Files
mgmt/lang/structs.go
James Shubin 2648fb1bb1 legal: Happy 2020 everyone...
Done with:

ack '2019+' -l | xargs sed -i -e 's/2019+/2020+/g'

Checked manually with:

git add -p

Hello to future James from 2021, and Happy Hacking!
2020-01-03 20:08:37 -05:00

9091 lines
285 KiB
Go

// Mgmt
// Copyright (C) 2013-2020+ James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
package lang // TODO: move this into a sub package of lang/$name?
import (
"bytes"
"fmt"
"reflect"
"sort"
"strconv"
"strings"
"github.com/purpleidea/mgmt/engine"
engineUtil "github.com/purpleidea/mgmt/engine/util"
"github.com/purpleidea/mgmt/lang/funcs"
"github.com/purpleidea/mgmt/lang/funcs/bindata"
"github.com/purpleidea/mgmt/lang/funcs/structs"
"github.com/purpleidea/mgmt/lang/interfaces"
"github.com/purpleidea/mgmt/lang/types"
"github.com/purpleidea/mgmt/lang/unification"
langutil "github.com/purpleidea/mgmt/lang/util"
"github.com/purpleidea/mgmt/pgraph"
"github.com/purpleidea/mgmt/util"
"github.com/purpleidea/mgmt/util/errwrap"
"golang.org/x/time/rate"
)
const (
// EdgeNotify declares an edge a -> b, such that a notification occurs.
// This is most similar to "notify" in Puppet.
EdgeNotify = "notify"
// EdgeBefore declares an edge a -> b, such that no notification occurs.
// This is most similar to "before" in Puppet.
EdgeBefore = "before"
// EdgeListen declares an edge a <- b, such that a notification occurs.
// This is most similar to "subscribe" in Puppet.
EdgeListen = "listen"
// EdgeDepend declares an edge a <- b, such that no notification occurs.
// This is most similar to "require" in Puppet.
EdgeDepend = "depend"
// MetaField is the prefix used to specify a meta parameter for the res.
MetaField = "meta"
// AllowUserDefinedPolyFunc specifies if we allow user-defined
// polymorphic functions or not. At the moment this is not implemented.
// XXX: not implemented
AllowUserDefinedPolyFunc = false
// RequireStrictModulePath can be set to true if you wish to ignore any
// of the metadata parent path searching. By default that is allowed,
// unless it is disabled per module with ParentPathBlock. This option is
// here in case we decide that the parent module searching is confusing.
RequireStrictModulePath = false
// RequireTopologicalOrdering specifies if the code *must* be written in
// a topologically correct order. This prevents "out-of-order" code that
// is valid, but possibly confusing to the read. The main author
// (purpleidea) believes that this is better of as false. This is
// because occasionally code might be more logical when out-of-order,
// and hiding the fundamental structure of the language isn't elegant.
RequireTopologicalOrdering = false
// TopologicalOrderingWarning specifies whether a warning is emitted if
// the code is not in a topologically correct order. If this warning is
// seen too often, then we should consider disabling this by default.
TopologicalOrderingWarning = true
// varOrderingPrefix is a magic prefix used for the Ordering graph.
varOrderingPrefix = "var:"
// funcOrderingPrefix is a magic prefix used for the Ordering graph.
funcOrderingPrefix = "func:"
// classOrderingPrefix is a magic prefix used for the Ordering graph.
classOrderingPrefix = "class:"
// legacyProgSetScope enables an old version of the SetScope function
// in StmtProg. Use it for experimentation if you don't want to use the
// Ordering function for some reason. In general, this should be false!
legacyProgSetScope = false
// ErrNoStoredScope is an error that tells us we can't get a scope here.
ErrNoStoredScope = interfaces.Error("scope is not stored in this node")
)
var (
// orderingGraphSingleton is used for debugging the ordering graph.
orderingGraphSingleton = true
)
// StmtBind is a representation of an assignment, which binds a variable to an
// expression.
type StmtBind struct {
Ident string
Value interfaces.Expr
}
// String returns a short representation of this statement.
func (obj *StmtBind) String() string {
return fmt.Sprintf("bind(%s)", obj.Ident)
}
// Apply is a general purpose iterator method that operates on any AST node. It
// is not used as the primary AST traversal function because it is less readable
// and easy to reason about than manually implementing traversal for each node.
// Nevertheless, it is a useful facility for operations that might only apply to
// a select number of node types, since they won't need extra noop iterators...
func (obj *StmtBind) Apply(fn func(interfaces.Node) error) error {
if err := obj.Value.Apply(fn); err != nil {
return err
}
return fn(obj)
}
// Init initializes this branch of the AST, and returns an error if it fails to
// validate.
func (obj *StmtBind) Init(data *interfaces.Data) error {
return obj.Value.Init(data)
}
// Interpolate returns a new node (aka a copy) once it has been expanded. This
// generally increases the size of the AST when it is used. It calls Interpolate
// on any child elements and builds the new node with those new node contents.
func (obj *StmtBind) Interpolate() (interfaces.Stmt, error) {
interpolated, err := obj.Value.Interpolate()
if err != nil {
return nil, err
}
return &StmtBind{
Ident: obj.Ident,
Value: interpolated,
}, nil
}
// Copy returns a light copy of this struct. Anything static will not be copied.
func (obj *StmtBind) Copy() (interfaces.Stmt, error) {
copied := false
value, err := obj.Value.Copy()
if err != nil {
return nil, err
}
if value != obj.Value { // must have been copied, or pointer would be same
copied = true
}
if !copied { // it's static
return obj, nil
}
return &StmtBind{
Ident: obj.Ident,
Value: value,
}, nil
}
// Ordering returns a graph of the scope ordering that represents the data flow.
// This can be used in SetScope so that it knows the correct order to run it in.
// We only really care about the consumers here, because the "produces" aspect
// of this resource is handled by the StmtProg Ordering function. This is
// because the "prog" allows out-of-order statements, therefore it solves this
// by running an early (second) loop through the program and peering into this
// Stmt and extracting the produced name.
func (obj *StmtBind) Ordering(produces map[string]interfaces.Node) (*pgraph.Graph, map[interfaces.Node]string, error) {
graph, err := pgraph.NewGraph("ordering")
if err != nil {
return nil, nil, errwrap.Wrapf(err, "could not create graph")
}
graph.AddVertex(obj)
// additional constraint...
edge := &pgraph.SimpleEdge{Name: "stmtbindvalue"}
graph.AddEdge(obj.Value, obj, edge) // prod -> cons
cons := make(map[interfaces.Node]string)
g, c, err := obj.Value.Ordering(produces)
if err != nil {
return nil, nil, err
}
graph.AddGraph(g) // add in the child graph
for k, v := range c { // c is consumes
x, exists := cons[k]
if exists && v != x {
return nil, nil, fmt.Errorf("consumed value is different, got `%+v`, expected `%+v`", x, v)
}
cons[k] = v // add to map
n, exists := produces[v]
if !exists {
continue
}
edge := &pgraph.SimpleEdge{Name: "stmtbind"}
graph.AddEdge(n, k, edge)
}
return graph, cons, nil
}
// SetScope sets the scope of the child expression bound to it. It seems this is
// necessary in order to reach this, in particular in situations when a bound
// expression points to a previously bound expression.
func (obj *StmtBind) SetScope(scope *interfaces.Scope) error {
return obj.Value.SetScope(scope)
}
// Unify returns the list of invariants that this node produces. It recursively
// calls Unify on any children elements that exist in the AST, and returns the
// collection to the caller.
func (obj *StmtBind) Unify() ([]interfaces.Invariant, error) {
// Invariants from an ExprFunc come in from the copy of it in ExprCall.
// We could exclude *all* recursion here, however when multiple ExprVar
// expressions use a bound variable from here, they'd end up calling it
// multiple times so it's better to do it here even if it's not elegant
// symmetrically.
// FIXME: There must be a way to keep this symmetrical, isn't there?
// FIXME: Keep it symmetrical and inefficient for now...
//if _, ok := obj.Value.(*ExprFunc); !ok {
// return obj.Value.Unify()
//}
return []interfaces.Invariant{}, nil
}
// Graph returns the reactive function graph which is expressed by this node. It
// includes any vertices produced by this node, and the appropriate edges to any
// vertices that are produced by its children. Nodes which fulfill the Expr
// interface directly produce vertices (and possible children) where as nodes
// that fulfill the Stmt interface do not produces vertices, where as their
// children might. This particular bind statement adds its linked expression to
// the graph. It is not logically done in the ExprVar since that could exist
// multiple times for the single binding operation done here.
func (obj *StmtBind) Graph() (*pgraph.Graph, error) {
// It seems that adding this to the graph will end up including an
// expression in the case of an ExprFunc lambda, since we copy it and
// build a new ExprFunc when it's used by ExprCall.
//return obj.Value.Graph() // nope!
return pgraph.NewGraph("stmtbind") // empty graph!
}
// Output for the bind statement produces no output. Any values of interest come
// from the use of the var which this binds the expression to.
func (obj *StmtBind) Output() (*interfaces.Output, error) {
return interfaces.EmptyOutput(), nil
}
// StmtRes is a representation of a resource and possibly some edges. The `Name`
// value can be a single string or a list of strings. The former will produce a
// single resource, the latter produces a list of resources. Using this list
// mechanism is a safe alternative to traditional flow control like `for` loops.
// TODO: Consider expanding Name to have this return a list of Res's in the
// Output function if it is a map[name]struct{}, or even a map[[]name]struct{}.
type StmtRes struct {
data *interfaces.Data
Kind string // kind of resource, eg: pkg, file, svc, etc...
Name interfaces.Expr // unique name for the res of this kind
Contents []StmtResContents // list of fields/edges in parsed order
}
// String returns a short representation of this statement.
func (obj *StmtRes) String() string {
// TODO: add .String() for Contents and Name
return fmt.Sprintf("res(%s)", obj.Kind)
}
// Apply is a general purpose iterator method that operates on any AST node. It
// is not used as the primary AST traversal function because it is less readable
// and easy to reason about than manually implementing traversal for each node.
// Nevertheless, it is a useful facility for operations that might only apply to
// a select number of node types, since they won't need extra noop iterators...
func (obj *StmtRes) Apply(fn func(interfaces.Node) error) error {
if err := obj.Name.Apply(fn); err != nil {
return err
}
for _, x := range obj.Contents {
if err := x.Apply(fn); err != nil {
return err
}
}
return fn(obj)
}
// Init initializes this branch of the AST, and returns an error if it fails to
// validate.
func (obj *StmtRes) Init(data *interfaces.Data) error {
if strings.Contains(obj.Kind, "_") {
return fmt.Errorf("kind must not contain underscores")
}
obj.data = data
if err := obj.Name.Init(data); err != nil {
return err
}
for _, x := range obj.Contents {
if err := x.Init(data); err != nil {
return err
}
}
return nil
}
// Interpolate returns a new node (aka a copy) once it has been expanded. This
// generally increases the size of the AST when it is used. It calls Interpolate
// on any child elements and builds the new node with those new node contents.
func (obj *StmtRes) Interpolate() (interfaces.Stmt, error) {
name, err := obj.Name.Interpolate()
if err != nil {
return nil, err
}
contents := []StmtResContents{}
for _, x := range obj.Contents { // make sure we preserve ordering...
interpolated, err := x.Interpolate()
if err != nil {
return nil, err
}
contents = append(contents, interpolated)
}
return &StmtRes{
data: obj.data,
Kind: obj.Kind,
Name: name,
Contents: contents,
}, nil
}
// Copy returns a light copy of this struct. Anything static will not be copied.
func (obj *StmtRes) Copy() (interfaces.Stmt, error) {
copied := false
name, err := obj.Name.Copy()
if err != nil {
return nil, err
}
if name != obj.Name { // must have been copied, or pointer would be same
copied = true
}
copiedContents := false
contents := []StmtResContents{}
for _, x := range obj.Contents { // make sure we preserve ordering...
cp, err := x.Copy()
if err != nil {
return nil, err
}
if cp != x {
copiedContents = true
}
contents = append(contents, cp)
}
if copiedContents {
copied = true
} else {
contents = obj.Contents // don't re-package it unnecessarily!
}
if !copied { // it's static
return obj, nil
}
return &StmtRes{
data: obj.data,
Kind: obj.Kind,
Name: name,
Contents: contents,
}, nil
}
// Ordering returns a graph of the scope ordering that represents the data flow.
// This can be used in SetScope so that it knows the correct order to run it in.
func (obj *StmtRes) Ordering(produces map[string]interfaces.Node) (*pgraph.Graph, map[interfaces.Node]string, error) {
graph, err := pgraph.NewGraph("ordering")
if err != nil {
return nil, nil, errwrap.Wrapf(err, "could not create graph")
}
graph.AddVertex(obj)
// Additional constraints: We know the name has to be satisfied before
// this res statement itself can be used, since we depend on that value.
edge := &pgraph.SimpleEdge{Name: "stmtresname"}
graph.AddEdge(obj.Name, obj, edge) // prod -> cons
cons := make(map[interfaces.Node]string)
g, c, err := obj.Name.Ordering(produces)
if err != nil {
return nil, nil, err
}
graph.AddGraph(g) // add in the child graph
for k, v := range c { // c is consumes
x, exists := cons[k]
if exists && v != x {
return nil, nil, fmt.Errorf("consumed value is different, got `%+v`, expected `%+v`", x, v)
}
cons[k] = v // add to map
n, exists := produces[v]
if !exists {
continue
}
edge := &pgraph.SimpleEdge{Name: "stmtres"}
graph.AddEdge(n, k, edge)
}
for _, node := range obj.Contents {
g, c, err := node.Ordering(produces)
if err != nil {
return nil, nil, err
}
graph.AddGraph(g) // add in the child graph
// additional constraint...
edge := &pgraph.SimpleEdge{Name: "stmtrescontents1"}
graph.AddEdge(node, obj, edge) // prod -> cons
for k, v := range c { // c is consumes
x, exists := cons[k]
if exists && v != x {
return nil, nil, fmt.Errorf("consumed value is different, got `%+v`, expected `%+v`", x, v)
}
cons[k] = v // add to map
n, exists := produces[v]
if !exists {
continue
}
edge := &pgraph.SimpleEdge{Name: "stmtrescontents2"}
graph.AddEdge(n, k, edge)
}
}
return graph, cons, nil
}
// SetScope stores the scope for later use in this resource and it's children,
// which it propagates this downwards to.
func (obj *StmtRes) SetScope(scope *interfaces.Scope) error {
if err := obj.Name.SetScope(scope); err != nil {
return err
}
for _, x := range obj.Contents {
if err := x.SetScope(scope); err != nil {
return err
}
}
return nil
}
// Unify returns the list of invariants that this node produces. It recursively
// calls Unify on any children elements that exist in the AST, and returns the
// collection to the caller.
func (obj *StmtRes) Unify() ([]interfaces.Invariant, error) {
var invariants []interfaces.Invariant
invars, err := obj.Name.Unify()
if err != nil {
return nil, err
}
invariants = append(invariants, invars...)
