Files
mgmt/pgraph/actions.go

426 lines
16 KiB
Go

// Mgmt
// Copyright (C) 2013-2016+ James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
package pgraph
import (
"fmt"
"log"
"math"
"sync"
"time"
"github.com/purpleidea/mgmt/event"
"github.com/purpleidea/mgmt/global"
"github.com/purpleidea/mgmt/resources"
errwrap "github.com/pkg/errors"
)
// GetTimestamp returns the timestamp of a vertex
func (v *Vertex) GetTimestamp() int64 {
return v.timestamp
}
// UpdateTimestamp updates the timestamp on a vertex and returns the new value
func (v *Vertex) UpdateTimestamp() int64 {
v.timestamp = time.Now().UnixNano() // update
return v.timestamp
}
// OKTimestamp returns true if this element can run right now?
func (g *Graph) OKTimestamp(v *Vertex) bool {
// these are all the vertices pointing TO v, eg: ??? -> v
for _, n := range g.IncomingGraphEdges(v) {
// if the vertex has a greater timestamp than any pre-req (n)
// then we can't run right now...
// if they're equal (eg: on init of 0) then we also can't run
// b/c we should let our pre-req's go first...
x, y := v.GetTimestamp(), n.GetTimestamp()
if global.DEBUG {
log.Printf("%s[%s]: OKTimestamp: (%v) >= %s[%s](%v): !%v", v.Kind(), v.GetName(), x, n.Kind(), n.GetName(), y, x >= y)
}
if x >= y {
return false
}
}
return true
}
// Poke notifies nodes after me in the dependency graph that they need refreshing...
// NOTE: this assumes that this can never fail or need to be rescheduled
func (g *Graph) Poke(v *Vertex, activity bool) {
// these are all the vertices pointing AWAY FROM v, eg: v -> ???
for _, n := range g.OutgoingGraphEdges(v) {
// XXX: if we're in state event and haven't been cancelled by
// apply, then we can cancel a poke to a child, right? XXX
// XXX: if n.Res.getState() != resources.ResStateEvent { // is this correct?
if true { // XXX
if global.DEBUG {
log.Printf("%s[%s]: Poke: %s[%s]", v.Kind(), v.GetName(), n.Kind(), n.GetName())
}
n.SendEvent(event.EventPoke, false, activity) // XXX: can this be switched to sync?
} else {
if global.DEBUG {
log.Printf("%s[%s]: Poke: %s[%s]: Skipped!", v.Kind(), v.GetName(), n.Kind(), n.GetName())
}
}
}
}
// BackPoke pokes the pre-requisites that are stale and need to run before I can run.
func (g *Graph) BackPoke(v *Vertex) {
// these are all the vertices pointing TO v, eg: ??? -> v
for _, n := range g.IncomingGraphEdges(v) {
x, y, s := v.GetTimestamp(), n.GetTimestamp(), n.Res.GetState()
// if the parent timestamp needs poking AND it's not in state
// ResStateEvent, then poke it. If the parent is in ResStateEvent it
// means that an event is pending, so we'll be expecting a poke
// back soon, so we can safely discard the extra parent poke...
// TODO: implement a stateLT (less than) to tell if something
// happens earlier in the state cycle and that doesn't wrap nil
if x >= y && (s != resources.ResStateEvent && s != resources.ResStateCheckApply) {
if global.DEBUG {
log.Printf("%s[%s]: BackPoke: %s[%s]", v.Kind(), v.GetName(), n.Kind(), n.GetName())
}
n.SendEvent(event.EventBackPoke, false, false) // XXX: can this be switched to sync?
} else {
if global.DEBUG {
log.Printf("%s[%s]: BackPoke: %s[%s]: Skipped!", v.Kind(), v.GetName(), n.Kind(), n.GetName())
}
}
}
}
// Process is the primary function to execute for a particular vertex in the graph.
func (g *Graph) Process(v *Vertex) error {
obj := v.Res
if global.DEBUG {
log.Printf("%s[%s]: Process()", obj.Kind(), obj.GetName())
}
obj.SetState(resources.ResStateEvent)
var ok = true
var apply = false // did we run an apply?
// is it okay to run dependency wise right now?
// if not, that's okay because when the dependency runs, it will poke
// us back and we will run if needed then!
if g.OKTimestamp(v) {
if global.DEBUG {
log.Printf("%s[%s]: OKTimestamp(%v)", obj.Kind(), obj.GetName(), v.GetTimestamp())
}
obj.SetState(resources.ResStateCheckApply)
// connect any senders to receivers and detect if values changed
if changed, err := obj.SendRecv(obj); err != nil {
return errwrap.Wrapf(err, "could not SendRecv in Process")
} else if changed {
obj.StateOK(false) // invalidate cache
}
// if this fails, don't UpdateTimestamp()
checkok, err := obj.CheckApply(!obj.Meta().Noop)
if checkok && err != nil { // should never return this way
log.Fatalf("%s[%s]: CheckApply(): %t, %+v", obj.Kind(), obj.GetName(), checkok, err)
}
if global.DEBUG {
log.Printf("%s[%s]: CheckApply(): %t, %v", obj.Kind(), obj.GetName(), checkok, err)
}
if !checkok { // if state *was* not ok, we had to have apply'ed
if err != nil { // error during check or apply
ok = false
} else {
apply = true
}
}
// when noop is true we always want to update timestamp
if obj.Meta().Noop && err == nil {
ok = true
}
if ok {
// update this timestamp *before* we poke or the poked
// nodes might fail due to having a too old timestamp!
