Files
mgmt/lang/types/type.go
James Shubin bfb5d983c1 lang: types, unification: Don't recurse into private fields
We forgot to omit looking deeper into private struct fields. I don't
know why we didn't catch this earlier, I can only assume some subtlety
changed, since we've previously used many of the resources this would
fail on. Maybe golang broke some API that they didn't consider stable?

This also adds a new test for this, and ensures each resource can be
inspected too!
2024-07-31 17:29:42 -04:00

1543 lines
36 KiB
Go

// Mgmt
// Copyright (C) 2013-2024+ James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
//
// Additional permission under GNU GPL version 3 section 7
//
// If you modify this program, or any covered work, by linking or combining it
// with embedded mcl code and modules (and that the embedded mcl code and
// modules which link with this program, contain a copy of their source code in
// the authoritative form) containing parts covered by the terms of any other
// license, the licensors of this program grant you additional permission to
// convey the resulting work. Furthermore, the licensors of this program grant
// the original author, James Shubin, additional permission to update this
// additional permission if he deems it necessary to achieve the goals of this
// additional permission.
package types
import (
"fmt"
"net"
"reflect"
"strconv"
"strings"
"github.com/purpleidea/mgmt/util"
"github.com/purpleidea/mgmt/util/disjoint"
"github.com/purpleidea/mgmt/util/errwrap"
)
const (
// StructTag is the key we use in struct field names for key mapping.
StructTag = "lang"
// MaxInt8 is 127. It's max uint8: ^uint8(0), then we >> 1 for max int8.
MaxInt8 = int((^uint8(0)) >> 1)
)
// Basic types defined here as a convenience for use with Type.Cmp(X).
var (
TypeBool = NewType("bool")
TypeStr = NewType("str")
TypeInt = NewType("int")
TypeFloat = NewType("float")
TypeListStr = NewType("[]str")
TypeVariant = NewType("variant")
)
// The Kind represents the base type of each value.
type Kind int // this used to be called Type
// Each Kind represents a type in the language type system.
const (
// NOTE: Make sure you add entries to stringer.go if you add something.
KindNil Kind = iota
KindBool
KindStr
KindInt
KindFloat
KindList
KindMap
KindStruct
KindFunc
KindVariant
KindUnification = Kind(MaxInt8) // keep this last
)
// Type is the datastructure representing any type. It can be recursive for
// container types like lists, maps, and structs.
// TODO: should we create a `Type` interface?
type Type struct {
Kind Kind
Val *Type // if Kind == List, use Val only
Key *Type // if Kind == Map, use Val and Key
Map map[string]*Type // if Kind == Struct, use Map and Ord (for order)
Ord []string
Out *Type // if Kind == Func, use Map and Ord for Input, Out for Output
Var *Type // if Kind == Variant, use Var only
// unification variable (question mark, eg ?1, ?2)
Uni *Elem // if Kind == Unification (optional) use Uni only
}
// Elem is the type used for the unification variable in the Uni field of Type.
// We create this alias here to avoid needing to write *disjoint.Elem[*Type] all
// over. This is a golang type alias. These should be created with NewElem.
type Elem = disjoint.Elem[*Type]
// NewElem creates a new set with one element and returns the sole element (the
// representative element) of that set.
func NewElem() *Elem {
return disjoint.NewElem[*Type]()
}
// TypeOf takes a reflect.Type and returns an equivalent *Type. It removes any
// pointers since our language does not support pointers. It returns nil if it
// cannot represent the type in our type system. Common examples of things it
// cannot express include reflect.Invalid, reflect.Interface, Reflect.Complex128
// and more. It is not reversible because some information may be either added
// or lost. For example, reflect.Array and reflect.Slice are both converted to a
// Type of KindList, and KindFunc names the arguments of a func sequentially.
// The lossy inverse of this is Reflect.
func TypeOf(t reflect.Type) (*Type, error) {
opts := []TypeOfOption{
StructTagOpt(StructTag),
StrictStructTagOpt(false),
SkipBadStructFieldsOpt(false),
SkipPrivateFieldsOpt(false),
AllowInterfaceTypeOpt(false),
}
return ConfigurableTypeOf(t, opts...)
}
// ResTypeOf is almost identical to TypeOf, except it behaves slightly
// differently so that it can return what is needed for resources.
func ResTypeOf(t reflect.Type) (*Type, error) {
opts := []TypeOfOption{
StructTagOpt(StructTag),
StrictStructTagOpt(true),
SkipBadStructFieldsOpt(true),
SkipPrivateFieldsOpt(true),
AllowInterfaceTypeOpt(true),
}
return ConfigurableTypeOf(t, opts...)
