Files
mgmt/lang/funcs/maplookup_func.go
James Shubin c06c391461 lang: Update the Build signature to return a type
This returns the type with the arg names we'll actually use. This is
helpful so we can pass values to the right places. We have named edges
so you can actually see what's going on.

Co-authored-by: Samuel Gélineau <gelisam@gmail.com>
2023-09-25 18:48:15 -04:00

608 lines
18 KiB
Go

// Mgmt
// Copyright (C) 2013-2023+ James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
package funcs
import (
"context"
"fmt"
"github.com/purpleidea/mgmt/lang/interfaces"
"github.com/purpleidea/mgmt/lang/types"
"github.com/purpleidea/mgmt/util/errwrap"
)
const (
// MapLookupFuncName is the name this function is registered as. This
// starts with an underscore so that it cannot be used from the lexer.
// XXX: change to _maplookup and add syntax in the lexer/parser
MapLookupFuncName = "maplookup"
// arg names...
mapLookupArgNameMap = "map"
mapLookupArgNameKey = "key"
mapLookupArgNameDef = "default"
)
func init() {
Register(MapLookupFuncName, func() interfaces.Func { return &MapLookupFunc{} }) // must register the func and name
}
var _ interfaces.PolyFunc = &MapLookupFunc{} // ensure it meets this expectation
// MapLookupFunc is a key map lookup function.
type MapLookupFunc struct {
Type *types.Type // Kind == Map, that is used as the map we lookup
init *interfaces.Init
last types.Value // last value received to use for diff
result types.Value // last calculated output
}
// String returns a simple name for this function. This is needed so this struct
// can satisfy the pgraph.Vertex interface.
func (obj *MapLookupFunc) String() string {
return MapLookupFuncName
}
// ArgGen returns the Nth arg name for this function.
func (obj *MapLookupFunc) ArgGen(index int) (string, error) {
seq := []string{mapLookupArgNameMap, mapLookupArgNameKey, mapLookupArgNameDef}
if l := len(seq); index >= l {
return "", fmt.Errorf("index %d exceeds arg length of %d", index, l)
}
return seq[index], nil
}
// Unify returns the list of invariants that this func produces.
func (obj *MapLookupFunc) Unify(expr interfaces.Expr) ([]interfaces.Invariant, error) {
var invariants []interfaces.Invariant
var invar interfaces.Invariant
// func(map T1, key T2, default T3) T3
// (map: T2 => T3)
mapName, err := obj.ArgGen(0)
if err != nil {
return nil, err
}
keyName, err := obj.ArgGen(1)
if err != nil {
return nil, err
}
defaultName, err := obj.ArgGen(2)
if err != nil {
return nil, err
}
dummyMap := &interfaces.ExprAny{} // corresponds to the map type
dummyKey := &interfaces.ExprAny{} // corresponds to the key type
dummyDefault := &interfaces.ExprAny{} // corresponds to the default type
dummyOut := &interfaces.ExprAny{} // corresponds to the out string
// default type and out are the same
invar = &interfaces.EqualityInvariant{
Expr1: dummyDefault,
Expr2: dummyOut,
}
invariants = append(invariants, invar)
// relationship between T1, T2 and T3
invar = &interfaces.EqualityWrapMapInvariant{
Expr1: dummyMap,
Expr2Key: dummyKey,
Expr2Val: dummyDefault,
}
invariants = append(invariants, invar)
// full function
mapped := make(map[string]interfaces.Expr)
ordered := []string{mapName, keyName, defaultName}
mapped[mapName] = dummyMap
mapped[keyName] = dummyKey
mapped[defaultName] = dummyDefault
invar = &interfaces.EqualityWrapFuncInvariant{
Expr1: expr, // maps directly to us!
Expr2Map: mapped,
Expr2Ord: ordered,
Expr2Out: dummyOut,
}
invariants = append(invariants, invar)
// generator function
fn := func(fnInvariants []interfaces.Invariant, solved map[interfaces.Expr]*types.Type) ([]interfaces.Invariant, error) {
for _, invariant := range fnInvariants {
// search for this special type of invariant
cfavInvar, ok := invariant.(*interfaces.CallFuncArgsValueInvariant)
if !ok {
continue
}
// did we find the mapping from us to ExprCall ?
if cfavInvar.Func != expr {
continue
}
// cfavInvar.Expr is the ExprCall! (the return pointer)
// cfavInvar.Args are the args that ExprCall uses!