v.UpdateTimestamp() // this was touched...
obj.SetState(resources.ResStatePoking) // can't cancel parent poke
g.Poke(v, apply)
}
// poke at our pre-req's instead since they need to refresh/run...
return err
}
// else... only poke at the pre-req's that need to run
go g.BackPoke(v)
return nil
}
// SentinelErr is a sentinal as an error type that wraps an arbitrary error.
type SentinelErr struct {
err error
}
// Error is the required method to fulfill the error type.
func (obj *SentinelErr) Error() string {
return obj.err.Error()
}
// Worker is the common run frontend of the vertex. It handles all of the retry
// and retry delay common code, and ultimately returns the final status of this
// vertex execution.
func (g *Graph) Worker(v *Vertex) error {
// listen for chan events from Watch() and run
// the Process() function when they're received
// this avoids us having to pass the data into
// the Watch() function about which graph it is
// running on, which isolates things nicely...
obj := v.Res
chanProcess := make(chan event.Event)
go func() {
running := false
var timer = time.NewTimer(time.Duration(math.MaxInt64)) // longest duration
if !timer.Stop() {
<-timer.C // unnecessary, shouldn't happen
}
var delay = time.Duration(v.Meta().Delay) * time.Millisecond
var retry = v.Meta().Retry // number of tries left, -1 for infinite
var saved event.Event
Loop:
for {
// this has to be synchronous, because otherwise the Res
// event loop will keep running and change state,
// causing the converged timeout to fire!
select {
case event, ok := <-chanProcess: // must use like this
if running && ok {
// we got an event that wasn't a close,
// while we were waiting for the timer!
// if this happens, it might be a bug:(
log.Fatalf("%s[%s]: Worker: Unexpected event: %+v", v.Kind(), v.GetName(), event)
}
if !ok { // chanProcess closed, let's exit
break Loop // no event, so no ack!
}
// the above mentioned synchronous part, is the
// running of this function, paired with an ack.
if e := g.Process(v); e != nil {
saved = event
log.Printf("%s[%s]: CheckApply errored: %v", v.Kind(), v.GetName(), e)
if retry == 0 {
// wrap the error in the sentinel
event.ACKNACK(&SentinelErr{e}) // fail the Watch()
break Loop
}
if retry > 0 { // don't decrement the -1
retry--
}
log.Printf("%s[%s]: CheckApply: Retrying after %.4f seconds (%d left)", v.Kind(), v.GetName(), delay.Seconds(), retry)
// start the timer...
timer.Reset(delay)
running = true
continue
}
retry = v.Meta().Retry // reset on success
event.ACK() // sync
case <-timer.C:
if !timer.Stop() {
//<-timer.C // blocks, docs are wrong!
}
running = false
log.Printf("%s[%s]: CheckApply delay expired!", v.Kind(), v.GetName())
// re-send this failed event, to trigger a CheckApply()
go func() { chanProcess <- saved }()
// TODO: should we send a fake event instead?
//saved = nil
}
}
}()
var err error // propagate the error up (this is a permanent BAD error!)
// the watch delay runs inside of the Watch resource loop, so that it
// can still process signals and exit if needed. It shouldn't run any
// resource specific code since this is supposed to be a retry delay.
// NOTE: we're using the same retry and delay metaparams that CheckApply
// uses. This is for practicality. We can separate them later if needed!
var watchDelay time.Duration
var watchRetry = v.Meta().Retry // number of tries left, -1 for infinite
// watch blocks until it ends, & errors to retry
for {
// TODO: do we have to stop the converged-timeout when in this block (perhaps we're in the delay block!)
// TODO: should we setup/manage some of the converged timeout stuff in here anyways?
// if a retry-delay was requested, wait, but don't block our events!
if watchDelay > 0 {
//var pendingSendEvent bool
timer := time.NewTimer(watchDelay)
Loop:
for {
select {
case <-timer.C: // the wait is over
break Loop // critical
// TODO: resources could have a separate exit channel to avoid this complexity!?
case event := <-obj.Events():
// NOTE: this code should match the similar Res code!
//cuid.SetConverged(false) // TODO: ?
if exit, send := obj.ReadEvent(&event); exit {
return nil // exit
} else if send {
// if we dive down this rabbit hole, our
// timer.C won't get seen until we get out!
// in this situation, the Watch() is blocked
// from performing until CheckApply returns
// successfully, or errors out. This isn't
// so bad, but we should document it. Is it
// possible that some resource *needs* Watch
// to run to be able to execute a CheckApply?
// That situation shouldn't be common, and
// should probably not be allowed. Can we
// avoid it though?