// name must be a string or a list
ors := []interfaces.Invariant{}
invarStr := &unification.EqualsInvariant{
Expr: obj.Name,
Type: types.TypeStr,
}
ors = append(ors, invarStr)
invarListStr := &unification.EqualsInvariant{
Expr: obj.Name,
Type: types.NewType("[]str"),
}
ors = append(ors, invarListStr)
invar := &unification.ExclusiveInvariant{
Invariants: ors, // one and only one of these should be true
}
invariants = append(invariants, invar)
// collect all the invariants of each field and edge
for _, x := range obj.Contents {
invars, err := x.Unify(obj.Kind) // pass in the resource kind
if err != nil {
return nil, err
}
invariants = append(invariants, invars...)
}
return invariants, nil
}
// Graph returns the reactive function graph which is expressed by this node. It
// includes any vertices produced by this node, and the appropriate edges to any
// vertices that are produced by its children. Nodes which fulfill the Expr
// interface directly produce vertices (and possible children) where as nodes
// that fulfill the Stmt interface do not produces vertices, where as their
// children might. It is interesting to note that nothing directly adds an edge
// to the resources created, but rather, once all the values (expressions) with
// no outgoing edges have produced at least a single value, then the resources
// know they're able to be built.
func (obj *StmtRes) Graph() (*pgraph.Graph, error) {
graph, err := pgraph.NewGraph("res")
if err != nil {
return nil, errwrap.Wrapf(err, "could not create graph")
}
g, err := obj.Name.Graph()
if err != nil {
return nil, err
}
graph.AddGraph(g)
for _, x := range obj.Contents {
g, err := x.Graph()
if err != nil {
return nil, err
}
graph.AddGraph(g)
}
return graph, nil
}
// Output returns the output that this "program" produces. This output is what
// is used to build the output graph. This only exists for statements. The
// analogous function for expressions is Value. Those Value functions might get
// called by this Output function if they are needed to produce the output. In
// the case of this resource statement, this is definitely the case.
func (obj *StmtRes) Output() (*interfaces.Output, error) {
nameValue, err := obj.Name.Value()
if err != nil {
return nil, err
}
names := []string{} // list of names to build
switch {
case types.TypeStr.Cmp(nameValue.Type()) == nil:
name := nameValue.Str() // must not panic
names = append(names, name)
case types.NewType("[]str").Cmp(nameValue.Type()) == nil:
for _, x := range nameValue.List() { // must not panic
name := x.Str() // must not panic
names = append(names, name)
}
default:
// programming error
return nil, fmt.Errorf("unhandled resource name type: %+v", nameValue.Type())
}
resources := []engine.Res{}
edges := []*interfaces.Edge{}
for _, name := range names {
res, err := obj.resource(name)
if err != nil {
return nil, errwrap.Wrapf(err, "error building resource")
}
edgeList, err := obj.edges(name)
if err != nil {
return nil, errwrap.Wrapf(err, "error building edges")
}
edges = append(edges, edgeList...)
if err := obj.metaparams(res); err != nil { // set metaparams
return nil, errwrap.Wrapf(err, "error building meta params")
}
resources = append(resources, res)
}
return &interfaces.Output{
Resources: resources,
Edges: edges,
}, nil
}
// resource is a helper function to generate the res that comes from this.
// TODO: it could memoize some of the work to avoid re-computation when looped
func (obj *StmtRes) resource(resName string) (engine.Res, error) {
res, err := engine.NewNamedResource(obj.Kind, resName)
if err != nil {
return nil, errwrap.Wrapf(err, "cannot create resource kind `%s` with named `%s`", obj.Kind, resName)
}
s := reflect.ValueOf(res).Elem() // pointer to struct, then struct
if k := s.Kind(); k != reflect.Struct {
panic(fmt.Sprintf("expected struct, got: %s", k))
}
mapping, err := engineUtil.LangFieldNameToStructFieldName(obj.Kind)
if err != nil {
return nil, err
}
ts := reflect.TypeOf(res).Elem() // pointer to struct, then struct
// FIXME: we could probably simplify this code...
for _, line := range obj.Contents {
x, ok := line.(*StmtResField)
if !ok {
continue
}
if x.Condition != nil {
b, err := x.Condition.Value()
if err != nil {
return nil, err
}
if !b.Bool() { // if value exists, and is false, skip it
continue
}
}
typ, err := x.Value.Type()
if err != nil {
return nil, errwrap.Wrapf(err, "resource field `%s` did not return a type", x.Field)
}
fieldValue, err := x.Value.Value() // Value method on Expr
if err != nil {
return nil, err
}
val := fieldValue.Value() // get interface value
name, exists := mapping[x.Field] // lookup recommended field name
if !exists {
return nil, fmt.Errorf("field `%s` does not exist", x.Field) // user made a typo?
}
f := s.FieldByName(name) // exported field
if !f.IsValid() || !f.CanSet() {
return nil, fmt.Errorf("field `%s` cannot be set", name) // field is broken?
}
tf, exists := ts.FieldByName(name) // exported field type
if !exists { // illogical because of above check?
return nil, fmt.Errorf("field `%s` type does not exist", x.Field)
}
// is expr type compatible with expected field type?
t, err := types.TypeOf(tf.Type)
if err != nil {
return nil, errwrap.Wrapf(err, "resource field `%s` has no compatible type", x.Field)
}
if err := t.Cmp(typ); err != nil {
return nil, errwrap.Wrapf(err, "resource field `%s` of type `%+v`, cannot take type `%+v", x.Field, t, typ)
}
// user `pestle` on #go-nuts irc wrongly insisted that it wasn't
// right to use reflect to do all of this. what is a better way?
// first iterate through the raw pointers to the underlying type
ttt := tf.Type // ttt is field expected type
tkk := ttt.Kind()
for tkk == reflect.Ptr {
ttt = ttt.Elem() // un-nest one pointer
tkk = ttt.Kind()
}
// all our int's are src kind == reflect.Int64 in our language!
if obj.data.Debug {
obj.data.Logf("field `%s`: type(%+v), expected(%+v)", x.Field, typ, tkk)
}
// overflow check
switch tkk { // match on destination field kind
case reflect.Int, reflect.Int64, reflect.Int32, reflect.Int16, reflect.Int8:
ff := reflect.Zero(ttt) // test on a non-ptr equivalent
if ff.OverflowInt(val.(int64)) { // this is valid!
return nil, fmt.Errorf("field `%s` is an `%s`, and value `%d` will overflow it", x.Field, f.Kind(), val)
}
case reflect.Uint, reflect.Uint64, reflect.Uint32, reflect.Uint16, reflect.Uint8:
ff := reflect.Zero(ttt)
if ff.OverflowUint(uint64(val.(int64))) { // TODO: is this correct?
return nil, fmt.Errorf("field `%s` is an `%s`, and value `%d` will overflow it", x.Field, f.Kind(), val)
}
case reflect.Float64, reflect.Float32:
ff := reflect.Zero(ttt)
if ff.OverflowFloat(val.(float64)) {
return nil, fmt.Errorf("field `%s` is an `%s`, and value `%d` will overflow it", x.Field, f.Kind(), val)
}
}
value := reflect.ValueOf(val) // raw value
value = value.Convert(ttt) // now convert our raw value properly
// finally build a new value to set
tt := tf.Type
kk := tt.Kind()
if obj.data.Debug {
obj.data.Logf("field `%s`: start(%v)->kind(%v)", x.Field, tt, kk)
}
//fmt.Printf("start: %v || %+v\n", tt, kk)
for kk == reflect.Ptr {
tt = tt.Elem() // un-nest one pointer
kk = tt.Kind()
if obj.data.Debug {
obj.data.Logf("field `%s`:\tloop(%v)->kind(%v)", x.Field, tt, kk)
}
// wrap in ptr by one level
valof := reflect.ValueOf(value.Interface())
value = reflect.New(valof.Type())
value.Elem().Set(valof)
}
f.Set(value) // set it !
}
return res, nil
}
// edges is a helper function to generate the edges that come from the resource.
func (obj *StmtRes) edges(resName string) ([]*interfaces.Edge, error) {
edges := []*interfaces.Edge{}
// to and from self, map of kind, name, notify
var to = make(map[string]map[string]bool) // to this from self
var from = make(map[string]map[string]bool) // from this to self
for _, line := range obj.Contents {
x, ok := line.(*StmtResEdge)
if !ok {
continue
}
if x.Condition != nil {
b, err := x.Condition.Value()
if err != nil {
return nil, err
}
if !b.Bool() { // if value exists, and is false, skip it
continue
}
}
nameValue, err := x.EdgeHalf.Name.Value()
if err != nil {
return nil, err
}
// the edge name can be a single string or a list of strings...
names := []string{} // list of names to build
switch {
case types.TypeStr.Cmp(nameValue.Type()) == nil:
name := nameValue.Str() // must not panic
names = append(names, name)
case types.NewType("[]str").Cmp(nameValue.Type()) == nil:
for _, x := range nameValue.List() { // must not panic
name := x.Str() // must not panic
names = append(names, name)
}
default:
// programming error
return nil, fmt.Errorf("unhandled resource name type: %+v", nameValue.Type())
}
kind := x.EdgeHalf.Kind
for _, name := range names {
var notify bool
switch p := x.Property; p {
// a -> b
// a notify b
// a before b
case EdgeNotify:
notify = true
fallthrough
case EdgeBefore:
if m, exists := to[kind]; !exists {
to[kind] = make(map[string]bool)
} else if n, exists := m[name]; exists {
notify = notify || n // collate
}
to[kind][name] = notify // to this from self
// b -> a
// b listen a
// b depend a
case EdgeListen:
notify = true
fallthrough
case EdgeDepend:
if m, exists := from[kind]; !exists {
from[kind] = make(map[string]bool)
} else if n, exists := m[name]; exists {
notify = notify || n // collate
}
from[kind][name] = notify // from this to self
default:
return nil, fmt.Errorf("unknown property: %s", p)
}
}
}
// TODO: we could detect simple loops here (if `from` and `to` have the
// same entry) but we can leave this to the proper dag checker later on
for kind, x := range to { // to this from self
for name, notify := range x {
edge := &interfaces.Edge{
Kind1: obj.Kind,
Name1: resName, // self
//Send: "",
Kind2: kind,
Name2: name,
//Recv: "",
Notify: notify,
}
edges = append(edges, edge)
}
}
for kind, x := range from { // from this to self
for name, notify := range x {
edge := &interfaces.Edge{
Kind1: kind,
Name1: name,
//Send: "",
Kind2: obj.Kind,
Name2: resName, // self
//Recv: "",
Notify: notify,
}
edges = append(edges, edge)
}
}
return edges, nil
}
// metaparams is a helper function to set the metaparams that come from the
// resource on to the individual resource we're working on.
func (obj *StmtRes) metaparams(res engine.Res) error {
meta := engine.DefaultMetaParams.Copy() // defaults
var rm *engine.ReversibleMeta
if r, ok := res.(engine.ReversibleRes); ok {
rm = r.ReversibleMeta() // get a struct with the defaults
}
var aem *engine.AutoEdgeMeta
if r, ok := res.(engine.EdgeableRes); ok {
aem = r.AutoEdgeMeta() // get a struct with the defaults
}
var agm *engine.AutoGroupMeta
if r, ok := res.(engine.GroupableRes); ok {
agm = r.AutoGroupMeta() // get a struct with the defaults
}
for _, line := range obj.Contents {
x, ok := line.(*StmtResMeta)
if !ok {
continue
}
if x.Condition != nil {
b, err := x.Condition.Value()
if err != nil {
return err
}
if !b.Bool() { // if value exists, and is false, skip it
continue
}
}
v, err := x.MetaExpr.Value()
if err != nil {
return err
}
switch p := strings.ToLower(x.Property); p {
// TODO: we could add these fields dynamically if we were fancy!
case "noop":
meta.Noop = v.Bool() // must not panic
case "retry":
x := v.Int() // must not panic
// TODO: check that it doesn't overflow
meta.Retry = int16(x)
case "delay":
x := v.Int() // must not panic
// TODO: check that it isn't signed
meta.Delay = uint64(x)
case "poll":
x := v.Int() // must not panic
// TODO: check that it doesn't overflow and isn't signed
meta.Poll = uint32(x)
case "limit": // rate.Limit
x := v.Float() // must not panic
meta.Limit = rate.Limit(x)
case "burst":
x := v.Int() // must not panic
// TODO: check that it doesn't overflow
meta.Burst = int(x)
case "sema": // []string
values := []string{}
for _, x := range v.List() { // must not panic
s := x.Str() // must not panic
values = append(values, s)
}
meta.Sema = values
case "rewatch":
meta.Rewatch = v.Bool() // must not panic
case "realize":
meta.Realize = v.Bool() // must not panic
case "reverse":
if v.Type().Cmp(types.TypeBool) == nil {
if rm != nil {
rm.Disabled = !v.Bool() // must not panic
}
} else {
// TODO: read values from struct into rm.XXX
}
case "autoedge":
if aem != nil {
aem.Disabled = !v.Bool() // must not panic
}
case "autogroup":
if agm != nil {
agm.Disabled = !v.Bool() // must not panic
}
case MetaField:
if val, exists := v.Struct()["noop"]; exists {
meta.Noop = val.Bool() // must not panic
}
if val, exists := v.Struct()["retry"]; exists {
x := val.Int() // must not panic
// TODO: check that it doesn't overflow
meta.Retry = int16(x)
}
if val, exists := v.Struct()["delay"]; exists {
x := val.Int() // must not panic
// TODO: check that it isn't signed
meta.Delay = uint64(x)
}
if val, exists := v.Struct()["poll"]; exists {
x := val.Int() // must not panic
// TODO: check that it doesn't overflow and isn't signed
meta.Poll = uint32(x)
}
if val, exists := v.Struct()["limit"]; exists {
x := val.Float() // must not panic
meta.Limit = rate.Limit(x)
}
if val, exists := v.Struct()["burst"]; exists {
x := val.Int() // must not panic
// TODO: check that it doesn't overflow
meta.Burst = int(x)
}
if val, exists := v.Struct()["sema"]; exists {
values := []string{}
for _, x := range val.List() { // must not panic
s := x.Str() // must not panic
values = append(values, s)
}
meta.Sema = values
}
if val, exists := v.Struct()["rewatch"]; exists {
meta.Rewatch = val.Bool() // must not panic
}
if val, exists := v.Struct()["realize"]; exists {
meta.Realize = val.Bool() // must not panic
}
if val, exists := v.Struct()["reverse"]; exists && rm != nil {
if val.Type().Cmp(types.TypeBool) == nil {
rm.Disabled = !val.Bool() // must not panic
} else {
// TODO: read values from struct into rm.XXX
}
}
if val, exists := v.Struct()["autoedge"]; exists && aem != nil {
aem.Disabled = !val.Bool() // must not panic
}
if val, exists := v.Struct()["autogroup"]; exists && agm != nil {
agm.Disabled = !val.Bool() // must not panic
}
default:
return fmt.Errorf("unknown property: %s", p)
}
}
res.SetMetaParams(meta) // set it!
if r, ok := res.(engine.ReversibleRes); ok {
r.SetReversibleMeta(rm) // set
}
if r, ok := res.(engine.EdgeableRes); ok {
r.SetAutoEdgeMeta(aem) // set
}
if r, ok := res.(engine.GroupableRes); ok {
r.SetAutoGroupMeta(agm) // set
}
return nil
}
// StmtResContents is the interface that is met by the resource contents. Look
// closely for while it is similar to the Stmt interface, it is quite different.
type StmtResContents interface {
interfaces.Node
Init(*interfaces.Data) error
Interpolate() (StmtResContents, error) // different!
