Files
mgmt/lang/interpolate/interpolate.go
James Shubin d30ff6cfae legal: Remove year
Instead of constantly making these updates, let's just remove the year
since things are stored in git anyways, and this is not an actual modern
legal risk anymore.
2025-01-26 16:24:51 -05:00

395 lines
11 KiB
Go

// Mgmt
// Copyright (C) James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
//
// Additional permission under GNU GPL version 3 section 7
//
// If you modify this program, or any covered work, by linking or combining it
// with embedded mcl code and modules (and that the embedded mcl code and
// modules which link with this program, contain a copy of their source code in
// the authoritative form) containing parts covered by the terms of any other
// license, the licensors of this program grant you additional permission to
// convey the resulting work. Furthermore, the licensors of this program grant
// the original author, James Shubin, additional permission to update this
// additional permission if he deems it necessary to achieve the goals of this
// additional permission.
// Package interpolate contains the string interpolation parser and associated
// structs and code.
package interpolate
import (
"fmt"
"github.com/purpleidea/mgmt/lang/ast"
"github.com/purpleidea/mgmt/lang/funcs"
"github.com/purpleidea/mgmt/lang/funcs/operators"
"github.com/purpleidea/mgmt/lang/interfaces"
"github.com/purpleidea/mgmt/util/errwrap"
"github.com/hashicorp/hil"
hilast "github.com/hashicorp/hil/ast"
)
const (
// UseHilInterpolation specifies that we use the legacy Hil interpolate.
// This can't properly escape a $ in the standard way. It's here in case
// someone wants to play with it and examine how the AST stuff worked...
UseHilInterpolation = false
// UseOptimizedConcat uses a simpler to unify concat operator instead of
// the normal + operator which uses fancy polymorphic type unification.
UseOptimizedConcat = true
)
// StrInterpolate interpolates a string and returns the representative AST.
func StrInterpolate(str string, pos *interfaces.Pos, data *interfaces.Data) (interfaces.Expr, error) {
if data.Debug {
data.Logf("interpolating: %s", str)
}
if UseHilInterpolation {
return HilInterpolate(str, pos, data)
}
return RagelInterpolate(str, pos, data)
}
// RagelInterpolate interpolates a string and returns the representative AST. It
// uses the ragel parser to perform the string interpolation.
func RagelInterpolate(str string, pos *interfaces.Pos, data *interfaces.Data) (interfaces.Expr, error) {
sequence, err := Parse(str)
if err != nil {
return nil, errwrap.Wrapf(err, "parser failed")
}
exprs := []interfaces.Expr{}
for _, term := range sequence {
switch t := term.(type) {
case Literal:
expr := &ast.ExprStr{
V: t.Value,
}
exprs = append(exprs, expr)
case Variable:
expr := &ast.ExprVar{
Name: t.Name,
}
exprs = append(exprs, expr)
default:
return nil, fmt.Errorf("unknown term (%T): %+v", t, t)
}
}
// If we didn't find anything of value, we got an empty string...
if len(sequence) == 0 && str == "" { // be doubly sure...
expr := &ast.ExprStr{
V: "",
}
exprs = append(exprs, expr)
}
// The parser produces non-optimal results where two strings are next to
// each other, when they could be statically combined together.
simplified, err := simplifyExprList(exprs)
if err != nil {
return nil, errwrap.Wrapf(err, "expr list simplify failed")
}
result, err := concatExprListIntoCall(simplified)
if err != nil {
return nil, errwrap.Wrapf(err, "concat expr list failed")
}
return result, errwrap.Wrapf(result.Init(data), "init failed")
}
// HilInterpolate interpolates a string and returns the representative AST. This
// particular implementation uses the hashicorp hil library and syntax to do so.
func HilInterpolate(str string, pos *interfaces.Pos, data *interfaces.Data) (interfaces.Expr, error) {
var line, column int = -1, -1
var filename string
if pos != nil {
line = pos.Line
column = pos.Column
filename = pos.Filename
}
hilPos := hilast.Pos{
Line: line,
Column: column,
Filename: filename,
}
// should not error on plain strings
tree, err := hil.ParseWithPosition(str, hilPos)
if err != nil {
return nil, errwrap.Wrapf(err, "can't parse string interpolation: `%s`", str)
}
if data.Debug {
data.Logf("tree: %+v", tree)
}
transformData := &interfaces.Data{
// TODO: add missing fields here if/when needed
Fs: data.Fs,
FsURI: data.FsURI,
Base: data.Base,
Files: data.Files,
Imports: data.Imports,
Metadata: data.Metadata,
Modules: data.Modules,
LexParser: data.LexParser,
Downloader: data.Downloader,
StrInterpolater: data.StrInterpolater,
//World: data.World, // TODO: do we need this?
Prefix: data.Prefix,
Debug: data.Debug,
Logf: func(format string, v ...interface{}) {
data.Logf("transform: "+format, v...)