}
// TypeOfOption is a type that can be used to configure the ConfigurableTypeOf
// function.
type TypeOfOption func(*typeOfOptions)
// typeOfOptions represents the different possible configurable options.
type typeOfOptions struct {
structTag string
strictStructTag bool
skipBadStructFields bool
skipPrivateFields bool
allowInterfaceType bool
// TODO: add more options
}
// StructTagOpt specifies whether we should skip over struct fields that errored
// when we tried to find their type. This is used by ResTypeOf.
func StructTagOpt(structTag string) TypeOfOption {
return func(opt *typeOfOptions) {
opt.structTag = structTag
}
}
// StrictStructTagOpt specifies whether we require that a struct tag be present
// to be able to use the field. If false, then the field is skipped if it is
// missing a struct tag.
func StrictStructTagOpt(strictStructTag bool) TypeOfOption {
return func(opt *typeOfOptions) {
opt.strictStructTag = strictStructTag
}
}
// SkipBadStructFieldsOpt specifies whether we should skip over struct fields
// that errored when we tried to find their type. This is used by ResTypeOf.
func SkipBadStructFieldsOpt(skipBadStructFields bool) TypeOfOption {
return func(opt *typeOfOptions) {
opt.skipBadStructFields = skipBadStructFields
}
}
// SkipPrivateFieldsOpt specifies whether we should skip over struct fields that
// are private or unexported. This is used by ResTypeOf.
func SkipPrivateFieldsOpt(skipPrivateFields bool) TypeOfOption {
return func(opt *typeOfOptions) {
opt.skipPrivateFields = skipPrivateFields
}
}
// AllowInterfaceTypeOpt specifies whether we should allow matching on an
// interface kind. This is used by ResTypeOf.
func AllowInterfaceTypeOpt(allowInterfaceType bool) TypeOfOption {
return func(opt *typeOfOptions) {
opt.allowInterfaceType = allowInterfaceType
}
}
// ConfigurableTypeOf is a configurable version of the TypeOf function to avoid
// repeating code for the different variants of it that we want.
func ConfigurableTypeOf(t reflect.Type, opts ...TypeOfOption) (*Type, error) {
options := &typeOfOptions{ // default options
structTag: "",
strictStructTag: false,
skipBadStructFields: false,
skipPrivateFields: false,
allowInterfaceType: false,
}
for _, optionFunc := range opts { // apply the options
optionFunc(options)
}
if options.strictStructTag && options.structTag == "" {
return nil, fmt.Errorf("strict struct tag is set and struct tag is empty")
}
typ := t
kind := typ.Kind()
for kind == reflect.Ptr {
typ = typ.Elem() // un-nest one pointer
kind = typ.Kind()
}
// Special cases:
if reflect.TypeOf(net.HardwareAddr{}) == typ {
return &Type{
Kind: KindStr,
}, nil
}
// TODO: net/url.URL, time.Duration, etc. Note: avoid net/mail.Address
switch kind { // match on destination field kind
case reflect.Bool:
return &Type{
Kind: KindBool,
}, nil
case reflect.String:
return &Type{
Kind: KindStr,
}, nil
case reflect.Int, reflect.Int64, reflect.Int32, reflect.Int16, reflect.Int8:
fallthrough
case reflect.Uint, reflect.Uint64, reflect.Uint32, reflect.Uint16, reflect.Uint8:
// we have only one kind of int type
return &Type{
Kind: KindInt,
}, nil
case reflect.Float64, reflect.Float32:
return &Type{
Kind: KindFloat,
}, nil
case reflect.Array, reflect.Slice:
val, err := ConfigurableTypeOf(typ.Elem(), opts...)
if err != nil {
return nil, err
}
return &Type{
Kind: KindList,
Val: val,
}, nil
case reflect.Map:
key, err := ConfigurableTypeOf(typ.Key(), opts...) // Key returns a map type's key type.
if err != nil {
return nil, err
}
val, err := ConfigurableTypeOf(typ.Elem(), opts...) // Elem returns a type's element type.
if err != nil {
return nil, err
}
return &Type{
Kind: KindMap,
Key: key,
Val: val,
}, nil
case reflect.Struct:
m := make(map[string]*Type)
ord := []string{}
for i := 0; i < typ.NumField(); i++ {
field := typ.Field(i)
if options.skipPrivateFields && !field.IsExported() { // prevent infinite recursion
continue
}
tt, err := ConfigurableTypeOf(field.Type, opts...)
if err != nil {
if options.skipBadStructFields {
continue // skip over bad fields!
}
return nil, err
}
// TODO: should we skip over fields with field.Anonymous ?