Copy() (StmtResContents, error)
Ordering(map[string]interfaces.Node) (*pgraph.Graph, map[interfaces.Node]string, error)
SetScope(*interfaces.Scope) error
Unify(kind string) ([]interfaces.Invariant, error) // different!
Graph() (*pgraph.Graph, error)
}
// StmtResField represents a single field in the parsed resource representation.
// This does not satisfy the Stmt interface.
type StmtResField struct {
Field string
Value interfaces.Expr
Condition interfaces.Expr // the value will be used if nil or true
}
// String returns a short representation of this statement.
func (obj *StmtResField) String() string {
// TODO: add .String() for Condition and Value
return fmt.Sprintf("resfield(%s)", obj.Field)
}
// Apply is a general purpose iterator method that operates on any AST node. It
// is not used as the primary AST traversal function because it is less readable
// and easy to reason about than manually implementing traversal for each node.
// Nevertheless, it is a useful facility for operations that might only apply to
// a select number of node types, since they won't need extra noop iterators...
func (obj *StmtResField) Apply(fn func(interfaces.Node) error) error {
if obj.Condition != nil {
if err := obj.Condition.Apply(fn); err != nil {
return err
}
}
if err := obj.Value.Apply(fn); err != nil {
return err
}
return fn(obj)
}
// Init initializes this branch of the AST, and returns an error if it fails to
// validate.
func (obj *StmtResField) Init(data *interfaces.Data) error {
if obj.Condition != nil {
if err := obj.Condition.Init(data); err != nil {
return err
}
}
return obj.Value.Init(data)
}
// Interpolate returns a new node (aka a copy) once it has been expanded. This
// generally increases the size of the AST when it is used. It calls Interpolate
// on any child elements and builds the new node with those new node contents.
// This interpolate is different It is different from the interpolate found in
// the Expr and Stmt interfaces because it returns a different type as output.
func (obj *StmtResField) Interpolate() (StmtResContents, error) {
interpolated, err := obj.Value.Interpolate()
if err != nil {
return nil, err
}
var condition interfaces.Expr
if obj.Condition != nil {
condition, err = obj.Condition.Interpolate()
if err != nil {
return nil, err
}
}
return &StmtResField{
Field: obj.Field,
Value: interpolated,
Condition: condition,
}, nil
}
// Copy returns a light copy of this struct. Anything static will not be copied.
func (obj *StmtResField) Copy() (StmtResContents, error) {
copied := false
value, err := obj.Value.Copy()
if err != nil {
return nil, err
}
if value != obj.Value { // must have been copied, or pointer would be same
copied = true
}
var condition interfaces.Expr
if obj.Condition != nil {
condition, err = obj.Condition.Copy()
if err != nil {
return nil, err
}
if condition != obj.Condition {
copied = true
}
}
if !copied { // it's static
return obj, nil
}
return &StmtResField{
Field: obj.Field,
Value: value,
Condition: condition,
}, nil
}
// Ordering returns a graph of the scope ordering that represents the data flow.
// This can be used in SetScope so that it knows the correct order to run it in.
func (obj *StmtResField) Ordering(produces map[string]interfaces.Node) (*pgraph.Graph, map[interfaces.Node]string, error) {
graph, err := pgraph.NewGraph("ordering")
if err != nil {
return nil, nil, errwrap.Wrapf(err, "could not create graph")
}
graph.AddVertex(obj)
// additional constraint...
edge := &pgraph.SimpleEdge{Name: "stmtresfieldvalue"}
graph.AddEdge(obj.Value, obj, edge) // prod -> cons
cons := make(map[interfaces.Node]string)
nodes := []interfaces.Expr{obj.Value}
if obj.Condition != nil {
nodes = append(nodes, obj.Condition)
// additional constraint...
edge := &pgraph.SimpleEdge{Name: "stmtresfieldcondition"}
graph.AddEdge(obj.Condition, obj, edge) // prod -> cons
}
for _, node := range nodes {
g, c, err := node.Ordering(produces)
if err != nil {
return nil, nil, err
}
graph.AddGraph(g) // add in the child graph
for k, v := range c { // c is consumes
x, exists := cons[k]
if exists && v != x {
return nil, nil, fmt.Errorf("consumed value is different, got `%+v`, expected `%+v`", x, v)
}
cons[k] = v // add to map
n, exists := produces[v]
if !exists {
continue
}
edge := &pgraph.SimpleEdge{Name: "stmtresfield"}
graph.AddEdge(n, k, edge)
}
}
return graph, cons, nil
}
// SetScope stores the scope for later use in this resource and it's children,
// which it propagates this downwards to.
func (obj *StmtResField) SetScope(scope *interfaces.Scope) error {
if err := obj.Value.SetScope(scope); err != nil {
return err
}
if obj.Condition != nil {
if err := obj.Condition.SetScope(scope); err != nil {
return err
}
}
return nil
}
// Unify returns the list of invariants that this node produces. It recursively
// calls Unify on any children elements that exist in the AST, and returns the
// collection to the caller. It is different from the Unify found in the Expr
// and Stmt interfaces because it adds an input parameter.
func (obj *StmtResField) Unify(kind string) ([]interfaces.Invariant, error) {
var invariants []interfaces.Invariant
invars, err := obj.Value.Unify()
if err != nil {
return nil, err
}
invariants = append(invariants, invars...)
// conditional expression might have some children invariants to share
if obj.Condition != nil {
condition, err := obj.Condition.Unify()
if err != nil {
return nil, err
}
invariants = append(invariants, condition...)
// the condition must ultimately be a boolean
conditionInvar := &unification.EqualsInvariant{
Expr: obj.Condition,
Type: types.TypeBool,
}
invariants = append(invariants, conditionInvar)
}
// TODO: unfortunately this gets called separately for each field... if
// we could cache this, it might be worth looking into for performance!
typMap, err := engineUtil.LangFieldNameToStructType(kind)
if err != nil {
return nil, err
}
field := strings.TrimSpace(obj.Field)
if len(field) != len(obj.Field) {
return nil, fmt.Errorf("field was wrapped in whitespace")
}
if len(strings.Fields(field)) != 1 {
return nil, fmt.Errorf("field was empty or contained spaces")
}
typ, exists := typMap[obj.Field]
if !exists {
return nil, fmt.Errorf("field `%s` does not exist in `%s`", obj.Field, kind)
}
invar := &unification.EqualsInvariant{
Expr: obj.Value,
Type: typ,
}
invariants = append(invariants, invar)
return invariants, nil
}
// Graph returns the reactive function graph which is expressed by this node. It
// includes any vertices produced by this node, and the appropriate edges to any
// vertices that are produced by its children. Nodes which fulfill the Expr
// interface directly produce vertices (and possible children) where as nodes
// that fulfill the Stmt interface do not produces vertices, where as their
// children might. It is interesting to note that nothing directly adds an edge
// to the resources created, but rather, once all the values (expressions) with
// no outgoing edges have produced at least a single value, then the resources
// know they're able to be built.
func (obj *StmtResField) Graph() (*pgraph.Graph, error) {
graph, err := pgraph.NewGraph("resfield")
if err != nil {
return nil, errwrap.Wrapf(err, "could not create graph")
}
g, err := obj.Value.Graph()
if err != nil {
return nil, err
}
graph.AddGraph(g)
if obj.Condition != nil {
g, err := obj.Condition.Graph()
if err != nil {
return nil, err
}
graph.AddGraph(g)
}
return graph, nil
}
// StmtResEdge represents a single edge property in the parsed resource
// representation. This does not satisfy the Stmt interface.
type StmtResEdge struct {
Property string // TODO: iota constant instead?
EdgeHalf *StmtEdgeHalf
Condition interfaces.Expr // the value will be used if nil or true
}
// String returns a short representation of this statement.
func (obj *StmtResEdge) String() string {
// TODO: add .String() for Condition and EdgeHalf
return fmt.Sprintf("resedge(%s)", obj.Property)
}
// Apply is a general purpose iterator method that operates on any AST node. It
// is not used as the primary AST traversal function because it is less readable
// and easy to reason about than manually implementing traversal for each node.
// Nevertheless, it is a useful facility for operations that might only apply to
// a select number of node types, since they won't need extra noop iterators...
func (obj *StmtResEdge) Apply(fn func(interfaces.Node) error) error {
if obj.Condition != nil {
if err := obj.Condition.Apply(fn); err != nil {
return err
}
}
if err := obj.EdgeHalf.Apply(fn); err != nil {
return err
}
return fn(obj)
}
// Init initializes this branch of the AST, and returns an error if it fails to
// validate.
func (obj *StmtResEdge) Init(data *interfaces.Data) error {
if obj.Property == "" {
return fmt.Errorf("empty property")
}
if obj.Property != EdgeNotify && obj.Property != EdgeBefore && obj.Property != EdgeListen && obj.Property != EdgeDepend {
return fmt.Errorf("invalid property: `%s`", obj.Property)
}
if obj.Condition != nil {
if err := obj.Condition.Init(data); err != nil {
return err
}
}
return obj.EdgeHalf.Init(data)
}
// Interpolate returns a new node (aka a copy) once it has been expanded. This
// generally increases the size of the AST when it is used. It calls Interpolate
// on any child elements and builds the new node with those new node contents.
// This interpolate is different It is different from the interpolate found in
// the Expr and Stmt interfaces because it returns a different type as output.
func (obj *StmtResEdge) Interpolate() (StmtResContents, error) {
interpolated, err := obj.EdgeHalf.Interpolate()
if err != nil {
return nil, err
}
var condition interfaces.Expr
if obj.Condition != nil {
condition, err = obj.Condition.Interpolate()
if err != nil {
return nil, err
}
}
return &StmtResEdge{
Property: obj.Property,
EdgeHalf: interpolated,
Condition: condition,
}, nil
}
// Copy returns a light copy of this struct. Anything static will not be copied.
func (obj *StmtResEdge) Copy() (StmtResContents, error) {
copied := false
edgeHalf, err := obj.EdgeHalf.Copy()
if err != nil {
return nil, err
}
if edgeHalf != obj.EdgeHalf { // must have been copied, or pointer would be same
copied = true
}
var condition interfaces.Expr
if obj.Condition != nil {
condition, err = obj.Condition.Copy()
if err != nil {
return nil, err
}
if condition != obj.Condition {
copied = true
}
}
if !copied { // it's static
return obj, nil
}
return &StmtResEdge{
Property: obj.Property,
EdgeHalf: edgeHalf,
Condition: condition,
}, nil
}
// Ordering returns a graph of the scope ordering that represents the data flow.
// This can be used in SetScope so that it knows the correct order to run it in.
func (obj *StmtResEdge) Ordering(produces map[string]interfaces.Node) (*pgraph.Graph, map[interfaces.Node]string, error) {
graph, err := pgraph.NewGraph("ordering")
if err != nil {
return nil, nil, errwrap.Wrapf(err, "could not create graph")
}
graph.AddVertex(obj)
// additional constraint...
edge := &pgraph.SimpleEdge{Name: "stmtresedgehalf"}
// TODO: obj.EdgeHalf or obj.EdgeHalf.Name ?
graph.AddEdge(obj.EdgeHalf.Name, obj, edge) // prod -> cons
cons := make(map[interfaces.Node]string)
nodes := []interfaces.Expr{obj.EdgeHalf.Name}
if obj.Condition != nil {
nodes = append(nodes, obj.Condition)
// additional constraint...
edge := &pgraph.SimpleEdge{Name: "stmtresedgecondition"}
graph.AddEdge(obj.Condition, obj, edge) // prod -> cons
}
for _, node := range nodes {
g, c, err := node.Ordering(produces)
if err != nil {
return nil, nil, err
}
graph.AddGraph(g) // add in the child graph
for k, v := range c { // c is consumes
x, exists := cons[k]
if exists && v != x {
return nil, nil, fmt.Errorf("consumed value is different, got `%+v`, expected `%+v`", x, v)
}
cons[k] = v // add to map
n, exists := produces[v]
if !exists {
continue
}
edge := &pgraph.SimpleEdge{Name: "stmtresedge"}
graph.AddEdge(n, k, edge)
}
}
return graph, cons, nil
}
// SetScope stores the scope for later use in this resource and it's children,
// which it propagates this downwards to.
func (obj *StmtResEdge) SetScope(scope *interfaces.Scope) error {
if err := obj.EdgeHalf.SetScope(scope); err != nil {
return err
}
if obj.Condition != nil {
if err := obj.Condition.SetScope(scope); err != nil {
return err
}
}
return nil
}
// Unify returns the list of invariants that this node produces. It recursively
// calls Unify on any children elements that exist in the AST, and returns the
// collection to the caller. It is different from the Unify found in the Expr
// and Stmt interfaces because it adds an input parameter.
func (obj *StmtResEdge) Unify(kind string) ([]interfaces.Invariant, error) {
var invariants []interfaces.Invariant
invars, err := obj.EdgeHalf.Unify()
if err != nil {
return nil, err
}
invariants = append(invariants, invars...)
// conditional expression might have some children invariants to share
if obj.Condition != nil {
condition, err := obj.Condition.Unify()
if err != nil {
return nil, err
}
invariants = append(invariants, condition...)