},
}
result, err := hilTransform(tree, transformData)
if err != nil {
return nil, errwrap.Wrapf(err, "error running AST map: `%s`", str)
}
if data.Debug {
data.Logf("transform: %+v", result)
}
// make sure to run the Init on the new expression
return result, errwrap.Wrapf(result.Init(data), "init failed")
}
// hilTransform returns the AST equivalent of the hil AST.
func hilTransform(root hilast.Node, data *interfaces.Data) (interfaces.Expr, error) {
switch node := root.(type) {
case *hilast.Output: // common root node
if data.Debug {
data.Logf("got output type: %+v", node)
}
if len(node.Exprs) == 0 {
return nil, fmt.Errorf("no expressions found")
}
if len(node.Exprs) == 1 {
return hilTransform(node.Exprs[0], data)
}
// assumes len > 1
args := []interfaces.Expr{}
for _, n := range node.Exprs {
expr, err := hilTransform(n, data)
if err != nil {
return nil, errwrap.Wrapf(err, "root failed")
}
args = append(args, expr)
}
// XXX: i think we should be adding these args together, instead
// of grouping for example...
result, err := concatExprListIntoCall(args)
if err != nil {
return nil, errwrap.Wrapf(err, "function grouping failed")
}
return result, nil
case *hilast.Call:
if data.Debug {
data.Logf("got function type: %+v", node)
}
args := []interfaces.Expr{}
for _, n := range node.Args {
arg, err := hilTransform(n, data)
if err != nil {
return nil, fmt.Errorf("call failed: %+v", err)
}
args = append(args, arg)
}
return &ast.ExprCall{
Name: node.Func, // name
Args: args,
}, nil
case *hilast.LiteralNode: // string, int, etc...
if data.Debug {
data.Logf("got literal type: %+v", node)
}
switch node.Typex {
case hilast.TypeBool:
return &ast.ExprBool{
V: node.Value.(bool),
}, nil
case hilast.TypeString:
return &ast.ExprStr{
V: node.Value.(string),
}, nil
case hilast.TypeInt:
return &ast.ExprInt{
// node.Value is an int stored as an interface
V: int64(node.Value.(int)),
}, nil
case hilast.TypeFloat:
return &ast.ExprFloat{
V: node.Value.(float64),
}, nil
// TODO: should we handle these too?
//case hilast.TypeList:
//case hilast.TypeMap:
default:
return nil, fmt.Errorf("unmatched type: %T", node)
}
case *hilast.VariableAccess: // variable lookup
if data.Debug {
data.Logf("got variable access type: %+v", node)
}
return &ast.ExprVar{
Name: node.Name,
}, nil
//case *hilast.Index:
// if va, ok := node.Target.(*hilast.VariableAccess); ok {
// v, err := NewInterpolatedVariable(va.Name)
// if err != nil {
// resultErr = err
// return n
// }
// result = append(result, v)
// }
// if va, ok := node.Key.(*hilast.VariableAccess); ok {
// v, err := NewInterpolatedVariable(va.Name)
// if err != nil {
// resultErr = err
// return n
// }
// result = append(result, v)
// }
default:
return nil, fmt.Errorf("unmatched type: %+v", node)
}
}
// concatExprListIntoCall takes a list of expressions, and combines them into an
// expression which ultimately concatenates them all together with a + operator.
// TODO: this assumes they're all strings, do we need to watch out for int's?
func concatExprListIntoCall(exprs []interfaces.Expr) (interfaces.Expr, error) {
if len(exprs) == 0 {
return nil, fmt.Errorf("empty list")
}
operator := &ast.ExprStr{
V: "+", // for PLUS this is a `+` character
}
if len(exprs) == 1 {
return exprs[0], nil // just return self
}
//if len(exprs) == 1 {
// arg := exprs[0]
// emptyStr := &ast.ExprStr{
// V: "", // empty str
// }
// return &ast.ExprCall{
// Name: operators.OperatorFuncName, // concatenate the two strings with + operator
// Args: []interfaces.Expr{
// operator, // operator first
// arg, // string arg
// emptyStr,
// },
// }, nil
//}
head, tail := exprs[0], exprs[1:]
grouped, err := concatExprListIntoCall(tail)
if err != nil {
return nil, err
}
// Faster variant, but doesn't allow potential future more exotic string
// interpolation which would need a more expressive plus operator. I do
// not think we'll ever need that, but leave it in for now as a const.
if UseOptimizedConcat {
return &ast.ExprCall{
// NOTE: if we don't set the data field we need Init() called on it!
Name: funcs.ConcatFuncName, // concatenate the two strings with concat function
Args: []interfaces.Expr{
head, // string arg
grouped, // nested function call which returns a string
},
}, nil
}
return &ast.ExprCall{
// NOTE: if we don't set the data field we need Init() called on it!
Name: operators.OperatorFuncName, // concatenate the two strings with + operator
Args: []interfaces.Expr{
operator, // operator first
head, // string arg
grouped, // nested function call which returns a string
},
}, nil
}
// simplifyExprList takes a list of *ExprStr and *ExprVar and groups the
// sequential *ExprStr's together. If you pass it a list of Expr's that contains
// a different type of Expr, then this will error.
func simplifyExprList(exprs []interfaces.Expr) ([]interfaces.Expr, error) {
last := false
result := []interfaces.Expr{}
for _, x := range exprs {
switch v := x.(type) {
case *ast.ExprStr:
if !last {
last = true
result = append(result, x)
continue
}
// combine!
expr := result[len(result)-1] // there has to be at least one
str, ok := expr.(*ast.ExprStr)
if !ok {
// programming error
return nil, fmt.Errorf("unexpected type (%T)", expr)
}
str.V += v.V // combine!
//last = true // redundant, it's already true
// ... and don't append, we've combined!
case *ast.ExprVar:
last = false // the next one can't combine with me
result = append(result, x)
default:
return nil, fmt.Errorf("unsupported type (%T)", x)
}
}
return result, nil
}