// if struct field has a `lang:""` tag, use that instead of the struct field name
fieldName := field.Name
if options.structTag != "" {
if alias, ok := field.Tag.Lookup(options.structTag); ok {
fieldName = alias
} else if options.strictStructTag {
continue
}
}
if util.StrInList(fieldName, ord) {
return nil, fmt.Errorf("duplicate struct field name: `%s` alias: `%s`", field.Name, fieldName)
}
m[fieldName] = tt
ord = append(ord, fieldName) // in order
}
return &Type{
Kind: KindStruct,
Map: m,
Ord: ord,
}, nil
case reflect.Func:
m := make(map[string]*Type)
ord := []string{}
for i := 0; i < typ.NumIn(); i++ {
tt, err := ConfigurableTypeOf(typ.In(i), opts...)
if err != nil {
return nil, err
}
name := fmt.Sprintf("%d", i) // invent a function arg name
m[name] = tt
ord = append(ord, name) // in order
}
var out *Type
var err error
// we currently leave out nil if there are no return values
if c := typ.NumOut(); c == 1 {
out, err = ConfigurableTypeOf(typ.Out(0), opts...)
if err != nil {
return nil, err
}
} else if c > 1 {
// if we have multiple return values, we could return a
// struct, but for now let's just complain...
return nil, fmt.Errorf("func has %d return values", c)
}
// nothing special to do if type is variadic, it's a list...
//if typ.IsVariadic() {
//}
return &Type{
Kind: KindFunc,
Map: m,
Ord: ord,
Out: out,
}, nil
// TODO: should this return a variant type?
case reflect.Interface:
if !options.allowInterfaceType {
return nil, fmt.Errorf("unable to represent type of %s without AllowInterfaceTypeOpt", typ.String())
}
return &Type{
Kind: KindVariant,
Var: nil, // TODO: can we set this?
}, nil
default:
return nil, fmt.Errorf("unable to represent type of %s", typ.String())
}
}
// NewType creates the Type from the string representation.
func NewType(s string) *Type {
table := make(map[uint]*Elem)
return newType(s, table)
}
// newType creates the Type from the string representation. This private version
// takes a table so that we can collect unification variables as we see them and
// return a type with correctly unified unification variables.
func newType(s string, table map[uint]*Elem) *Type {
switch s {
case "bool":
return &Type{
Kind: KindBool,
}
case "str":
return &Type{
Kind: KindStr,
}
case "int":
return &Type{
Kind: KindInt,
}
case "float":
return &Type{
Kind: KindFloat,
}
}
// KindList
if strings.HasPrefix(s, "[]") {
val := newType(s[len("[]"):], table)
if val == nil {
return nil
}
return &Type{
Kind: KindList,
Val: val,
}
}
// KindMap
if strings.HasPrefix(s, "map{") && strings.HasSuffix(s, "}") {
s := s[len("map{") : len(s)-1]
if s == "" { // it is empty
return nil
}
// {<type>: <type>} // map
var found int
var delta int
for i, c := range s {
if c == '{' { // open
delta++
}
if c == '}' { // close
delta--
}
if c == ':' && delta == 0 {
found = i
}
}
if found == 0 || delta != 0 { // nope if we fall off the end...
return nil
}
key := newType(strings.Trim(s[:found], " "), table)
if key == nil {
return nil
}
val := newType(strings.Trim(s[found+1:], " "), table)
if val == nil {
return nil
}
return &Type{
Kind: KindMap,
Key: key,
Val: val,
}
}
// KindStruct
if strings.HasPrefix(s, "struct{") && strings.HasSuffix(s, "}") {
s := s[len("struct{") : len(s)-1]
keys := []string{}
tmap := make(map[string]*Type)
for { // while we still have struct pairs to process...
s = strings.Trim(s, " ")
if s == "" {
break // done
}
sep := strings.Index(s, " ")
if sep <= 0 {
return nil
}
key := s[:sep] // FIXME: check there are no special chars in key
keys = append(keys, key)
s = s[sep+1:] // what's next
var found int
var delta int
for i, c := range s {
if c == '{' { // open
delta++
}
if c == '}' { // close
delta--
}
if c == ';' && delta == 0 { // is there nesting?
found = i
break // stop at first semicolon
}
}
if delta != 0 { // nope if we're still nested...
return nil
}
if found == 0 { // no semicolon
found = len(s) - 1 // last char
}
var trim int
if s[found:found+1] == ";" {
trim = 1
}
typ := newType(strings.Trim(s[:found+1-trim], " "), table)
if typ == nil {
return nil
}
tmap[key] = typ // add type
s = s[found+1:] // what's left?