// the condition must ultimately be a boolean
conditionInvar := &unification.EqualsInvariant{
Expr: obj.Condition,
Type: types.TypeBool,
}
invariants = append(invariants, conditionInvar)
}
return invariants, nil
}
// Graph returns the reactive function graph which is expressed by this node. It
// includes any vertices produced by this node, and the appropriate edges to any
// vertices that are produced by its children. Nodes which fulfill the Expr
// interface directly produce vertices (and possible children) where as nodes
// that fulfill the Stmt interface do not produces vertices, where as their
// children might. It is interesting to note that nothing directly adds an edge
// to the resources created, but rather, once all the values (expressions) with
// no outgoing edges have produced at least a single value, then the resources
// know they're able to be built.
func (obj *StmtResEdge) Graph() (*pgraph.Graph, error) {
graph, err := pgraph.NewGraph("resedge")
if err != nil {
return nil, errwrap.Wrapf(err, "could not create graph")
}
g, err := obj.EdgeHalf.Graph()
if err != nil {
return nil, err
}
graph.AddGraph(g)
if obj.Condition != nil {
g, err := obj.Condition.Graph()
if err != nil {
return nil, err
}
graph.AddGraph(g)
}
return graph, nil
}
// StmtResMeta represents a single meta value in the parsed resource
// representation. It can also contain a struct that contains one or more meta
// parameters. If it contains such a struct, then the `Property` field contains
// the string found in the MetaField constant, otherwise this field will
// correspond to the particular meta parameter specified. This does not satisfy
// the Stmt interface.
type StmtResMeta struct {
Property string // TODO: iota constant instead?
MetaExpr interfaces.Expr
Condition interfaces.Expr // the value will be used if nil or true
}
// String returns a short representation of this statement.
func (obj *StmtResMeta) String() string {
// TODO: add .String() for Condition and MetaExpr
return fmt.Sprintf("resmeta(%s)", obj.Property)
}
// Apply is a general purpose iterator method that operates on any AST node. It
// is not used as the primary AST traversal function because it is less readable
// and easy to reason about than manually implementing traversal for each node.
// Nevertheless, it is a useful facility for operations that might only apply to
// a select number of node types, since they won't need extra noop iterators...
func (obj *StmtResMeta) Apply(fn func(interfaces.Node) error) error {
if obj.Condition != nil {
if err := obj.Condition.Apply(fn); err != nil {
return err
}
}
if err := obj.MetaExpr.Apply(fn); err != nil {
return err
}
return fn(obj)
}
// Init initializes this branch of the AST, and returns an error if it fails to
// validate.
func (obj *StmtResMeta) Init(data *interfaces.Data) error {
if obj.Property == "" {
return fmt.Errorf("empty property")
}
switch p := strings.ToLower(obj.Property); p {
// TODO: we could add these fields dynamically if we were fancy!
case "noop":
case "retry":
case "delay":
case "poll":
case "limit":
case "burst":
case "sema":
case "rewatch":
case "realize":
case "reverse":
case "autoedge":
case "autogroup":
case MetaField:
default:
return fmt.Errorf("invalid property: `%s`", obj.Property)
}
if obj.Condition != nil {
if err := obj.Condition.Init(data); err != nil {
return err
}
}
return obj.MetaExpr.Init(data)
}
// Interpolate returns a new node (aka a copy) once it has been expanded. This
// generally increases the size of the AST when it is used. It calls Interpolate
// on any child elements and builds the new node with those new node contents.
// This interpolate is different It is different from the interpolate found in
// the Expr and Stmt interfaces because it returns a different type as output.
func (obj *StmtResMeta) Interpolate() (StmtResContents, error) {
interpolated, err := obj.MetaExpr.Interpolate()
if err != nil {
return nil, err
}
var condition interfaces.Expr
if obj.Condition != nil {
condition, err = obj.Condition.Interpolate()
if err != nil {
return nil, err
}
}
return &StmtResMeta{
Property: obj.Property,
MetaExpr: interpolated,
Condition: condition,
}, nil
}
// Copy returns a light copy of this struct. Anything static will not be copied.
func (obj *StmtResMeta) Copy() (StmtResContents, error) {
copied := false
metaExpr, err := obj.MetaExpr.Copy()
if err != nil {
return nil, err
}
if metaExpr != obj.MetaExpr { // must have been copied, or pointer would be same
copied = true
}
var condition interfaces.Expr
if obj.Condition != nil {
condition, err = obj.Condition.Copy()
if err != nil {
return nil, err
}
if condition != obj.Condition {
copied = true
}
}
if !copied { // it's static
return obj, nil
}
return &StmtResMeta{
Property: obj.Property,
MetaExpr: metaExpr,
Condition: condition,
}, nil
}
// Ordering returns a graph of the scope ordering that represents the data flow.
// This can be used in SetScope so that it knows the correct order to run it in.
func (obj *StmtResMeta) Ordering(produces map[string]interfaces.Node) (*pgraph.Graph, map[interfaces.Node]string, error) {
graph, err := pgraph.NewGraph("ordering")
if err != nil {
return nil, nil, errwrap.Wrapf(err, "could not create graph")
}
graph.AddVertex(obj)
// additional constraint...
edge := &pgraph.SimpleEdge{Name: "stmtresmetaexpr"}
graph.AddEdge(obj.MetaExpr, obj, edge) // prod -> cons
cons := make(map[interfaces.Node]string)
nodes := []interfaces.Expr{obj.MetaExpr}
if obj.Condition != nil {
nodes = append(nodes, obj.Condition)
// additional constraint...
edge := &pgraph.SimpleEdge{Name: "stmtresmetacondition"}
graph.AddEdge(obj.Condition, obj, edge) // prod -> cons
}
for _, node := range nodes {
g, c, err := node.Ordering(produces)
if err != nil {
return nil, nil, err
}
graph.AddGraph(g) // add in the child graph
for k, v := range c { // c is consumes
x, exists := cons[k]
if exists && v != x {
return nil, nil, fmt.Errorf("consumed value is different, got `%+v`, expected `%+v`", x, v)
}
cons[k] = v // add to map
n, exists := produces[v]
if !exists {
continue
}
edge := &pgraph.SimpleEdge{Name: "stmtresmeta"}
graph.AddEdge(n, k, edge)
}
}
return graph, cons, nil
}
// SetScope stores the scope for later use in this resource and it's children,
// which it propagates this downwards to.
func (obj *StmtResMeta) SetScope(scope *interfaces.Scope) error {
if err := obj.MetaExpr.SetScope(scope); err != nil {
return err
}
if obj.Condition != nil {
if err := obj.Condition.SetScope(scope); err != nil {
return err
}
}
return nil
}
// Unify returns the list of invariants that this node produces. It recursively
// calls Unify on any children elements that exist in the AST, and returns the
// collection to the caller. It is different from the Unify found in the Expr
// and Stmt interfaces because it adds an input parameter.
// XXX: Allow specifying partial meta param structs and unify the subset type.
// XXX: The resource fields have the same limitation with field structs.
func (obj *StmtResMeta) Unify(kind string) ([]interfaces.Invariant, error) {
var invariants []interfaces.Invariant
invars, err := obj.MetaExpr.Unify()
if err != nil {
return nil, err
}
invariants = append(invariants, invars...)
// conditional expression might have some children invariants to share
if obj.Condition != nil {
condition, err := obj.Condition.Unify()
if err != nil {
return nil, err
}
invariants = append(invariants, condition...)
// the condition must ultimately be a boolean
conditionInvar := &unification.EqualsInvariant{
Expr: obj.Condition,
Type: types.TypeBool,
}
invariants = append(invariants, conditionInvar)
}
// add additional invariants based on what's in obj.Property !!!
var invar interfaces.Invariant
static := func(typ *types.Type) interfaces.Invariant {
return &unification.EqualsInvariant{
Expr: obj.MetaExpr,
Type: typ,
}
}
switch p := strings.ToLower(obj.Property); p {
// TODO: we could add these fields dynamically if we were fancy!
case "noop":
invar = static(types.TypeBool)
case "retry":
invar = static(types.TypeInt)
case "delay":
invar = static(types.TypeInt)
case "poll":
invar = static(types.TypeInt)
case "limit": // rate.Limit
invar = static(types.TypeFloat)
case "burst":
invar = static(types.TypeInt)
case "sema":
invar = static(types.NewType("[]str"))
case "rewatch":
invar = static(types.TypeBool)
case "realize":
invar = static(types.TypeBool)
case "reverse":
ors := []interfaces.Invariant{}
invarBool := static(types.TypeBool)
ors = append(ors, invarBool)
// TODO: decide what fields we might want here
//invarStruct := static(types.NewType("struct{edges str}"))
//ors = append(ors, invarStruct)
invar = &unification.ExclusiveInvariant{
Invariants: ors, // one and only one of these should be true
}
case "autoedge":
invar = static(types.TypeBool)
case "autogroup":
invar = static(types.TypeBool)
// autoedge and autogroup aren't part of the `MetaRes` interface, but we
// can merge them in here for simplicity in the public user interface...
case MetaField:
// FIXME: allow partial subsets of this struct, and in any order
// FIXME: we might need an updated unification engine to do this
wrap := func(reverse *types.Type) *types.Type {
return types.NewType(fmt.Sprintf("struct{noop bool; retry int; delay int; poll int; limit float; burst int; sema []str; rewatch bool; realize bool; reverse %s; autoedge bool; autogroup bool}", reverse.String()))
}
ors := []interfaces.Invariant{}
invarBool := static(wrap(types.TypeBool))
ors = append(ors, invarBool)
// TODO: decide what fields we might want here
//invarStruct := static(wrap(types.NewType("struct{edges str}")))
//ors = append(ors, invarStruct)
invar = &unification.ExclusiveInvariant{
Invariants: ors, // one and only one of these should be true
}
default:
return nil, fmt.Errorf("unknown property: %s", p)
}
invariants = append(invariants, invar)
return invariants, nil
}
// Graph returns the reactive function graph which is expressed by this node. It
// includes any vertices produced by this node, and the appropriate edges to any
// vertices that are produced by its children. Nodes which fulfill the Expr
// interface directly produce vertices (and possible children) where as nodes
// that fulfill the Stmt interface do not produces vertices, where as their
// children might. It is interesting to note that nothing directly adds an edge
// to the resources created, but rather, once all the values (expressions) with
// no outgoing edges have produced at least a single value, then the resources
// know they're able to be built.
func (obj *StmtResMeta) Graph() (*pgraph.Graph, error) {
graph, err := pgraph.NewGraph("resmeta")
if err != nil {
return nil, errwrap.Wrapf(err, "could not create graph")
}
g, err := obj.MetaExpr.Graph()
if err != nil {
return nil, err
}
graph.AddGraph(g)
if obj.Condition != nil {
g, err := obj.Condition.Graph()
if err != nil {
return nil, err
}
graph.AddGraph(g)
}
return graph, nil
}
// StmtEdge is a representation of a dependency. It also supports send/recv.
// Edges represents that the first resource (Kind/Name) listed in the
// EdgeHalfList should happen in the resource graph *before* the next resource
// in the list. If there are multiple StmtEdgeHalf structs listed, then they
// should represent a chain, eg: a->b->c, should compile into a->b & b->c. If
// specified, values are sent and received along these edges if the Send/Recv
// names are compatible and listed. In this case of Send/Recv, only lists of
// length two are legal.
type StmtEdge struct {
EdgeHalfList []*StmtEdgeHalf // represents a chain of edges
// TODO: should notify be an Expr?
Notify bool // specifies that this edge sends a notification as well
}
// String returns a short representation of this statement.
func (obj *StmtEdge) String() string {
return "edge" // TODO: improve this
}
// Apply is a general purpose iterator method that operates on any AST node. It
// is not used as the primary AST traversal function because it is less readable
// and easy to reason about than manually implementing traversal for each node.
// Nevertheless, it is a useful facility for operations that might only apply to
// a select number of node types, since they won't need extra noop iterators...
func (obj *StmtEdge) Apply(fn func(interfaces.Node) error) error {
for _, x := range obj.EdgeHalfList {
if err := x.Apply(fn); err != nil {
return err
}
}
return fn(obj)
}
// Init initializes this branch of the AST, and returns an error if it fails to
// validate.
func (obj *StmtEdge) Init(data *interfaces.Data) error {
for _, x := range obj.EdgeHalfList {
if err := x.Init(data); err != nil {
return err
}
}
return nil
}
// Interpolate returns a new node (aka a copy) once it has been expanded. This
// generally increases the size of the AST when it is used. It calls Interpolate
// on any child elements and builds the new node with those new node contents.
// TODO: could we expand the Name's from the EdgeHalf (if they're lists) to have
// them return a list of Edges's ?
// XXX: type check the kind1:send -> kind2:recv fields are compatible!
// XXX: we won't know the names yet, but it's okay.
func (obj *StmtEdge) Interpolate() (interfaces.Stmt, error) {
edgeHalfList := []*StmtEdgeHalf{}
for _, x := range obj.EdgeHalfList {
edgeHalf, err := x.Interpolate()
if err != nil {
return nil, err
}
edgeHalfList = append(edgeHalfList, edgeHalf)
}
return &StmtEdge{
EdgeHalfList: edgeHalfList,
Notify: obj.Notify,
}, nil
}
// Copy returns a light copy of this struct. Anything static will not be copied.
func (obj *StmtEdge) Copy() (interfaces.Stmt, error) {
copied := false
edgeHalfList := []*StmtEdgeHalf{}
for _, x := range obj.EdgeHalfList {
edgeHalf, err := x.Copy()
if err != nil {
return nil, err
}
if edgeHalf != x { // must have been copied, or pointer would be same
copied = true
}
edgeHalfList = append(edgeHalfList, edgeHalf)
}
if !copied { // it's static
return obj, nil
}
return &StmtEdge{
EdgeHalfList: edgeHalfList,
Notify: obj.Notify,
}, nil
}
// Ordering returns a graph of the scope ordering that represents the data flow.