if l := len(cfavInvar.Args); l != 3 {
return nil, fmt.Errorf("unable to build function with %d args", l)
}
// add the relationship to the returned value
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Expr,
Expr2: dummyOut,
}
invariants = append(invariants, invar)
// add the relationships to the called args
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Args[0],
Expr2: dummyMap,
}
invariants = append(invariants, invar)
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Args[1],
Expr2: dummyKey,
}
invariants = append(invariants, invar)
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Args[2],
Expr2: dummyDefault,
}
invariants = append(invariants, invar)
var invariants []interfaces.Invariant
var invar interfaces.Invariant
// If we figure out all of these three types, we'll
// know the full type...
var t1 *types.Type // map type
var t2 *types.Type // map key type
var t3 *types.Type // map val type
// validateArg0 checks: map T1
validateArg0 := func(typ *types.Type) error {
if typ == nil { // unknown so far
return nil
}
// we happen to have a map!
if k := typ.Kind; k != types.KindMap {
return fmt.Errorf("unable to build function with 0th arg of kind: %s", k)
}
if typ.Key == nil || typ.Val == nil {
// programming error
return fmt.Errorf("map is missing type")
}
if err := typ.Cmp(t1); t1 != nil && err != nil {
return errwrap.Wrapf(err, "input type was inconsistent")
}
if err := typ.Key.Cmp(t2); t2 != nil && err != nil {
return errwrap.Wrapf(err, "input key type was inconsistent")
}
if err := typ.Val.Cmp(t3); t3 != nil && err != nil {
return errwrap.Wrapf(err, "input val type was inconsistent")
}
// learn!
t1 = typ
t2 = typ.Key
t3 = typ.Val
return nil
}
// validateArg1 checks: map key T2
validateArg1 := func(typ *types.Type) error {
if typ == nil { // unknown so far
return nil
}
if err := typ.Cmp(t2); t2 != nil && err != nil {
return errwrap.Wrapf(err, "input key type was inconsistent")
}
if t1 != nil {
if err := typ.Cmp(t1.Key); err != nil {
return errwrap.Wrapf(err, "input key type was inconsistent")
}
}
if t3 != nil {
t := &types.Type{ // build t1
Kind: types.KindMap,
Key: typ, // t2
Val: t3,
}
if err := t.Cmp(t1); t1 != nil && err != nil {
return errwrap.Wrapf(err, "input type was inconsistent")
}
t1 = t // learn!
}
// learn!
t2 = typ
return nil
}
// validateArg2 checks: map val T3
validateArg2 := func(typ *types.Type) error {
if typ == nil { // unknown so far
return nil
}
if err := typ.Cmp(t3); t3 != nil && err != nil {
return errwrap.Wrapf(err, "input val type was inconsistent")
}
if t1 != nil {
if err := typ.Cmp(t1.Val); err != nil {
return errwrap.Wrapf(err, "input val type was inconsistent")
}
}
if t2 != nil {
t := &types.Type{ // build t1
Kind: types.KindMap,
Key: t2,
Val: typ, // t3
}
if err := t.Cmp(t1); t1 != nil && err != nil {
return errwrap.Wrapf(err, "input type was inconsistent")
}
t1 = t // learn!
}
// learn!
t3 = typ
return nil
}
if typ, err := cfavInvar.Args[0].Type(); err == nil { // is it known?
// this sets t1 and t2 and t3 on success if it learned
if err := validateArg0(typ); err != nil {
return nil, errwrap.Wrapf(err, "first map arg type is inconsistent")
}
}
if typ, exists := solved[cfavInvar.Args[0]]; exists { // alternate way to lookup type
// this sets t1 and t2 and t3 on success if it learned
if err := validateArg0(typ); err != nil {
return nil, errwrap.Wrapf(err, "first map arg type is inconsistent")
}
}
if typ, err := cfavInvar.Args[1].Type(); err == nil { // is it known?
// this sets t2 (and sometimes t1) on success if it learned
if err := validateArg1(typ); err != nil {
return nil, errwrap.Wrapf(err, "second key arg type is inconsistent")
}
}
if typ, exists := solved[cfavInvar.Args[1]]; exists { // alternate way to lookup type
// this sets t2 (and sometimes t1) on success if it learned
if err := validateArg1(typ); err != nil {
return nil, errwrap.Wrapf(err, "second key arg type is inconsistent")
}
}
if typ, err := cfavInvar.Args[2].Type(); err == nil { // is it known?