}
return &Type{
Kind: KindStruct,
Ord: keys,
Map: tmap,
}
}
// KindFunc
if strings.HasPrefix(s, "func(") {
// find end of function...
var found int
var delta = 1 // we've got the first open bracket
for i := len("func("); i < len(s); i++ {
c := s[i]
if c == '(' { // open
delta++
}
if c == ')' { // close
delta--
}
if delta == 0 {
found = i
break
}
}
if delta != 0 { // nesting is not paired...
return nil
}
out := strings.Trim(s[found+1:], " ") // return type
s := s[len("func("):found] // contents of function
keys := []string{}
tmap := make(map[string]*Type)
for { // while we still have function arguments to process...
s = strings.Trim(s, " ")
if s == "" {
break // done
}
var key string
// arg naming code, which allows for optional arg names
for i, c := range s { // looking for an arg name
if c == ',' { // there was no arg name
break
}
if c == '{' || c == '(' { // not an arg name
break
}
if c == '}' || c == ')' { // unexpected format?
return nil
}
if c == ' ' { // done
key = s[:i] // found a key?
s = s[i+1:] // what's next
break
}
}
// just name the keys 0, 1, 2, N...
// XXX: util.NumToAlpha ?
if key == "" {
key = fmt.Sprintf("%d", len(keys))
}
keys = append(keys, key)
var found int
var delta int
for i, c := range s {
if c == '(' { // open
delta++
}
if c == ')' { // close
delta--
}
if c == ',' && delta == 0 { // is there nesting?
found = i
break // stop at first comma
}
}
if delta != 0 { // nope if we're still nested...
return nil
}
if found == 0 { // no comma
found = len(s) - 1 // last char
}
var trim int
if s[found:found+1] == "," {
trim = 1
}
typ := newType(strings.Trim(s[:found+1-trim], " "), table)
if typ == nil {
return nil
}
tmap[key] = typ // add type
s = s[found+1:] // what's left?
}
// return type
var tail *Type
if out != "" { // allow functions with no return type (in parser)
tail = newType(out, table)
if tail == nil {
return nil
}
}
return &Type{
Kind: KindFunc,
Ord: keys,
Map: tmap,
Out: tail,
}
}
// KindVariant
if s == "variant" {
return &Type{
Kind: KindVariant,
}
}
// KindUnification
if strings.HasPrefix(s, "?") {
// find end of number...
var length = 0 // number of digits
for i := len("?"); i < len(s); i++ {
c := s[i]
if length == 0 && c == '0' {
return nil // can't start with a zero
}
// Check manually because strconv.ParseUint accepts ^0x.
if '0' <= c && c <= '9' {
length++
continue
}
return nil // invalid char
}
v := s[len("?") : len("?")+length]
n, err := strconv.ParseUint(v, 10, 32) // base 10, 32 bits
if err != nil {
return nil // programming error or overflow
}
num := uint(n)
// XXX: Should we instead always return new unification
// variables, but call .Union() on all of the ones that have the
// same integer? Sam says they are equivalent.
uni, exists := table[num]
if !exists {
uni = NewElem() // unification variable, eg: ?1
table[num] = uni // store
}
// return a new type, may have an existing unification variable
return &Type{
Kind: KindUnification,
Uni: uni, // unification variable, eg: ?1
}
}
return nil // error (this also matches the empty string as input)
}
// New creates a new Value of this type. It will represent the "zero" value. It
// panics if you give it a malformed type.
func (obj *Type) New() Value {
if obj == nil {
panic("malformed type")
}
switch obj.Kind {
case KindBool:
return NewBool()
case KindStr:
return NewStr()
case KindInt:
return NewInt()
case KindFloat:
return NewFloat()
case KindList:
return NewList(obj)
case KindMap:
return NewMap(obj)
case KindStruct:
return NewStruct(obj)
case KindFunc:
return NewFunc(obj)
case KindVariant:
return NewVariant(obj)
case KindUnification:
panic("can't make new value from unification variable kind")
}
panic("malformed type")
}
// String returns the textual representation for this type.
func (obj *Type) String() string {
table := make(map[*Elem]uint)
return obj.string(table)
}
// string returns the textual representation for this type. This is a private
// helper function that is used by the real String function.