// This can be used in SetScope so that it knows the correct order to run it in.
func (obj *StmtEdge) Ordering(produces map[string]interfaces.Node) (*pgraph.Graph, map[interfaces.Node]string, error) {
graph, err := pgraph.NewGraph("ordering")
if err != nil {
return nil, nil, errwrap.Wrapf(err, "could not create graph")
}
graph.AddVertex(obj)
cons := make(map[interfaces.Node]string)
for _, edgeHalf := range obj.EdgeHalfList {
node := edgeHalf.Name
g, c, err := node.Ordering(produces)
if err != nil {
return nil, nil, err
}
graph.AddGraph(g) // add in the child graph
// additional constraint...
edge := &pgraph.SimpleEdge{Name: "stmtedgehalf"}
graph.AddEdge(node, obj, edge) // prod -> cons
for k, v := range c { // c is consumes
x, exists := cons[k]
if exists && v != x {
return nil, nil, fmt.Errorf("consumed value is different, got `%+v`, expected `%+v`", x, v)
}
cons[k] = v // add to map
n, exists := produces[v]
if !exists {
continue
}
edge := &pgraph.SimpleEdge{Name: "stmtedge"}
graph.AddEdge(n, k, edge)
}
}
return graph, cons, nil
}
// SetScope stores the scope for later use in this resource and it's children,
// which it propagates this downwards to.
func (obj *StmtEdge) SetScope(scope *interfaces.Scope) error {
for _, x := range obj.EdgeHalfList {
if err := x.SetScope(scope); err != nil {
return err
}
}
return nil
}
// Unify returns the list of invariants that this node produces. It recursively
// calls Unify on any children elements that exist in the AST, and returns the
// collection to the caller.
func (obj *StmtEdge) Unify() ([]interfaces.Invariant, error) {
var invariants []interfaces.Invariant
// TODO: this sort of sideloaded validation could happen in a dedicated
// Validate() function, but for now is here for lack of a better place!
if len(obj.EdgeHalfList) == 1 {
return nil, fmt.Errorf("can't create an edge with only one half")
}
if len(obj.EdgeHalfList) == 2 {
sr1 := obj.EdgeHalfList[0].SendRecv
sr2 := obj.EdgeHalfList[1].SendRecv
if (sr1 == "") != (sr2 == "") { // xor
return nil, fmt.Errorf("you must specify both send/recv fields or neither")
}
if sr1 != "" && sr2 != "" {
k1 := obj.EdgeHalfList[0].Kind
k2 := obj.EdgeHalfList[1].Kind
r1, err := engine.NewResource(k1)
if err != nil {
return nil, err
}
r2, err := engine.NewResource(k2)
if err != nil {
return nil, err
}
res1, ok := r1.(engine.SendableRes)
if !ok {
return nil, fmt.Errorf("cannot send from resource of kind: %s", k1)
}
res2, ok := r2.(engine.RecvableRes)
if !ok {
return nil, fmt.Errorf("cannot recv to resource of kind: %s", k2)
}
// Check that the kind1:send -> kind2:recv fields are type
// compatible! We won't know the names yet, but it's okay.
if err := engineUtil.StructFieldCompat(res1.Sends(), sr1, res2, sr2); err != nil {
p1 := k1 // print defaults
p2 := k2
if v, err := obj.EdgeHalfList[0].Name.Value(); err == nil { // statically known
// display something nicer
if v.Type().Kind == types.KindStr {
p1 = engine.Repr(k1, v.Str())
} else if v.Type().Cmp(types.NewType("[]str")) == nil {
p1 = engine.Repr(k1, v.String())
}
}
if v, err := obj.EdgeHalfList[1].Name.Value(); err == nil {
if v.Type().Kind == types.KindStr {
p2 = engine.Repr(k2, v.Str())
} else if v.Type().Cmp(types.NewType("[]str")) == nil {
p2 = engine.Repr(k2, v.String())
}
}
return nil, errwrap.Wrapf(err, "cannot send/recv from %s.%s to %s.%s", p1, sr1, p2, sr2)
}
}
}
for _, x := range obj.EdgeHalfList {
if x.SendRecv != "" && len(obj.EdgeHalfList) != 2 {
return nil, fmt.Errorf("send/recv edges must come in pairs")
}
invars, err := x.Unify()
if err != nil {
return nil, err
}
invariants = append(invariants, invars...)
}
return invariants, nil
}
// Graph returns the reactive function graph which is expressed by this node. It
// includes any vertices produced by this node, and the appropriate edges to any
// vertices that are produced by its children. Nodes which fulfill the Expr
// interface directly produce vertices (and possible children) where as nodes
// that fulfill the Stmt interface do not produces vertices, where as their
// children might. It is interesting to note that nothing directly adds an edge
// to the edges created, but rather, once all the values (expressions) with no
// outgoing function graph edges have produced at least a single value, then the
// edges know they're able to be built.
func (obj *StmtEdge) Graph() (*pgraph.Graph, error) {
graph, err := pgraph.NewGraph("edge")
if err != nil {
return nil, errwrap.Wrapf(err, "could not create graph")
}
for _, x := range obj.EdgeHalfList {
g, err := x.Graph()
if err != nil {
return nil, err
}
graph.AddGraph(g)
}
return graph, nil
}
// Output returns the output that this "program" produces. This output is what
// is used to build the output graph. This only exists for statements. The
// analogous function for expressions is Value. Those Value functions might get
// called by this Output function if they are needed to produce the output. In
// the case of this edge statement, this is definitely the case. This edge stmt
// returns output consisting of edges.
func (obj *StmtEdge) Output() (*interfaces.Output, error) {
edges := []*interfaces.Edge{}
for i := 0; i < len(obj.EdgeHalfList)-1; i++ {
nameValue1, err := obj.EdgeHalfList[i].Name.Value()
if err != nil {
return nil, err
}
// the edge name can be a single string or a list of strings...
names1 := []string{} // list of names to build
switch {
case types.TypeStr.Cmp(nameValue1.Type()) == nil:
name := nameValue1.Str() // must not panic
names1 = append(names1, name)
case types.NewType("[]str").Cmp(nameValue1.Type()) == nil:
for _, x := range nameValue1.List() { // must not panic
name := x.Str() // must not panic
names1 = append(names1, name)
}
default:
// programming error
return nil, fmt.Errorf("unhandled resource name type: %+v", nameValue1.Type())
}
nameValue2, err := obj.EdgeHalfList[i+1].Name.Value()
if err != nil {
return nil, err
}
names2 := []string{} // list of names to build
switch {
case types.TypeStr.Cmp(nameValue2.Type()) == nil:
name := nameValue2.Str() // must not panic
names2 = append(names2, name)
case types.NewType("[]str").Cmp(nameValue2.Type()) == nil:
for _, x := range nameValue2.List() { // must not panic
name := x.Str() // must not panic
names2 = append(names2, name)
}
default:
// programming error
return nil, fmt.Errorf("unhandled resource name type: %+v", nameValue2.Type())
}
for _, name1 := range names1 {
for _, name2 := range names2 {
edge := &interfaces.Edge{
Kind1: obj.EdgeHalfList[i].Kind,
Name1: name1,
Send: obj.EdgeHalfList[i].SendRecv,
Kind2: obj.EdgeHalfList[i+1].Kind,
Name2: name2,
Recv: obj.EdgeHalfList[i+1].SendRecv,
Notify: obj.Notify,
}
edges = append(edges, edge)
}
}
}
return &interfaces.Output{
Edges: edges,
}, nil
}
// StmtEdgeHalf represents half of an edge in the parsed edge representation.
// This does not satisfy the Stmt interface.
type StmtEdgeHalf struct {
Kind string // kind of resource, eg: pkg, file, svc, etc...
Name interfaces.Expr // unique name for the res of this kind
SendRecv string // name of field to send/recv from/to, empty to ignore
}
// String returns a short representation of this statement.
func (obj *StmtEdgeHalf) String() string {
// TODO: add .String() for Name
return fmt.Sprintf("edgehalf(%s)", obj.Kind)
}
// Apply is a general purpose iterator method that operates on any AST node. It
// is not used as the primary AST traversal function because it is less readable
// and easy to reason about than manually implementing traversal for each node.
// Nevertheless, it is a useful facility for operations that might only apply to
// a select number of node types, since they won't need extra noop iterators...
func (obj *StmtEdgeHalf) Apply(fn func(interfaces.Node) error) error {
if err := obj.Name.Apply(fn); err != nil {
return err
}
return fn(obj)
}
// Init initializes this branch of the AST, and returns an error if it fails to
// validate.
func (obj *StmtEdgeHalf) Init(data *interfaces.Data) error {
if strings.Contains(obj.Kind, "_") {
return fmt.Errorf("kind must not contain underscores")
}
return obj.Name.Init(data)
}
// Interpolate returns a new node (aka a copy) once it has been expanded. This
// generally increases the size of the AST when it is used. It calls Interpolate
// on any child elements and builds the new node with those new node contents.
// This interpolate is different It is different from the interpolate found in
// the Expr and Stmt interfaces because it returns a different type as output.
func (obj *StmtEdgeHalf) Interpolate() (*StmtEdgeHalf, error) {
name, err := obj.Name.Interpolate()
if err != nil {
return nil, err
}
return &StmtEdgeHalf{
Kind: obj.Kind,
Name: name,
SendRecv: obj.SendRecv,
}, nil
}
// Copy returns a light copy of this struct. Anything static will not be copied.
func (obj *StmtEdgeHalf) Copy() (*StmtEdgeHalf, error) {
copied := false
name, err := obj.Name.Copy()
if err != nil {
return nil, err
}
if name != obj.Name { // must have been copied, or pointer would be same
copied = true
}
if !copied { // it's static
return obj, nil
}
return &StmtEdgeHalf{
Kind: obj.Kind,
Name: name,
SendRecv: obj.SendRecv,
}, nil
}
// SetScope stores the scope for later use in this resource and it's children,
// which it propagates this downwards to.
func (obj *StmtEdgeHalf) SetScope(scope *interfaces.Scope) error {
return obj.Name.SetScope(scope)
}
// Unify returns the list of invariants that this node produces. It recursively
// calls Unify on any children elements that exist in the AST, and returns the
// collection to the caller.
func (obj *StmtEdgeHalf) Unify() ([]interfaces.Invariant, error) {
var invariants []interfaces.Invariant
if obj.Kind == "" {
return nil, fmt.Errorf("missing resource kind in edge")
}
if obj.SendRecv != "" {
// FIXME: write this function (get expected type of field)
//invar, err := StructFieldInvariant(obj.Kind, obj.SendRecv)
//if err != nil {
// return nil, err
//}
//invariants = append(invariants, invar...)
}
invars, err := obj.Name.Unify()
if err != nil {
return nil, err
}
invariants = append(invariants, invars...)
// name must be a string or a list
ors := []interfaces.Invariant{}
invarStr := &unification.EqualsInvariant{
Expr: obj.Name,
Type: types.TypeStr,
}
ors = append(ors, invarStr)
invarListStr := &unification.EqualsInvariant{
Expr: obj.Name,
Type: types.NewType("[]str"),
}
ors = append(ors, invarListStr)
invar := &unification.ExclusiveInvariant{
Invariants: ors, // one and only one of these should be true
}
invariants = append(invariants, invar)
return invariants, nil
}
// Graph returns the reactive function graph which is expressed by this node. It
// includes any vertices produced by this node, and the appropriate edges to any
// vertices that are produced by its children. Nodes which fulfill the Expr
// interface directly produce vertices (and possible children) where as nodes
// that fulfill the Stmt interface do not produces vertices, where as their
// children might. It is interesting to note that nothing directly adds an edge
// to the resources created, but rather, once all the values (expressions) with
// no outgoing edges have produced at least a single value, then the resources
// know they're able to be built.
func (obj *StmtEdgeHalf) Graph() (*pgraph.Graph, error) {
return obj.Name.Graph()
}
// StmtIf represents an if condition that contains between one and two branches
// of statements to be executed based on the evaluation of the boolean condition
// over time. In particular, this is different from an ExprIf which returns a
// value, where as this produces some Output. Normally if one of the branches is
// optional, it is the else branch, although this struct allows either to be
// optional, even if it is not commonly used.
type StmtIf struct {
Condition interfaces.Expr
ThenBranch interfaces.Stmt // optional, but usually present
ElseBranch interfaces.Stmt // optional
}
// String returns a short representation of this statement.
func (obj *StmtIf) String() string {
s := fmt.Sprintf("if( %s )", obj.Condition.String())
if obj.ThenBranch != nil {
s += fmt.Sprintf(" { %s }", obj.ThenBranch.String())
} else {
s += " { }"
}
if obj.ElseBranch != nil {
s += fmt.Sprintf(" else { %s }", obj.ElseBranch.String())
}
return s
}
// Apply is a general purpose iterator method that operates on any AST node. It
// is not used as the primary AST traversal function because it is less readable
// and easy to reason about than manually implementing traversal for each node.
// Nevertheless, it is a useful facility for operations that might only apply to
// a select number of node types, since they won't need extra noop iterators...
func (obj *StmtIf) Apply(fn func(interfaces.Node) error) error {
if err := obj.Condition.Apply(fn); err != nil {
return err
}
if obj.ThenBranch != nil {
if err := obj.ThenBranch.Apply(fn); err != nil {
return err
}
}
if obj.ElseBranch != nil {
if err := obj.ElseBranch.Apply(fn); err != nil {
return err
}
}
return fn(obj)
}
// Init initializes this branch of the AST, and returns an error if it fails to
// validate.
func (obj *StmtIf) Init(data *interfaces.Data) error {
if err := obj.Condition.Init(data); err != nil {
return err
}
if obj.ThenBranch != nil {
if err := obj.ThenBranch.Init(data); err != nil {
return err
}
}
if obj.ElseBranch != nil {
if err := obj.ElseBranch.Init(data); err != nil {
return err
}
}
return nil
}
// Interpolate returns a new node (aka a copy) once it has been expanded. This
// generally increases the size of the AST when it is used. It calls Interpolate
// on any child elements and builds the new node with those new node contents.
func (obj *StmtIf) Interpolate() (interfaces.Stmt, error) {
condition, err := obj.Condition.Interpolate()
if err != nil {
return nil, errwrap.Wrapf(err, "could not interpolate Condition")
}
var thenBranch interfaces.Stmt
if obj.ThenBranch != nil {
thenBranch, err = obj.ThenBranch.Interpolate()
if err != nil {
return nil, errwrap.Wrapf(err, "could not interpolate ThenBranch")
}
}
var elseBranch interfaces.Stmt
if obj.ElseBranch != nil {
elseBranch, err = obj.ElseBranch.Interpolate()
if err != nil {
return nil, errwrap.Wrapf(err, "could not interpolate ElseBranch")
}
}
return &StmtIf{
Condition: condition,
ThenBranch: thenBranch,
ElseBranch: elseBranch,
}, nil
}
// Copy returns a light copy of this struct. Anything static will not be copied.
func (obj *StmtIf) Copy() (interfaces.Stmt, error) {
copied := false
condition, err := obj.Condition.Copy()
if err != nil {
return nil, errwrap.Wrapf(err, "could not copy Condition")
}
if condition != obj.Condition { // must have been copied, or pointer would be same
copied = true
}
var thenBranch interfaces.Stmt
if obj.ThenBranch != nil {
thenBranch, err = obj.ThenBranch.Copy()
if err != nil {
return nil, errwrap.Wrapf(err, "could not copy ThenBranch")
}
if thenBranch != obj.ThenBranch {
copied = true
}
}
var elseBranch interfaces.Stmt
if obj.ElseBranch != nil {
elseBranch, err = obj.ElseBranch.Copy()
if err != nil {
return nil, errwrap.Wrapf(err, "could not copy ElseBranch")
}
if elseBranch != obj.ElseBranch {
copied = true
}
}
if !copied { // it's static
return obj, nil
}
return &StmtIf{
Condition: condition,
ThenBranch: thenBranch,
ElseBranch: elseBranch,
}, nil
}
// Ordering returns a graph of the scope ordering that represents the data flow.