// this sets t3 (and sometimes t1) on success if it learned
if err := validateArg2(typ); err != nil {
return nil, errwrap.Wrapf(err, "third default arg type is inconsistent")
}
}
if typ, exists := solved[cfavInvar.Args[2]]; exists { // alternate way to lookup type
// this sets t3 (and sometimes t1) on success if it learned
if err := validateArg2(typ); err != nil {
return nil, errwrap.Wrapf(err, "third default arg type is inconsistent")
}
}
// XXX: if the types aren't know statically?
if t1 != nil {
invar := &interfaces.EqualsInvariant{
Expr: dummyMap,
Type: t1,
}
invariants = append(invariants, invar)
}
if t2 != nil {
invar := &interfaces.EqualsInvariant{
Expr: dummyKey,
Type: t2,
}
invariants = append(invariants, invar)
}
if t3 != nil {
invar := &interfaces.EqualsInvariant{
Expr: dummyDefault,
Type: t3,
}
invariants = append(invariants, invar)
}
// XXX: if t{1..3} are missing, we could also return a
// new generator for later if we learn new information,
// but we'd have to be careful to not do the infinitely
// TODO: do we return this relationship with ExprCall?
invar = &interfaces.EqualityWrapCallInvariant{
// TODO: should Expr1 and Expr2 be reversed???
Expr1: cfavInvar.Expr,
//Expr2Func: cfavInvar.Func, // same as below
Expr2Func: expr,
}
invariants = append(invariants, invar)
// TODO: are there any other invariants we should build?
return invariants, nil // generator return
}
// We couldn't tell the solver anything it didn't already know!
return nil, fmt.Errorf("couldn't generate new invariants")
}
invar = &interfaces.GeneratorInvariant{
Func: fn,
}
invariants = append(invariants, invar)
return invariants, nil
}
// Polymorphisms returns the list of possible function signatures available for
// this static polymorphic function. It relies on type and value hints to limit
// the number of returned possibilities.
func (obj *MapLookupFunc) Polymorphisms(partialType *types.Type, partialValues []types.Value) ([]*types.Type, error) {
// TODO: return `variant` as arg for now -- maybe there's a better way?
variant := []*types.Type{types.NewType("func(map variant, key variant, default variant) variant")}
if partialType == nil {
return variant, nil
}
// what's the map type of the first argument?
typ := &types.Type{
Kind: types.KindMap,
//Key: ???,
//Val: ???,
}
ord := partialType.Ord
if partialType.Map != nil {
if len(ord) != 3 {
return nil, fmt.Errorf("must have exactly three args in maplookup func")
}
if tMap, exists := partialType.Map[ord[0]]; exists && tMap != nil {
if tMap.Kind != types.KindMap {
return nil, fmt.Errorf("first arg for maplookup must be a map")
}
typ.Key = tMap.Key
typ.Val = tMap.Val
}
if tKey, exists := partialType.Map[ord[1]]; exists && tKey != nil {
if typ.Key != nil && typ.Key.Cmp(tKey) != nil {
return nil, fmt.Errorf("second arg for maplookup must match map's key type")
}
typ.Key = tKey
}
if tDef, exists := partialType.Map[ord[2]]; exists && tDef != nil {
if typ.Val != nil && typ.Val.Cmp(tDef) != nil {
return nil, fmt.Errorf("third arg for maplookup must match map's val type")
}
typ.Val = tDef
// add this for better error messages
if tOut := partialType.Out; tOut != nil {
if tDef.Cmp(tOut) != nil {
return nil, fmt.Errorf("third arg for maplookup must match return type")
}
}
}
if tOut := partialType.Out; tOut != nil {
if typ.Val != nil && typ.Val.Cmp(tOut) != nil {
return nil, fmt.Errorf("return type for maplookup must match map's val type")
}
typ.Val = tOut
}
}
// TODO: are we okay adding just the map val type and not the map key type?
//if tOut := partialType.Out; tOut != nil {
// if typ.Val != nil && typ.Val.Cmp(tOut) != nil {
// return nil, fmt.Errorf("return type for maplookup must match map's val type")
// }
// typ.Val = tOut
//}
typFunc := &types.Type{
Kind: types.KindFunc, // function type
Map: make(map[string]*types.Type),
Ord: []string{mapLookupArgNameMap, mapLookupArgNameKey, mapLookupArgNameDef},
Out: nil,
}
typFunc.Map[mapLookupArgNameMap] = typ
typFunc.Map[mapLookupArgNameKey] = typ.Key
typFunc.Map[mapLookupArgNameDef] = typ.Val
typFunc.Out = typ.Val
// TODO: don't include partial internal func map's for now, allow in future?
if typ.Key == nil || typ.Val == nil {
typFunc.Map = make(map[string]*types.Type) // erase partial
typFunc.Map[mapLookupArgNameMap] = types.TypeVariant
typFunc.Map[mapLookupArgNameKey] = types.TypeVariant
typFunc.Map[mapLookupArgNameDef] = types.TypeVariant
}
if typ.Val == nil {
typFunc.Out = types.TypeVariant
}
// just returning nothing for now, in case we can't detect a partial map
if typ.Key == nil || typ.Val == nil {
return []*types.Type{typFunc}, nil
}
// TODO: type check that the partialValues are compatible
return []*types.Type{typFunc}, nil // solved!