func (obj *Type) string(table map[*Elem]uint) string {
switch obj.Kind {
case KindBool:
return "bool"
case KindStr:
return "str"
case KindInt:
return "int"
case KindFloat:
return "float"
case KindList:
if obj.Val == nil {
panic("malformed list type")
}
return "[]" + obj.Val.string(table)
case KindMap:
if obj.Key == nil || obj.Val == nil {
panic("malformed map type")
}
return fmt.Sprintf("map{%s: %s}", obj.Key.string(table), obj.Val.string(table))
case KindStruct: // {a bool; b int}
if obj.Map == nil {
panic("malformed struct type")
}
if len(obj.Map) != len(obj.Ord) {
panic("malformed struct length")
}
var s = make([]string, len(obj.Ord))
for i, k := range obj.Ord {
t, ok := obj.Map[k]
if !ok {
panic("malformed struct order")
}
if t == nil {
panic("malformed struct field")
}
s[i] = fmt.Sprintf("%s %s", k, t.string(table))
}
return fmt.Sprintf("struct{%s}", strings.Join(s, "; "))
case KindFunc:
if obj.Map == nil {
panic("malformed func type")
}
if len(obj.Map) != len(obj.Ord) {
panic("malformed func length")
}
var s = make([]string, len(obj.Ord))
for i, k := range obj.Ord {
t, ok := obj.Map[k]
if !ok {
panic("malformed func order")
}
if t == nil {
panic("malformed func field")
}
// We need to print function arg names for Copy() to use
// the String() hack here and avoid erasing them here!
//s[i] = t.string(table)
s[i] = fmt.Sprintf("%s %s", k, t.string(table)) // strict
}
var out string
if obj.Out != nil {
out = fmt.Sprintf(" %s", obj.Out.string(table))
}
return fmt.Sprintf("func(%s)%s", strings.Join(s, ", "), out)
case KindVariant:
return "variant"
case KindUnification:
if obj.Uni == nil {
panic("malformed unification variable")
}
// XXX: Should we instead run .IsConnected() on the two Elem
// unification variables to determine if they should have the
// same integer representation when printing them?
num, exists := table[obj.Uni]
if !exists {
for _, n := range table {
num = max(num, n)
}
num++ // add 1
table[obj.Uni] = num // store
}
//fmt.Printf("?%d: %p\n", int(num), obj.Uni.Find()) // debug
return "?" + strconv.Itoa(int(num))
}
panic("malformed type")
}
// Cmp compares this type to another.
func (obj *Type) Cmp(typ *Type) error {
table1 := make(map[*Elem]uint) // for obj
table2 := make(map[*Elem]uint) // for typ
return obj.cmp(typ, table1, table2)
}
// cmp compares this type to another. This is a private helper function that is
// used by the real Cmp function.
func (obj *Type) cmp(typ *Type, table1, table2 map[*Elem]uint) error {
if obj == nil || typ == nil {
return fmt.Errorf("cannot compare to nil")
}
// TODO: is this correct?
// recurse into variants if we want base type comparisons
//if obj.Kind == KindVariant {
// return obj.Var.cmp(t, table1, table2)
//}
//if t.Kind == KindVariant {
// return obj.cmp(t.Var, table1, table2)
//}
if obj.Kind != typ.Kind {
return fmt.Errorf("base kind does not match (%+v != %+v)", obj.Kind, typ.Kind)
}
switch obj.Kind {
case KindBool:
return nil
case KindStr:
return nil
case KindInt:
return nil
case KindFloat:
return nil
case KindList:
if obj.Val == nil || typ.Val == nil {
panic("malformed list type")
}
return obj.Val.cmp(typ.Val, table1, table2)
case KindMap:
if obj.Key == nil || obj.Val == nil || typ.Key == nil || typ.Val == nil {
panic("malformed map type")
}
kerr := obj.Key.cmp(typ.Key, table1, table2)
verr := obj.Val.cmp(typ.Val, table1, table2)
if kerr != nil && verr != nil {
return errwrap.Append(kerr, verr) // two errors
}
if kerr != nil {
return kerr
}
if verr != nil {
return verr
}
return nil
case KindStruct: // {a bool; b int}
if obj.Map == nil || typ.Map == nil {
panic("malformed struct type")
}
if len(obj.Ord) != len(typ.Ord) {
return fmt.Errorf("struct field count differs")
}
for i, k := range obj.Ord {
if k != typ.Ord[i] {
return fmt.Errorf("struct fields differ")
}
}
for _, k := range obj.Ord { // loop map in deterministic order
t1, ok := obj.Map[k]
if !ok {
panic("malformed struct order")
}
t2, ok := typ.Map[k]
if !ok {
panic("malformed struct order")
}
if t1 == nil || t2 == nil {
panic("malformed struct field")
}
if err := t1.cmp(t2, table1, table2); err != nil {
return err
}
}
return nil
case KindFunc:
if obj.Map == nil || typ.Map == nil {
panic("malformed func type")
}
if len(obj.Ord) != len(typ.Ord) {
return fmt.Errorf("func arg count differs")
}
// needed for strict cmp only...