// This can be used in SetScope so that it knows the correct order to run it in.
func (obj *StmtIf) Ordering(produces map[string]interfaces.Node) (*pgraph.Graph, map[interfaces.Node]string, error) {
graph, err := pgraph.NewGraph("ordering")
if err != nil {
return nil, nil, errwrap.Wrapf(err, "could not create graph")
}
graph.AddVertex(obj)
// Additional constraints: We know the condition has to be satisfied
// before this if statement itself can be used, since we depend on that
// value.
edge := &pgraph.SimpleEdge{Name: "stmtif"}
graph.AddEdge(obj.Condition, obj, edge) // prod -> cons
cons := make(map[interfaces.Node]string)
g, c, err := obj.Condition.Ordering(produces)
if err != nil {
return nil, nil, err
}
graph.AddGraph(g) // add in the child graph
for k, v := range c { // c is consumes
x, exists := cons[k]
if exists && v != x {
return nil, nil, fmt.Errorf("consumed value is different, got `%+v`, expected `%+v`", x, v)
}
cons[k] = v // add to map
n, exists := produces[v]
if !exists {
continue
}
edge := &pgraph.SimpleEdge{Name: "stmtifcondition"}
graph.AddEdge(n, k, edge)
}
nodes := []interfaces.Stmt{}
if obj.ThenBranch != nil {
nodes = append(nodes, obj.ThenBranch)
// additional constraints...
edge1 := &pgraph.SimpleEdge{Name: "stmtifthencondition"}
graph.AddEdge(obj.Condition, obj.ThenBranch, edge1) // prod -> cons
edge2 := &pgraph.SimpleEdge{Name: "stmtifthen"}
graph.AddEdge(obj.ThenBranch, obj, edge2) // prod -> cons
}
if obj.ElseBranch != nil {
nodes = append(nodes, obj.ElseBranch)
// additional constraints...
edge1 := &pgraph.SimpleEdge{Name: "stmtifelsecondition"}
graph.AddEdge(obj.Condition, obj.ElseBranch, edge1) // prod -> cons
edge2 := &pgraph.SimpleEdge{Name: "stmtifelse"}
graph.AddEdge(obj.ElseBranch, obj, edge2) // prod -> cons
}
for _, node := range nodes { // "dry"
g, c, err := node.Ordering(produces)
if err != nil {
return nil, nil, err
}
graph.AddGraph(g) // add in the child graph
for k, v := range c { // c is consumes
x, exists := cons[k]
if exists && v != x {
return nil, nil, fmt.Errorf("consumed value is different, got `%+v`, expected `%+v`", x, v)
}
cons[k] = v // add to map
n, exists := produces[v]
if !exists {
continue
}
edge := &pgraph.SimpleEdge{Name: "stmtifbranch"}
graph.AddEdge(n, k, edge)
}
}
return graph, cons, nil
}
// SetScope stores the scope for later use in this resource and it's children,
// which it propagates this downwards to.
func (obj *StmtIf) SetScope(scope *interfaces.Scope) error {
if err := obj.Condition.SetScope(scope); err != nil {
return err
}
if obj.ThenBranch != nil {
if err := obj.ThenBranch.SetScope(scope); err != nil {
return err
}
}
if obj.ElseBranch != nil {
if err := obj.ElseBranch.SetScope(scope); err != nil {
return err
}
}
return nil
}
// Unify returns the list of invariants that this node produces. It recursively
// calls Unify on any children elements that exist in the AST, and returns the
// collection to the caller.
func (obj *StmtIf) Unify() ([]interfaces.Invariant, error) {
var invariants []interfaces.Invariant
// conditional expression might have some children invariants to share
condition, err := obj.Condition.Unify()
if err != nil {
return nil, err
}
invariants = append(invariants, condition...)
// the condition must ultimately be a boolean
conditionInvar := &unification.EqualsInvariant{
Expr: obj.Condition,
Type: types.TypeBool,
}
invariants = append(invariants, conditionInvar)
// recurse into the two branches
if obj.ThenBranch != nil {
thenBranch, err := obj.ThenBranch.Unify()
if err != nil {
return nil, err
}
invariants = append(invariants, thenBranch...)
}
if obj.ElseBranch != nil {
elseBranch, err := obj.ElseBranch.Unify()
if err != nil {
return nil, err
}
invariants = append(invariants, elseBranch...)
}
return invariants, nil
}
// Graph returns the reactive function graph which is expressed by this node. It
// includes any vertices produced by this node, and the appropriate edges to any
// vertices that are produced by its children. Nodes which fulfill the Expr
// interface directly produce vertices (and possible children) where as nodes
// that fulfill the Stmt interface do not produces vertices, where as their
// children might. This particular if statement doesn't do anything clever here
// other than adding in both branches of the graph. Since we're functional, this
// shouldn't have any ill effects.
// XXX: is this completely true if we're running technically impure, but safe
// built-in functions on both branches? Can we turn off half of this?
func (obj *StmtIf) Graph() (*pgraph.Graph, error) {
graph, err := pgraph.NewGraph("if")
if err != nil {
return nil, errwrap.Wrapf(err, "could not create graph")
}
g, err := obj.Condition.Graph()
if err != nil {
return nil, err
}
graph.AddGraph(g)
for _, x := range []interfaces.Stmt{obj.ThenBranch, obj.ElseBranch} {
if x == nil {
continue
}
g, err := x.Graph()
if err != nil {
return nil, err
}
graph.AddGraph(g)
}
return graph, nil
}
// Output returns the output that this "program" produces. This output is what
// is used to build the output graph. This only exists for statements. The
// analogous function for expressions is Value. Those Value functions might get
// called by this Output function if they are needed to produce the output.
func (obj *StmtIf) Output() (*interfaces.Output, error) {
b, err := obj.Condition.Value()
if err != nil {
return nil, err
}
var output *interfaces.Output
if b.Bool() { // must not panic!
if obj.ThenBranch != nil { // logically then branch is optional
output, err = obj.ThenBranch.Output()
}
} else {
if obj.ElseBranch != nil { // else branch is optional
output, err = obj.ElseBranch.Output()
}
}
if err != nil {
return nil, err
}
resources := []engine.Res{}
edges := []*interfaces.Edge{}
if output != nil {
resources = append(resources, output.Resources...)
edges = append(edges, output.Edges...)
}
return &interfaces.Output{
Resources: resources,
Edges: edges,
}, nil
}
// StmtProg represents a list of stmt's. This usually occurs at the top-level of
// any program, and often within an if stmt. It also contains the logic so that
// the bind statement's are correctly applied in this scope, and irrespective of
// their order of definition.
type StmtProg struct {
data *interfaces.Data
scope *interfaces.Scope // store for use by imports
// TODO: should this be a map? if so, how would we sort it to loop it?
importProgs []*StmtProg // list of child programs after running SetScope
importFiles []string // list of files seen during the SetScope import
Prog []interfaces.Stmt
}
// String returns a short representation of this statement.
func (obj *StmtProg) String() string {
return "prog" // TODO: improve this
}
// Apply is a general purpose iterator method that operates on any AST node. It
// is not used as the primary AST traversal function because it is less readable
// and easy to reason about than manually implementing traversal for each node.
// Nevertheless, it is a useful facility for operations that might only apply to
// a select number of node types, since they won't need extra noop iterators...
func (obj *StmtProg) Apply(fn func(interfaces.Node) error) error {
for _, x := range obj.Prog {
if err := x.Apply(fn); err != nil {
return err
}
}
// might as well Apply on these too, to make file collection easier, etc
for _, x := range obj.importProgs {
if err := x.Apply(fn); err != nil {
return err
}
}
return fn(obj)
}
// Init initializes this branch of the AST, and returns an error if it fails to
// validate.
func (obj *StmtProg) Init(data *interfaces.Data) error {
obj.data = data
obj.importProgs = []*StmtProg{}
obj.importFiles = []string{}
for _, x := range obj.Prog {
if err := x.Init(data); err != nil {
return err
}
}
return nil
}
// Interpolate returns a new node (aka a copy) once it has been expanded. This
// generally increases the size of the AST when it is used. It calls Interpolate
// on any child elements and builds the new node with those new node contents.
func (obj *StmtProg) Interpolate() (interfaces.Stmt, error) {
prog := []interfaces.Stmt{}
for _, x := range obj.Prog {
interpolated, err := x.Interpolate()
if err != nil {
return nil, err
}
prog = append(prog, interpolated)
}
return &StmtProg{
data: obj.data,
scope: obj.scope,
importProgs: obj.importProgs, // TODO: do we even need this here?
importFiles: obj.importFiles,
Prog: prog,
}, nil
}
// Copy returns a light copy of this struct. Anything static will not be copied.
func (obj *StmtProg) Copy() (interfaces.Stmt, error) {
copied := false
prog := []interfaces.Stmt{}
for _, x := range obj.Prog {
cp, err := x.Copy()
if err != nil {
return nil, err
}
if cp != x { // must have been copied, or pointer would be same
copied = true
}
prog = append(prog, cp)
}
if !copied { // it's static
return obj, nil
}
return &StmtProg{
data: obj.data,
scope: obj.scope,
importProgs: obj.importProgs, // TODO: do we even need this here?
importFiles: obj.importFiles,
Prog: prog,
}, nil
}
// Ordering returns a graph of the scope ordering that represents the data flow.
// This can be used in SetScope so that it knows the correct order to run it in.
// The interesting part of the Ordering determination happens right here in
// StmtProg. This first looks at all the children to see what this produces, and
// then it recursively builds the graph by looking into all the children with
// this information from the first pass. We link production and consumption via
// a unique string name which is used to determine flow. Of particular note, all
// of this happens *before* SetScope, so we cannot follow references in the
// scope. The input to this method is a mapping of the the produced unique names
// in the parent "scope", to their associated node pointers. This returns a map
// of what is consumed in the child AST. The map is reversed, because two
// different nodes could consume the same variable key.
// TODO: deal with StmtImport's by returning them as first if necessary?
func (obj *StmtProg) Ordering(produces map[string]interfaces.Node) (*pgraph.Graph, map[interfaces.Node]string, error) {
graph, err := pgraph.NewGraph("ordering")
if err != nil {
return nil, nil, errwrap.Wrapf(err, "could not create graph")
}
graph.AddVertex(obj)
prod := make(map[string]interfaces.Node)
for _, x := range obj.Prog {
if stmt, ok := x.(*StmtClass); ok {
if stmt.Name == "" {
return nil, nil, fmt.Errorf("missing class name")
}
uid := classOrderingPrefix + stmt.Name // ordering id
n, exists := prod[uid]
if exists {
return nil, nil, fmt.Errorf("duplicate assignment to `%s`, have: %s", uid, n)
}
prod[uid] = stmt // store
}
if stmt, ok := x.(*StmtFunc); ok {
if stmt.Name == "" {
return nil, nil, fmt.Errorf("missing func name")
}
uid := funcOrderingPrefix + stmt.Name // ordering id
n, exists := prod[uid]
if exists {
return nil, nil, fmt.Errorf("duplicate assignment to `%s`, have: %s", uid, n)
}
prod[uid] = stmt // store
}
if stmt, ok := x.(*StmtBind); ok {
if stmt.Ident == "" {
return nil, nil, fmt.Errorf("missing bind name")
}
uid := varOrderingPrefix + stmt.Ident // ordering id
n, exists := prod[uid]
if exists {
return nil, nil, fmt.Errorf("duplicate assignment to `%s`, have: %s", uid, n)
}
prod[uid] = stmt // store
}
}
// TODO: move to a util package?
cp := func(in map[string]interfaces.Node) map[string]interfaces.Node {
out := make(map[string]interfaces.Node)
for k, v := range in {
out[k] = v // copy the map, not the Node's
}
return out
}
newProduces := cp(produces) // don't modify the input map!
// Overwrite anything in this scope with the shadowed parent variable!
for key, val := range prod {
newProduces[key] = val // copy, and overwrite (shadow) any parent var
}
cons := make(map[interfaces.Node]string) // swapped!
for _, node := range obj.Prog {
g, c, err := node.Ordering(newProduces)
if err != nil {
return nil, nil, err
}
graph.AddGraph(g) // add in the child graph
// additional constraint...
edge := &pgraph.SimpleEdge{Name: "stmtprognode"}
graph.AddEdge(node, obj, edge) // prod -> cons
for k, v := range c { // c is consumes
x, exists := cons[k]
if exists && v != x {
return nil, nil, fmt.Errorf("consumed value is different, got `%+v`, expected `%+v`", x, v)
}
cons[k] = v // add to map
n, exists := newProduces[v]
if !exists {
continue
}
edge := &pgraph.SimpleEdge{Name: "stmtprog1"}
// We want the convention to be produces -> consumes.
graph.AddEdge(n, k, edge)
}
}
// TODO: is this redundant? do we need it?
for key, val := range newProduces { // string, node
for x, str := range cons { // node, string
if key != str {
continue
}
edge := &pgraph.SimpleEdge{Name: "stmtprog2"}
graph.AddEdge(val, x, edge) // prod -> cons
}
}
return graph, cons, nil
}
// importScope is a helper function called from SetScope. If it can't find a
// particular scope, then it can also run the downloader if it is available.
func (obj *StmtProg) importScope(info *interfaces.ImportData, scope *interfaces.Scope) (*interfaces.Scope, error) {
if obj.data.Debug {
obj.data.Logf("import: %s", info.Name)
}
// the abs file path that we started actively running SetScope on is:
// obj.data.Base + obj.data.Metadata.Main
// but recursive imports mean this is not always the active file...
if info.IsSystem { // system imports are the exact name, eg "fmt"
systemScope, err := obj.importSystemScope(info.Name)
if err != nil {
return nil, errwrap.Wrapf(err, "system import of `%s` failed", info.Name)
}
return systemScope, nil
}
// graph-based recursion detection
// TODO: is this suffiently unique, but not incorrectly unique?
