with: %s", x.Expr)
|
|
}
|
|
if obj.Debug {
|
|
e1, e2 := unificationUtil.Extract(x.Expect), unificationUtil.Extract(x.Actual)
|
|
obj.Logf("#%"+pad+"d extract(%s): %s -- %s", i, x.Expr, u(e1), u(e2))
|
|
}
|
|
}
|
|
count := len(exprs) // safety check
|
|
|
|
// build final solution
|
|
solutions := []*unification.EqualsInvariant{}
|
|
for _, x := range data.UnificationInvariants { // []*UnificationInvariant
|
|
if x.Expect == nil || x.Actual == nil {
|
|
// programming error ?
|
|
return nil, fmt.Errorf("unexpected nil invariant")
|
|
}
|
|
|
|
// zonk!
|
|
t1 := unificationUtil.Extract(x.Expect)
|
|
//t2 := unificationUtil.Extract(x.Actual)
|
|
|
|
// TODO: collect all of these errors and return them together?
|
|
if t1.HasUni() { // || t2.HasUni()
|
|
return nil, fmt.Errorf("expr: %s is ambiguous: %s", x.Expr, u(t1))
|
|
}
|
|
|
|
//if err := t1.Cmp(t2); err != nil { // for development/debugging
|
|
// return nil, errwrap.Wrapf(err, "inconsistency between expect and actual")
|
|
//}
|
|
|
|
if _, exists := exprs[x.Expr]; !exists {
|
|
// TODO: Do we need to check the consistency here?
|
|
continue // already solved
|
|
}
|
|
delete(exprs, x.Expr) // solved!
|
|
|
|
invar := &unification.EqualsInvariant{
|
|
Expr: x.Expr,
|
|
Type: t1, // || t2
|
|
}
|
|
solutions = append(solutions, invar)
|
|
}
|
|
|
|
// Determine that our solver produced a solution for every expr that
|
|
// we're interested in. If it didn't, and it didn't error, then it's a
|
|
// bug. We check for this because we care about safety, this ensures
|
|
// that our AST will get fully populated with the correct types!
|
|
if c := len(exprs); c > 0 { // if there's anything left, it's bad...
|
|
// programming error!
|
|
ptrs := []string{}
|
|
disp := make(map[string]string) // display hack
|
|
for i := range exprs {
|
|
s := fmt.Sprintf("%p", i) // pointer
|
|
ptrs = append(ptrs, s)
|
|
disp[s] = i.String()
|
|
}
|
|
sort.Strings(ptrs)
|
|
s := strings.Join(ptrs, ", ")
|
|
|
|
obj.Logf("got %d unbound expr's: %s", c, s)
|
|
for i, s := range ptrs {
|
|
obj.Logf("(%d) %s => %s", i, s, disp[s])
|
|
}
|
|
return nil, fmt.Errorf("got %d unbound expr's: %s", c, s)
|
|
}
|
|
|
|
if l := len(solutions); l != count { // safety check
|
|
return nil, fmt.Errorf("got %d expressions and %d solutions", count, l)
|
|
}
|
|
|
|
// Return a list instead of a map, to keep this ordering deterministic!
|
|
return &unification.InvariantSolution{
|
|
Solutions: solutions,
|
|
}, nil
|
|
}
|