//for i, k := range obj.Ord {
// if k != typ.Ord[i] {
// return fmt.Errorf("func arg differs")
// }
//}
//for _, k := range obj.Ord { // loop map in deterministic order
// t1, ok := obj.Map[k]
// if !ok {
// panic("malformed func order")
// }
// t2, ok := typ.Map[k]
// if !ok {
// panic("malformed func order")
// }
// if t1 == nil || t2 == nil {
// panic("malformed func arg")
// }
// if err := t1.cmp(t2, table1, table2); err != nil {
// return err
// }
//}
// if we're not comparing arg names, get the two lists of types
for i := 0; i < len(obj.Ord); i++ {
t1, ok := obj.Map[obj.Ord[i]]
if !ok {
panic("malformed func order")
}
if t1 == nil {
panic("malformed func arg")
}
t2, ok := typ.Map[typ.Ord[i]]
if !ok {
panic("malformed func order")
}
if t2 == nil {
panic("malformed func arg")
}
if err := t1.cmp(t2, table1, table2); err != nil {
return err
}
}
if obj.Out != nil || typ.Out != nil {
if err := obj.Out.cmp(typ.Out, table1, table2); err != nil {
return err
}
}
return nil
// TODO: is this correct?
case KindVariant:
if typ.Kind != KindVariant {
return fmt.Errorf("variant only compares with other variants")
}
// TODO: should we Cmp obj.Var with typ.Var ? -- not necessarily
return nil
// used for testing
case KindUnification:
if obj.Uni == nil || typ.Uni == nil {
panic("malformed unification variable")
}
// If both types store and lookup variables symmetrically and in
// the same order, then the count's should also match.
// XXX: Should we instead run .IsConnected() on the two Elem
// unification variables to determine if they should have the
// same integer representation when printing them?
num1, exists := table1[obj.Uni]
if !exists {
for _, n := range table1 {
num1 = max(num1, n)
}
num1++ // add 1
table1[obj.Uni] = num1 // store
}
num2, exists := table2[typ.Uni]
if !exists {
for _, n := range table2 {
num2 = max(num2, n)
}
num2++ // add 1
table2[typ.Uni] = num2 // store
}
if num1 != num2 {
return fmt.Errorf("unbalanced unification variables")
}
return nil
}
return fmt.Errorf("unknown kind")
}
// Copy copies this type so that inplace modification won't affect the original.
func (obj *Type) Copy() *Type {
// String() needs to print function arg names or they'd get erased here!
return NewType(obj.String()) // hack to do this easily
}
// Reflect returns a representative type satisfying the golang Type Interface.
// The lossy inverse of this is TypeOf.
func (obj *Type) Reflect() reflect.Type {
switch obj.Kind {
case KindBool:
return reflect.TypeOf(bool(false))
case KindStr:
return reflect.TypeOf(string(""))
case KindInt:
return reflect.TypeOf(int64(0))
case KindFloat:
return reflect.TypeOf(float64(0))
case KindList:
if obj.Val == nil {
panic("malformed list type")
}
return reflect.SliceOf(obj.Val.Reflect()) // recurse
case KindMap:
if obj.Key == nil || obj.Val == nil {
panic("malformed map type")
}
return reflect.MapOf(obj.Key.Reflect(), obj.Val.Reflect()) // dual recurse
case KindStruct: // {a bool; b int}
if obj.Map == nil {
panic("malformed struct type")
}
if len(obj.Map) != len(obj.Ord) {
panic("malformed struct length")
}
fields := []reflect.StructField{}
for _, k := range obj.Ord {
t, ok := obj.Map[k]
if !ok {
panic("malformed struct order")
}
if t == nil {
panic("malformed struct field")
}
if strings.Title(k) != k { // is exported?
//k = strings.Title(k) // TODO: is this helpful?
// reflect.StructOf would panic on anything unexported
panic(fmt.Sprintf("struct has unexported field: %s", k))
}
fields = append(fields, reflect.StructField{
Name: k, // struct field name
Type: t.Reflect(),
//Tag: `mgmt:"foo"`, // unused
})
}
return reflect.StructOf(fields)
case KindFunc:
if obj.Map == nil {
panic("malformed func type")
}
if len(obj.Map) != len(obj.Ord) {
panic("malformed func length")
}
in := []reflect.Type{}
for _, k := range obj.Ord {
t, ok := obj.Map[k]
if !ok {
panic("malformed func order")
}
if t == nil {
panic("malformed func arg")
}
in = append(in, t.Reflect())
}
out := []reflect.Type{} // only one return arg
if obj.Out != nil {
out = append(out, obj.Out.Reflect())
}
var variadic = false // we don't support variadic functions atm
return reflect.FuncOf(in, out, variadic)
case KindVariant:
var x interface{}
return reflect.TypeOf(x) // TODO: is this correct?