// TODO: do we need to clean uvid for consistency so the compare works?
uvid := obj.data.Base + ";" + info.Name // unique vertex id
importVertex := obj.data.Imports // parent vertex
if importVertex == nil {
return nil, fmt.Errorf("programming error: missing import vertex")
}
importGraph := importVertex.Graph // existing graph (ptr stored within)
nextVertex := &pgraph.SelfVertex{ // new vertex (if one doesn't already exist)
Name: uvid, // import name
Graph: importGraph, // store a reference to ourself
}
for _, v := range importGraph.VerticesSorted() { // search for one first
gv, ok := v.(*pgraph.SelfVertex)
if !ok { // someone misused the vertex
return nil, fmt.Errorf("programming error: unexpected vertex type")
}
if gv.Name == uvid {
nextVertex = gv // found the same name (use this instead!)
// this doesn't necessarily mean a cycle. a dag is okay
break
}
}
// add an edge
edge := &pgraph.SimpleEdge{Name: ""} // TODO: name me?
importGraph.AddEdge(importVertex, nextVertex, edge)
if _, err := importGraph.TopologicalSort(); err != nil {
// TODO: print the cycle in a prettier way (with file names?)
obj.data.Logf("import: not a dag:\n%s", importGraph.Sprint())
return nil, errwrap.Wrapf(err, "recursive import of: `%s`", info.Name)
}
if info.IsLocal {
// append the relative addition of where the running code is, on
// to the base path that the metadata file (data) is relative to
// if the main code file has no additional directory, then it is
// okay, because Dirname collapses down to the empty string here
importFilePath := obj.data.Base + util.Dirname(obj.data.Metadata.Main) + info.Path
if obj.data.Debug {
obj.data.Logf("import: file: %s", importFilePath)
}
// don't do this collection here, it has moved elsewhere...
//obj.importFiles = append(obj.importFiles, importFilePath) // save for CollectFiles
localScope, err := obj.importScopeWithInputs(importFilePath, scope, nextVertex)
if err != nil {
return nil, errwrap.Wrapf(err, "local import of `%s` failed", info.Name)
}
return localScope, nil
}
// Now, info.IsLocal is false... we're dealing with a remote import!
// This takes the current metadata as input so it can use the Path
// directory to search upwards if we wanted to look in parent paths.
// Since this is an fqdn import, it must contain a metadata file...
modulesPath, err := interfaces.FindModulesPath(obj.data.Metadata, obj.data.Base, obj.data.Modules)
if err != nil {
return nil, errwrap.Wrapf(err, "module path error")
}
importFilePath := modulesPath + info.Path + interfaces.MetadataFilename
if !RequireStrictModulePath { // look upwards
modulesPathList, err := interfaces.FindModulesPathList(obj.data.Metadata, obj.data.Base, obj.data.Modules)
if err != nil {
return nil, errwrap.Wrapf(err, "module path list error")
}
for _, mp := range modulesPathList { // first one to find a file
x := mp + info.Path + interfaces.MetadataFilename
if _, err := obj.data.Fs.Stat(x); err == nil {
// found a valid location, so keep using it!
modulesPath = mp
importFilePath = x
break
}
}
// If we get here, and we didn't find anything, then we use the
// originally decided, most "precise" location... The reason we
// do that is if the sysadmin wishes to require all the modules
// to come from their top-level (or higher-level) directory, it
// can be done by adding the code there, so that it is found in
// the above upwards search. Otherwise, we just do what the mod
// asked for and use the path/ directory if it wants its own...
}
if obj.data.Debug {
obj.data.Logf("import: modules path: %s", modulesPath)
obj.data.Logf("import: file: %s", importFilePath)
}
// don't do this collection here, it has moved elsewhere...
//obj.importFiles = append(obj.importFiles, importFilePath) // save for CollectFiles
// invoke the download when a path is missing, if the downloader exists
// we need to invoke the recursive checker before we run this download!
// this should cleverly deal with skipping modules that are up-to-date!
if obj.data.Downloader != nil {
// run downloader stuff first
if err := obj.data.Downloader.Get(info, modulesPath); err != nil {
return nil, errwrap.Wrapf(err, "download of `%s` failed", info.Name)
}
}
// takes the full absolute path to the metadata.yaml file
remoteScope, err := obj.importScopeWithInputs(importFilePath, scope, nextVertex)
if err != nil {
return nil, errwrap.Wrapf(err, "remote import of `%s` failed", info.Name)
}
return remoteScope, nil
}
// importSystemScope takes the name of a built-in system scope (eg: "fmt") and
// returns the scope struct for that built-in. This function is slightly less
// trivial than expected, because the scope is built from both native mcl code
// and golang code as well. The native mcl code is compiled in as bindata.
// TODO: can we memoize?
func (obj *StmtProg) importSystemScope(name string) (*interfaces.Scope, error) {
// this basically loop through the registeredFuncs and includes
// everything that starts with the name prefix and a period, and then
// lexes and parses the compiled in code, and adds that on top of the
// scope. we error if there's a duplicate!
isEmpty := true // assume empty (which should cause an error)
funcs := FuncPrefixToFunctionsScope(name) // runs funcs.LookupPrefix
if len(funcs) > 0 {
isEmpty = false
}
// perform any normal "startup" for these functions...
for _, fn := range funcs {
// XXX: is this the right place for this, or should it be elsewhere?
// XXX: do we need a modified obj.data for this b/c it's in a scope?
if err := fn.Init(obj.data); err != nil {
return nil, errwrap.Wrapf(err, "could not init function")
}
// TODO: do we want to run Interpolate or SetScope?
}
// initial scope, built from core golang code
scope := &interfaces.Scope{
// TODO: we could add core API's for variables and classes too!
//Variables: make(map[string]interfaces.Expr),
Functions: funcs, // map[string]Expr
//Classes: make(map[string]interfaces.Stmt),
}
// TODO: the obj.data.Fs filesystem handle is unused for now, but might
// be useful if we ever ship all the specific versions of system modules
// to the remote machines as well, and we want to load off of it...
// now add any compiled-in mcl code
paths := bindata.AssetNames()
// results are not sorted by default (ascertained by reading the code!)
sort.Strings(paths)
newScope := interfaces.EmptyScope()
// XXX: consider using a virtual `append *` statement to combine these instead.
for _, p := range paths {
// we only want code from this prefix
prefix := CoreDir + name + "/"
if !strings.HasPrefix(p, prefix) {
continue
}
// we only want code from this directory level, so skip children
// heuristically, a child mcl file will contain a path separator
if strings.Contains(p[len(prefix):], "/") {
continue
}
b, err := bindata.Asset(p)
if err != nil {
return nil, errwrap.Wrapf(err, "can't read asset: `%s`", p)
}
// to combine multiple *.mcl files from the same directory, we
// lex and parse each one individually, which each produces a
// scope struct. we then merge the scope structs, while making
// sure we don't overwrite any values. (this logic is only valid
// for modules, as top-level code combines the output values
// instead.)
reader := bytes.NewReader(b) // wrap the byte stream
// now run the lexer/parser to do the import
ast, err := LexParse(reader)
if err != nil {
return nil, errwrap.Wrapf(err, "could not generate AST from import `%s`", name)
}
if obj.data.Debug {
obj.data.Logf("behold, the AST: %+v", ast)
}
obj.data.Logf("init...")
// init and validate the structure of the AST
// some of this might happen *after* interpolate in SetScope or Unify...
if err := ast.Init(obj.data); err != nil {
return nil, errwrap.Wrapf(err, "could not init and validate AST")
}
obj.data.Logf("interpolating...")
// interpolate strings and other expansionable nodes in AST
interpolated, err := ast.Interpolate()
if err != nil {
return nil, errwrap.Wrapf(err, "could not interpolate AST from import `%s`", name)
}
obj.data.Logf("building scope...")
// propagate the scope down through the AST...
// most importantly, we ensure that the child imports will run!
// we pass in *our* parent scope, which will include the globals
if err := interpolated.SetScope(scope); err != nil {
return nil, errwrap.Wrapf(err, "could not set scope from import `%s`", name)
}
// is the root of our ast a program?
prog, ok := interpolated.(*StmtProg)
if !ok {
return nil, fmt.Errorf("import `%s` did not return a program", name)
}
if prog.scope == nil { // pull out the result
continue // nothing to do here, continue with the next!
}
// check for unwanted top-level elements in this module/scope
// XXX: add a test case to test for this in our core modules!
if err := prog.IsModuleUnsafe(); err != nil {
return nil, errwrap.Wrapf(err, "module contains unused statements")
}
if !prog.scope.IsEmpty() {
isEmpty = false // this module/scope isn't empty
}
// save a reference to the prog for future usage in Unify/Graph/Etc...
// XXX: we don't need to do this if we can combine with Append!
obj.importProgs = append(obj.importProgs, prog)
// attempt to merge
// XXX: test for duplicate var/func/class elements in a test!
if err := newScope.Merge(prog.scope); err != nil { // errors if something was overwritten
// XXX: we get a false positive b/c we overwrite the initial scope!
// XXX: when we switch to append, this problem will go away...
//return nil, errwrap.Wrapf(err, "duplicate scope element(s) in module found")
}
}
if err := scope.Merge(newScope); err != nil { // errors if something was overwritten
// XXX: we get a false positive b/c we overwrite the initial scope!
// XXX: when we switch to append, this problem will go away...
//return nil, errwrap.Wrapf(err, "duplicate scope element(s) found")
}
// when importing a system scope, we only error if there are zero class,
// function, or variable statements in the scope. We error in this case,
// because it is non-sensical to import such a scope.
if isEmpty {
return nil, fmt.Errorf("could not find any non-empty scope named: %s", name)
}
return scope, nil
}
// importScopeWithInputs returns a local or remote scope from an inputs string.
// The inputs string is the common frontend for a lot of our parsing decisions.
func (obj *StmtProg) importScopeWithInputs(s string, scope *interfaces.Scope, parentVertex *pgraph.SelfVertex) (*interfaces.Scope, error) {
output, err := parseInput(s, obj.data.Fs)
if err != nil {
return nil, errwrap.Wrapf(err, "could not activate an input parser")
}
// TODO: rm this old, and incorrect, linear file duplicate checking...
// recursion detection (i guess following the imports has to be a dag!)
// run recursion detection by checking for duplicates in the seen files
// TODO: do the paths need to be cleaned for "../", etc before compare?
//for _, name := range obj.data.Files { // existing seen files
// if util.StrInList(name, output.Files) {
// return nil, fmt.Errorf("recursive import of: `%s`", name)
// }
//}
reader := bytes.NewReader(output.Main)
// nested logger
logf := func(format string, v ...interface{}) {
obj.data.Logf("import: "+format, v...)
}
// build new list of files
files := []string{}
files = append(files, output.Files...)
files = append(files, obj.data.Files...)
// store a reference to the parent metadata
metadata := output.Metadata
metadata.Metadata = obj.data.Metadata
// now run the lexer/parser to do the import
ast, err := LexParse(reader)
if err != nil {
return nil, errwrap.Wrapf(err, "could not generate AST from import")
}
if obj.data.Debug {
logf("behold, the AST: %+v", ast)
}
logf("init...")
// init and validate the structure of the AST
data := &interfaces.Data{
// TODO: add missing fields here if/when needed
Fs: obj.data.Fs,
FsURI: obj.data.FsURI,
Base: output.Base, // new base dir (absolute path)
Files: files,
Imports: parentVertex, // the parent vertex that imported me
Metadata: metadata,
Modules: obj.data.Modules,
Downloader: obj.data.Downloader,
//World: obj.data.World,
//Prefix: obj.Prefix, // TODO: add a path on?
Debug: obj.data.Debug,
Logf: logf,
}
// some of this might happen *after* interpolate in SetScope or Unify...
if err := ast.Init(data); err != nil {
return nil, errwrap.Wrapf(err, "could not init and validate AST")
}
logf("interpolating...")
// interpolate strings and other expansionable nodes in AST
interpolated, err := ast.Interpolate()
if err != nil {
return nil, errwrap.Wrapf(err, "could not interpolate AST from import")
}
logf("building scope...")
// propagate the scope down through the AST...
// most importantly, we ensure that the child imports will run!
// we pass in *our* parent scope, which will include the globals
if err := interpolated.SetScope(scope); err != nil {
return nil, errwrap.Wrapf(err, "could not set scope from import")
}
// we DON'T do this here anymore, since Apply() digs into the children!
//// this nested ast needs to pass the data up into the parent!
//fileList, err := CollectFiles(interpolated)
//if err != nil {
// return nil, errwrap.Wrapf(err, "could not collect files")
//}
//obj.importFiles = append(obj.importFiles, fileList...) // save for CollectFiles
// is the root of our ast a program?
prog, ok := interpolated.(*StmtProg)
if !ok {
return nil, fmt.Errorf("import did not return a program")
}
// check for unwanted top-level elements in this module/scope
// XXX: add a test case to test for this in our core modules!
if err := prog.IsModuleUnsafe(); err != nil {
return nil, errwrap.Wrapf(err, "module contains unused statements")
}
// when importing a system scope, we only error if there are zero class,
// function, or variable statements in the scope. We error in this case,
// because it is non-sensical to import such a scope.
if prog.scope.IsEmpty() {
return nil, fmt.Errorf("could not find any non-empty scope")
}
// save a reference to the prog for future usage in Unify/Graph/Etc...
obj.importProgs = append(obj.importProgs, prog)
// collecting these here is more elegant (and possibly more efficient!)
obj.importFiles = append(obj.importFiles, output.Files...) // save for CollectFiles
return prog.scope, nil
}
// SetScope propagates the scope into its list of statements. It does so
// cleverly by first collecting all bind and func statements and adding those
// into the scope after checking for any collisions. Finally it pushes the new
// scope downwards to all child statements. If we support user defined function
// polymorphism via multiple function definition, then these are built together
// here. This SetScope is the one which follows the import statements. If it
// can't follow one (perhaps it wasn't downloaded yet, and is missing) then it
// leaves some information about these missing imports in the AST and errors, so
// that a subsequent AST traversal (usually via Apply) can collect this detailed
// information to be used by the downloader. When it propagates the scope
// downwards, it first pushes it into all the classes, and then into everything
// else (including the include stmt's) because the include statements require
// that the scope already be known so that it can be combined with the include
// args.
func (obj *StmtProg) SetScope(scope *interfaces.Scope) error {
newScope := scope.Copy()
// start by looking for any `import` statements to pull into the scope!
// this will run child lexing/parsing, interpolation, and scope setting
imports := make(map[string]struct{})
aliases := make(map[string]struct{})
// keep track of new imports, to ensure they don't overwrite each other!