}
// Build is run to turn the polymorphic, undetermined function, into the
// specific statically typed version. It is usually run after Unify completes,
// and must be run before Info() and any of the other Func interface methods are
// used. This function is idempotent, as long as the arg isn't changed between
// runs.
func (obj *MapLookupFunc) Build(typ *types.Type) (*types.Type, error) {
// typ is the KindFunc signature we're trying to build...
if typ.Kind != types.KindFunc {
return nil, fmt.Errorf("input type must be of kind func")
}
if len(typ.Ord) != 3 {
return nil, fmt.Errorf("the maplookup function needs exactly three args")
}
if typ.Out == nil {
return nil, fmt.Errorf("return type of function must be specified")
}
if typ.Map == nil {
return nil, fmt.Errorf("invalid input type")
}
tMap, exists := typ.Map[typ.Ord[0]]
if !exists || tMap == nil {
return nil, fmt.Errorf("first arg must be specified")
}
tKey, exists := typ.Map[typ.Ord[1]]
if !exists || tKey == nil {
return nil, fmt.Errorf("second arg must be specified")
}
tDef, exists := typ.Map[typ.Ord[2]]
if !exists || tDef == nil {
return nil, fmt.Errorf("third arg must be specified")
}
if err := tMap.Key.Cmp(tKey); err != nil {
return nil, errwrap.Wrapf(err, "key must match map key type")
}
if err := tMap.Val.Cmp(tDef); err != nil {
return nil, errwrap.Wrapf(err, "default must match map val type")
}
if err := tMap.Val.Cmp(typ.Out); err != nil {
return nil, errwrap.Wrapf(err, "return type must match map val type")
}
obj.Type = tMap // map type
return obj.sig(), nil
}
// Validate tells us if the input struct takes a valid form.
func (obj *MapLookupFunc) Validate() error {
if obj.Type == nil { // build must be run first
return fmt.Errorf("type is still unspecified")
}
if obj.Type.Kind != types.KindMap {
return fmt.Errorf("type must be a kind of map")
}
return nil
}
// Info returns some static info about itself. Build must be called before this
// will return correct data.
func (obj *MapLookupFunc) Info() *interfaces.Info {
var sig *types.Type
if obj.Type != nil { // don't panic if called speculatively
// TODO: can obj.Type.Key or obj.Type.Val be nil (a partial) ?
sig = obj.sig() // helper
}
return &interfaces.Info{
Pure: true,
Memo: false,
Sig: sig, // func kind
Err: obj.Validate(),
}
}
// helper
func (obj *MapLookupFunc) sig() *types.Type {
k := obj.Type.Key.String()
v := obj.Type.Val.String()
return types.NewType(fmt.Sprintf("func(%s %s, %s %s, %s %s) %s", mapLookupArgNameMap, obj.Type.String(), mapLookupArgNameKey, k, mapLookupArgNameDef, v, v))
}
// Init runs some startup code for this function.
func (obj *MapLookupFunc) Init(init *interfaces.Init) error {
obj.init = init
return nil
}
// Stream returns the changing values that this func has over time.
func (obj *MapLookupFunc) Stream(ctx context.Context) error {
defer close(obj.init.Output) // the sender closes
for {
select {
case input, ok := <-obj.init.Input:
if !ok {
return nil // can't output any more
}
//if err := input.Type().Cmp(obj.Info().Sig.Input); err != nil {
// return errwrap.Wrapf(err, "wrong function input")
//}
if obj.last != nil && input.Cmp(obj.last) == nil {
continue // value didn't change, skip it
}
obj.last = input // store for next
m := (input.Struct()[mapLookupArgNameMap]).(*types.MapValue)
key := input.Struct()[mapLookupArgNameKey]
def := input.Struct()[mapLookupArgNameDef]
var result types.Value
val, exists := m.Lookup(key)
if exists {
result = val
} else {
result = def
}
// if previous input was `2 + 4`, but now it
// changed to `1 + 5`, the result is still the
// same, so we can skip sending an update...
if obj.result != nil && result.Cmp(obj.result) == nil {
continue // result didn't change
}
obj.result = result // store new result
case <-ctx.Done():
return nil
}
select {
case obj.init.Output <- obj.result: // send
case <-ctx.Done():
return nil
}
}
}