}
panic("malformed type")
}
// Underlying returns the underlying type of the type in question. For variants,
// this unpacks them recursively, for everything else this returns itself.
func (obj *Type) Underlying() *Type {
typ := obj // initial exposed type
for {
if typ.Kind != KindVariant {
return typ
}
typ = typ.Var // unpack child type of variant
}
}
// HasVariant tells us if the type contains any mention of the Variant type.
func (obj *Type) HasVariant() bool {
if obj == nil {
return false
}
switch obj.Kind {
case KindBool:
return false
case KindStr:
return false
case KindInt:
return false
case KindFloat:
return false
case KindList:
if obj.Val == nil {
panic("malformed list type")
}
return obj.Val.HasVariant()
case KindMap:
if obj.Key == nil || obj.Val == nil {
panic("malformed map type")
}
return obj.Key.HasVariant() || obj.Val.HasVariant()
case KindStruct: // {a bool; b int}
if obj.Map == nil {
panic("malformed struct type")
}
if len(obj.Map) != len(obj.Ord) {
panic("malformed struct length")
}
for _, k := range obj.Ord {
t, ok := obj.Map[k]
if !ok {
panic("malformed struct order")
}
if t == nil {
panic("malformed struct field")
}
if t.HasVariant() {
return true
}
}
return false
case KindFunc:
if obj.Map == nil {
panic("malformed func type")
}
if len(obj.Map) != len(obj.Ord) {
panic("malformed func length")
}
for _, k := range obj.Ord {
t, ok := obj.Map[k]
if !ok {
panic("malformed func order")
}
if t == nil {
panic("malformed func field")
}
if t.HasVariant() {
return true
}
}
if obj.Out != nil {
if obj.Out.HasVariant() {
return true
}
}
return false
case KindVariant:
return true // found it!
case KindUnification:
return false // TODO: Do we want to panic here instead?
}
panic("malformed type")
}
// HasUni tells us if the type contains any unification variables.
func (obj *Type) HasUni() bool {
if obj == nil {
return false
}
if obj.Uni != nil {
return true // found it (by this method)
}
switch obj.Kind {
case KindBool:
return false
case KindStr:
return false
case KindInt:
return false
case KindFloat:
return false
case KindList:
if obj.Val == nil {
panic("malformed list type")
}
return obj.Val.HasUni()
case KindMap:
if obj.Key == nil || obj.Val == nil {
panic("malformed map type")
}
return obj.Key.HasUni() || obj.Val.HasUni()
case KindStruct: // {a bool; b int}
if obj.Map == nil {
panic("malformed struct type")
}
if len(obj.Map) != len(obj.Ord) {
panic("malformed struct length")
}
for _, k := range obj.Ord {
t, ok := obj.Map[k]
if !ok {
panic("malformed struct order")
}
if t == nil {
panic("malformed struct field")
}
if t.HasUni() {
return true
}
}
return false
case KindFunc:
if obj.Map == nil {
panic("malformed func type")
}
if len(obj.Map) != len(obj.Ord) {
panic("malformed func length")
}
for _, k := range obj.Ord {
t, ok := obj.Map[k]
if !ok {
panic("malformed func order")
}
if t == nil {
panic("malformed func field")
}
if t.HasUni() {
return true
}
}
if obj.Out != nil {
if obj.Out.HasUni() {
return true
}
}
return false
case KindVariant:
return obj.Var.HasUni()
case KindUnification:
return true // found it!
}
panic("malformed type")
}
// ComplexCmp tells us if the input type is compatible with the concrete one. It
// can match against types containing variants, or against partial types. If the
// two types are equivalent, it will return nil. If the input type is identical,
// and concrete, the return status will be the empty string. If this match finds
// a possibility against a partial type, the status will be set to the "partial"
// string, and if it is compatible with the variant type it will be "variant"...
// Comparing to a partial can only match "impossible" (error) or possible (nil).
// This now also supports comparing a partial type to a variant type as well...
// TODO: Should we support KindUnification somehow?
func (obj *Type) ComplexCmp(typ *Type) (string, error) {
// match simple "placeholder" variants... skip variants w/ sub types
isVariant := func(t *Type) bool { return t != nil && t.Kind == KindVariant && t.Var == nil }
if obj == nil && typ == nil {
return "partial", nil // compatible :)
}
if isVariant(obj) && isVariant(typ) {
return "variant", nil // compatible :)
}
if obj == nil && isVariant(typ) { // partial vs variant
return "both", nil // compatible :)
}
if isVariant(obj) && typ == nil { // variant vs partial
return "both", nil // compatible :)
}
if obj == nil || typ == nil { // at least one is partial
return "partial", nil // compatible :)
}
if isVariant(obj) || isVariant(typ) { // at least one is variant
return "variant", nil // compatible :)
}
if obj.Kind != typ.Kind {
return "", fmt.Errorf("base kind does not match (%+v != %+v)", obj.Kind, typ.Kind)
}
// only container types are left to match...