//if exit, err := doSend(); exit || err != nil {
// return err // we exit or bubble up a NACK...
//}
// Instead of doing the above, we can
// add events to a pending list, and
// when we finish the delay, we can run
// them.
//pendingSendEvent = true // all events are identical for now...
}
}
}
timer.Stop() // it's nice to cleanup
log.Printf("%s[%s]: Watch delay expired!", v.Kind(), v.GetName())
// NOTE: we can avoid the send if running Watch guarantees
// one CheckApply event on startup!
//if pendingSendEvent { // TODO: should this become a list in the future?
// if exit, err := obj.DoSend(chanProcess, ""); exit || err != nil {
// return err // we exit or bubble up a NACK...
// }
//}
}
// TODO: reset the watch retry count after some amount of success
e := v.Res.Watch(chanProcess)
if e == nil { // exit signal
err = nil // clean exit
break
}
if sentinelErr, ok := e.(*SentinelErr); ok { // unwrap the sentinel
err = sentinelErr.err
break // sentinel means, perma-exit
}
log.Printf("%s[%s]: Watch errored: %v", v.Kind(), v.GetName(), e)
if watchRetry == 0 {
err = fmt.Errorf("Permanent watch error: %v", e)
break
}
if watchRetry > 0 { // don't decrement the -1
watchRetry--
}
watchDelay = time.Duration(v.Meta().Delay) * time.Millisecond
log.Printf("%s[%s]: Watch: Retrying after %.4f seconds (%d left)", v.Kind(), v.GetName(), watchDelay.Seconds(), watchRetry)
// We need to trigger a CheckApply after Watch restarts, so that
// we catch any lost events that happened while down. We do this
// by getting the Watch resource to send one event once it's up!
//v.SendEvent(eventPoke, false, false)
}
close(chanProcess)
return err
}
// Start is a main kick to start the graph. It goes through in reverse topological
// sort order so that events can't hit un-started vertices.
func (g *Graph) Start(wg *sync.WaitGroup, first bool) { // start or continue
log.Printf("State: %v -> %v", g.setState(graphStateStarting), g.getState())
defer log.Printf("State: %v -> %v", g.setState(graphStateStarted), g.getState())
t, _ := g.TopologicalSort()
// TODO: only calculate indegree if `first` is true to save resources
indegree := g.InDegree() // compute all of the indegree's
for _, v := range Reverse(t) {
if !v.Res.IsWatching() { // if Watch() is not running...
wg.Add(1)
// must pass in value to avoid races...
// see: https://ttboj.wordpress.com/2015/07/27/golang-parallelism-issues-causing-too-many-open-files-error/
go func(vv *Vertex) {
defer wg.Done()
// TODO: if a sufficient number of workers error,
// should something be done? Will these restart
// after perma-failure if we have a graph change?
if err := g.Worker(vv); err != nil { // contains the Watch and CheckApply loops
log.Printf("%s[%s]: Exited with failure: %v", vv.Kind(), vv.GetName(), err)
return
}
log.Printf("%s[%s]: Exited", vv.Kind(), vv.GetName())
}(v)
}
// selective poke: here we reduce the number of initial pokes
// to the minimum required to activate every vertex in the
// graph, either by direct action, or by getting poked by a
// vertex that was previously activated. if we poke each vertex
// that has no incoming edges, then we can be sure to reach the
// whole graph. Please note: this may mask certain optimization
// failures, such as any poke limiting code in Poke() or
// BackPoke(). You might want to disable this selective start
// when experimenting with and testing those elements.
// if we are unpausing (since it's not the first run of this
// function) we need to poke to *unpause* every graph vertex,
// and not just selectively the subset with no indegree.
if (!first) || indegree[v] == 0 {
// ensure state is started before continuing on to next vertex
for !v.SendEvent(event.EventStart, true, false) {
if global.DEBUG {
// if SendEvent fails, we aren't up yet
log.Printf("%s[%s]: Retrying SendEvent(Start)", v.Kind(), v.GetName())
// sleep here briefly or otherwise cause
// a different goroutine to be scheduled
time.Sleep(1 * time.Millisecond)
}
}
}
}
}
// Pause sends pause events to the graph in a topological sort order.
func (g *Graph) Pause() {
log.Printf("State: %v -> %v", g.setState(graphStatePausing), g.getState())
defer log.Printf("State: %v -> %v", g.setState(graphStatePaused), g.getState())
t, _ := g.TopologicalSort()
for _, v := range t { // squeeze out the events...
v.SendEvent(event.EventPause, true, false)
}
}
// Exit sends exit events to the graph in a topological sort order.
func (g *Graph) Exit() {
if g == nil {
return
} // empty graph that wasn't populated yet
t, _ := g.TopologicalSort()
for _, v := range t { // squeeze out the events...
// turn off the taps...
// XXX: consider instead doing this by closing the Res.events channel instead?
// XXX: do this by sending an exit signal, and then returning
// when we hit the 'default' in the select statement!
// XXX: we can do this to quiesce, but it's not necessary now
v.SendEvent(event.EventExit, true, false)
}
}