switch obj.Kind {
case KindBool:
return "", nil // regular cmp
case KindStr:
return "", nil
case KindInt:
return "", nil
case KindFloat:
return "", nil
case KindList:
return obj.Val.ComplexCmp(typ.Val)
case KindMap:
kstatus, kerr := obj.Key.ComplexCmp(typ.Key)
vstatus, verr := obj.Val.ComplexCmp(typ.Val)
if kerr != nil && verr != nil {
return "", errwrap.Append(kerr, verr) // two errors
}
if kerr != nil {
return "", kerr
}
if verr != nil {
return "", verr
}
var isVariant, isPartial bool
if kstatus == "variant" || vstatus == "variant" {
isVariant = true
}
if kstatus == "partial" || vstatus == "partial" {
isPartial = true
}
if kstatus == "both" || vstatus == "both" {
isVariant = true
isPartial = true
}
if !isVariant && !isPartial {
return "", nil
}
if isVariant && !isPartial {
return "variant", nil
}
if isPartial && !isVariant {
return "partial", nil
}
return "both", nil
case KindStruct: // {a bool; b int}
if len(obj.Ord) != len(typ.Ord) {
return "", fmt.Errorf("struct field count differs")
}
for i, k := range obj.Ord {
if k != typ.Ord[i] {
return "", fmt.Errorf("struct fields differ")
}
}
var isVariant, isPartial bool
for _, k := range obj.Ord { // loop map in deterministic order
t1, ok := obj.Map[k]
if !ok {
panic("malformed struct order")
}
t2, ok := typ.Map[k]
if !ok {
panic("malformed struct order")
}
status, err := t1.ComplexCmp(t2)
if err != nil {
return "", err
}
if status == "variant" {
isVariant = true
}
if status == "partial" {
isPartial = true
}
if status == "both" {
isVariant = true
isPartial = true
}
}
if !isVariant && !isPartial {
return "", nil
}
if isVariant && !isPartial {
return "variant", nil
}
if isPartial && !isVariant {
return "partial", nil
}
return "both", nil
case KindFunc:
if len(obj.Ord) != len(typ.Ord) {
return "", fmt.Errorf("func arg count differs")
}
// needed for strict cmp only...
//for i, k := range obj.Ord {
// if k != typ.Ord[i] {
// return "", fmt.Errorf("func arg differs")
// }
//}
//var isVariant, isPartial bool
//for _, k := range obj.Ord { // loop map in deterministic order
// t1, ok := obj.Map[k]
// if !ok {
// panic("malformed func order")
// }
// t2, ok := typ.Map[k]
// if !ok {
// panic("malformed func order")
// }
//
// status, err := t1.ComplexCmp(t2)
// if err != nil {
// return "", err
// }
// if status == "variant" {
// isVariant = true
// }
// if status == "partial" {
// isPartial = true
// }
// if status == "both" {
// isVariant = true
// isPartial = true
// }
//}
//
//if !isVariant && !isPartial {
// return "", nil
//}
//if isVariant && !isPartial {
// return "variant", nil
//}
//if isPartial && !isVariant {
// return "partial", nil
//}
//
//return "both", nil
// if we're not comparing arg names, get the two lists of types
var isVariant, isPartial bool
for i := 0; i < len(obj.Ord); i++ {
t1, ok := obj.Map[obj.Ord[i]]
if !ok {
panic("malformed func order")
}
t2, ok := typ.Map[typ.Ord[i]]
if !ok {
panic("malformed func order")
}
status, err := t1.ComplexCmp(t2)
if err != nil {
return "", err
}
if status == "variant" {
isVariant = true
}
if status == "partial" {
isPartial = true
}
if status == "both" {
isVariant = true
isPartial = true
}
}
// NOTE: Technically, .Out could be unspecified, then this is a
// Cmp fail, not an isPartial = true, but then we'd have to
// support functions without a return value. Since we are
// functional, it is not a major problem...
status, err := obj.Out.ComplexCmp(typ.Out)
if err != nil {
return "", err
}
if status == "variant" {
isVariant = true
}
if status == "partial" {
isPartial = true
}
if status == "both" {
isVariant = true
isPartial = true
}
if !isVariant && !isPartial {
return "", nil
}
if isVariant && !isPartial {
return "variant", nil
}
if isPartial && !isVariant {
return "partial", nil
}
return "both", nil
}
return "", fmt.Errorf("unknown kind: %+v", obj.Kind)
}