// this is different from scope shadowing which is allowed in new scopes
newVariables := make(map[string]string)
newFunctions := make(map[string]string)
newClasses := make(map[string]string)
for _, x := range obj.Prog {
imp, ok := x.(*StmtImport)
if !ok {
continue
}
// check for duplicates *in this scope*
if _, exists := imports[imp.Name]; exists {
return fmt.Errorf("import `%s` already exists in this scope", imp.Name)
}
result, err := ParseImportName(imp.Name)
if err != nil {
return errwrap.Wrapf(err, "import `%s` is not valid", imp.Name)
}
alias := result.Alias // this is what we normally call the import
if imp.Alias != "" { // this is what the user decided as the name
alias = imp.Alias // use alias if specified
}
if _, exists := aliases[alias]; exists {
return fmt.Errorf("import alias `%s` already exists in this scope", alias)
}
// run the scope importer...
importedScope, err := obj.importScope(result, scope)
if err != nil {
return errwrap.Wrapf(err, "import scope `%s` failed", imp.Name)
}
// read from stored scope which was previously saved in SetScope
// add to scope, (overwriting, aka shadowing is ok)
// rename scope values, adding the alias prefix
// check that we don't overwrite a new value from another import
// TODO: do this in a deterministic (sorted) order
for name, x := range importedScope.Variables {
newName := alias + interfaces.ModuleSep + name
if alias == "*" {
newName = name
}
if previous, exists := newVariables[newName]; exists {
// don't overwrite in same scope
return fmt.Errorf("can't squash variable `%s` from `%s` by import of `%s`", newName, previous, imp.Name)
}
newVariables[newName] = imp.Name
newScope.Variables[newName] = x // merge
}
for name, x := range importedScope.Functions {
newName := alias + interfaces.ModuleSep + name
if alias == "*" {
newName = name
}
if previous, exists := newFunctions[newName]; exists {
// don't overwrite in same scope
return fmt.Errorf("can't squash function `%s` from `%s` by import of `%s`", newName, previous, imp.Name)
}
newFunctions[newName] = imp.Name
newScope.Functions[newName] = x
}
for name, x := range importedScope.Classes {
newName := alias + interfaces.ModuleSep + name
if alias == "*" {
newName = name
}
if previous, exists := newClasses[newName]; exists {
// don't overwrite in same scope
return fmt.Errorf("can't squash class `%s` from `%s` by import of `%s`", newName, previous, imp.Name)
}
newClasses[newName] = imp.Name
newScope.Classes[newName] = x
}
// everything has been merged, move on to next import...
imports[imp.Name] = struct{}{} // mark as found in scope
aliases[alias] = struct{}{}
}
// collect all the bind statements in the first pass
// this allows them to appear out of order in this scope
binds := make(map[string]struct{}) // bind existence in this scope
for _, x := range obj.Prog {
bind, ok := x.(*StmtBind)
if !ok {
continue
}
// check for duplicates *in this scope*
if _, exists := binds[bind.Ident]; exists {
return fmt.Errorf("var `%s` already exists in this scope", bind.Ident)
}
binds[bind.Ident] = struct{}{} // mark as found in scope
// add to scope, (overwriting, aka shadowing is ok)
newScope.Variables[bind.Ident] = bind.Value
if obj.data.Debug { // TODO: is this message ever useful?
obj.data.Logf("prog: set scope: bind collect: (%+v): %+v (%T) is %p", bind.Ident, bind.Value, bind.Value, bind.Value)
}
}
// now collect all the functions, and group by name (if polyfunc is ok)
funcs := make(map[string][]*StmtFunc)
for _, x := range obj.Prog {
fn, ok := x.(*StmtFunc)
if !ok {
continue
}
_, exists := funcs[fn.Name]
if !exists {
funcs[fn.Name] = []*StmtFunc{} // initialize
}
// check for duplicates *in this scope*
if exists && !AllowUserDefinedPolyFunc {
return fmt.Errorf("func `%s` already exists in this scope", fn.Name)
}
// collect funcs (if multiple, this is a polyfunc)
funcs[fn.Name] = append(funcs[fn.Name], fn)
}
for name, fnList := range funcs {
if obj.data.Debug { // TODO: is this message ever useful?
obj.data.Logf("prog: set scope: collect: (%+v -> %d): %+v (%T)", name, len(fnList), fnList[0].Func, fnList[0].Func)
}
// add to scope, (overwriting, aka shadowing is ok)
if len(fnList) == 1 {
fn := fnList[0].Func // local reference to avoid changing it in the loop...
// add to scope, (overwriting, aka shadowing is ok)
newScope.Functions[name] = fn // store the *ExprFunc
continue
}
// build polyfunc's
// XXX: not implemented
return fmt.Errorf("user-defined polyfuncs of length %d are not supported", len(fnList))
}
// now collect any classes
// TODO: if we ever allow poly classes, then group in lists by name
classes := make(map[string]struct{})
for _, x := range obj.Prog {
class, ok := x.(*StmtClass)
if !ok {
continue
}
// check for duplicates *in this scope*
if _, exists := classes[class.Name]; exists {
return fmt.Errorf("class `%s` already exists in this scope", class.Name)
}
classes[class.Name] = struct{}{} // mark as found in scope
// add to scope, (overwriting, aka shadowing is ok)
newScope.Classes[class.Name] = class
}
obj.scope = newScope // save a reference in case we're read by an import
// This is the legacy variant of this function that doesn't allow
// out-of-order code. It also returns obscure error messages for some
// cases, such as double-recursion. It's left here for reference.
if legacyProgSetScope {
// first set the scope on the classes, since it gets used in include...
for _, stmt := range obj.Prog {
//if _, ok := stmt.(*StmtClass); !ok {
// continue
//}
_, ok1 := stmt.(*StmtClass)
_, ok2 := stmt.(*StmtFunc) // TODO: is this correct?
_, ok3 := stmt.(*StmtBind) // TODO: is this correct?
if !ok1 && !ok2 && !ok3 { // if all are false, we skip
continue
}
if obj.data.Debug {
obj.data.Logf("prog: set scope: pass 1: %+v", stmt)
}
if err := stmt.SetScope(newScope); err != nil {
return err
}
}
// now set the child scopes...
for _, stmt := range obj.Prog {
// NOTE: We used to skip over *StmtClass here for recursion...
// Skip over *StmtClass here, since we already did it above...
if _, ok := stmt.(*StmtClass); ok {
continue
}
if _, ok := stmt.(*StmtFunc); ok { // TODO: is this correct?
continue
}
if _, ok := stmt.(*StmtBind); ok { // TODO: is this correct?
continue
}
if obj.data.Debug {
obj.data.Logf("prog: set scope: pass 2: %+v", stmt)
}
if err := stmt.SetScope(newScope); err != nil {
return err
}
}
return nil
}
// TODO: this could be called once at the top-level, and then cached...
// TODO: it currently gets called inside child programs, which is slow!
orderingGraph, _, err := obj.Ordering(nil) // XXX: pass in globals from scope?
// TODO: look at consumed variables, and prevent startup of unused ones?
if err != nil {
return errwrap.Wrapf(err, "could not generate ordering")
}
// debugging visualizations
if obj.data.Debug && orderingGraphSingleton {
obj.data.Logf("running graphviz for ordering graph...")
if err := orderingGraph.ExecGraphviz("dot", "/tmp/graphviz-ordering.dot", ""); err != nil {
obj.data.Logf("graphviz: errored: %+v", err)
}
// Only generate the top-level one, to prevent overwriting this!
orderingGraphSingleton = false
}
nodeOrder, err := orderingGraph.TopologicalSort()
if err != nil {
// TODO: print the cycle in a prettier way (with names?)
if obj.data.Debug {
obj.data.Logf("set scope: not a dag:\n%s", orderingGraph.Sprint())
}
return errwrap.Wrapf(err, "recursive reference while setting scope")
}
// XXX: implement ValidTopoSortOrder!
//topoSanity := (RequireTopologicalOrdering || TopologicalOrderingWarning)
//if topoSanity && !orderingGraph.ValidTopoSortOrder(nodeOrder) {
// msg := "code is out of order, you're insane!"
// if TopologicalOrderingWarning {
// obj.data.Logf(msg)
// if obj.data.Debug {
// // TODO: print out of order problems
// }
// }
// if RequireTopologicalOrdering {
// return fmt.Errorf(msg)
// }
//}
// TODO: move this function to a utility package
stmtInList := func(needle interfaces.Stmt, haystack []interfaces.Stmt) bool {
for _, x := range haystack {
if needle == x {
return true
}
}
return false
}
stmts := []interfaces.Stmt{}
for _, x := range nodeOrder { // these are in the correct order for SetScope
stmt, ok := x.(interfaces.Stmt)
if !ok {
continue
}
if _, ok := x.(*StmtImport); ok { // TODO: should we skip this?
continue
}
if !stmtInList(stmt, obj.Prog) {
// Skip any unwanted additions that we pulled in.
continue
}
stmts = append(stmts, stmt)
}
if obj.data.Debug {
obj.data.Logf("prog: set scope: ordering: %+v", stmts)
}
// Optimization: In addition to importantly skipping the parts of the
// graph that don't belong in this StmtProg, this also causes
// un-consumed statements to be skipped. As a result, this simplifies
// the graph significantly in cases of unused code, because they're not
// given a chance to SetScope even though they're in the StmtProg list.
for _, x := range nodeOrder { // these are in the correct order for SetScope
stmt, ok := x.(interfaces.Stmt)
if !ok {
continue
}
if _, ok := x.(*StmtImport); ok { // TODO: should we skip this?
continue
}
if !stmtInList(stmt, obj.Prog) {
// Skip any unwanted additions that we pulled in.
continue
}
if obj.data.Debug {
obj.data.Logf("prog: set scope: order: %+v", stmt)
}
if err := stmt.SetScope(newScope); err != nil {
return err
}
}
if obj.data.Debug {
obj.data.Logf("prog: set scope: finished")
}
return nil
}
// Unify returns the list of invariants that this node produces. It recursively
// calls Unify on any children elements that exist in the AST, and returns the
// collection to the caller.
func (obj *StmtProg) Unify() ([]interfaces.Invariant, error) {
var invariants []interfaces.Invariant
// collect all the invariants of each sub-expression
for _, x := range obj.Prog {
// skip over *StmtClass here
if _, ok := x.(*StmtClass); ok {
continue
}
if _, ok := x.(*StmtFunc); ok { // TODO: is this correct?
continue
}
if _, ok := x.(*StmtBind); ok { // TODO: is this correct?
continue
}
invars, err := x.Unify()
if err != nil {
return nil, err
}
invariants = append(invariants, invars...)
}
// add invariants from SetScope's imported child programs
for _, x := range obj.importProgs {
invars, err := x.Unify()
if err != nil {
return nil, err
}
invariants = append(invariants, invars...)
}
return invariants, nil
}
// Graph returns the reactive function graph which is expressed by this node. It
// includes any vertices produced by this node, and the appropriate edges to any
// vertices that are produced by its children. Nodes which fulfill the Expr
// interface directly produce vertices (and possible children) where as nodes
// that fulfill the Stmt interface do not produces vertices, where as their
// children might.
func (obj *StmtProg) Graph() (*pgraph.Graph, error) {
graph, err := pgraph.NewGraph("prog")
if err != nil {
return nil, errwrap.Wrapf(err, "could not create graph")
}
// collect all graphs that need to be included
for _, x := range obj.Prog {
// skip over *StmtClass here
if _, ok := x.(*StmtClass); ok {
continue
}
// skip over StmtFunc, even though it doesn't produce anything!
if _, ok := x.(*StmtFunc); ok {
continue
}
// skip over StmtBind, even though it doesn't produce anything!
if _, ok := x.(*StmtBind); ok {
continue
}
g, err := x.Graph()
if err != nil {
return nil, err
}
graph.AddGraph(g)
}
// add graphs from SetScope's imported child programs
for _, x := range obj.importProgs {
g, err := x.Graph()
if err != nil {
return nil, err
}
graph.AddGraph(g)
}
return graph, nil
}
// Output returns the output that this "program" produces. This output is what
// is used to build the output graph. This only exists for statements. The
// analogous function for expressions is Value. Those Value functions might get
// called by this Output function if they are needed to produce the output.
func (obj *StmtProg) Output() (*interfaces.Output, error) {
resources := []engine.Res{}
edges := []*interfaces.Edge{}
for _, stmt := range obj.Prog {
// skip over *StmtClass here so its Output method can be used...
if _, ok := stmt.(*StmtClass); ok {
// don't read output from StmtClass, it
// gets consumed by StmtInclude instead
continue
}
// skip over StmtFunc, even though it doesn't produce anything!
if _, ok := stmt.(*StmtFunc); ok {
continue
}
// skip over StmtBind, even though it doesn't produce anything!
if _, ok := stmt.(*StmtBind); ok {
continue
}
output, err := stmt.Output()
if err != nil {
return nil, err
}
if output != nil {
resources = append(resources, output.Resources...)
edges = append(edges, output.Edges...)
}
}
// nothing to add from SetScope's imported child programs
return &interfaces.Output{
Resources: resources,
Edges: edges,
}, nil
}
// IsModuleUnsafe returns whether or not this StmtProg is unsafe to consume as a
// module scope. IOW, if someone writes a module which is imported and which has
// statements other than bind, func, class or import, then it is not correct to
// import, since those other elements wouldn't be used, and might provide a
// false belief that they'll get included when mgmt imports that module.
// SetScope should be called before this is used. (TODO: verify this)
// TODO: return a multierr with all the unsafe elements, to provide better info
// TODO: technically this could be a method on Stmt, possibly using Apply...
func (obj *StmtProg) IsModuleUnsafe() error { // TODO: rename this function?
for _, x := range obj.Prog {
// stmt's allowed: import, bind, func, class
// stmt's not-allowed: if, include, res, edge
switch x.(type) {
case *StmtImport:
case *StmtBind:
case *StmtFunc:
case *StmtClass:
case *StmtComment: // possibly not even parsed
// all of these are safe
default:
// something else unsafe (unused)
return fmt.Errorf("found stmt: %s", x.String())
}
}
return nil
}
// StmtFunc represents a user defined function. It binds the specified name to
// the supplied function in the current scope and irrespective of the order of
// definition.
type StmtFunc struct {
Name string
//Func *ExprFunc // TODO: should it be this instead?
Func interfaces.Expr // TODO: is this correct?
}
// String returns a short representation of this statement.
func (obj *StmtFunc) String() string {
return fmt.Sprintf("func(%s)", obj.Name)
}
// Apply is a general purpose iterator method that operates on any AST node. It
// is not used as the primary AST traversal function because it is less readable
// and easy to reason about than manually implementing traversal for each node.
// Nevertheless, it is a useful facility for operations that might only apply to
// a select number of node types, since they won't need extra noop iterators...
func (obj *StmtFunc) Apply(fn func(interfaces.Node) error) error {
if err := obj.Func.Apply(fn); err != nil {
return err
}
return fn(obj)
}
// Init initializes this branch of the AST, and returns an error if it fails to
// validate.
func (obj *StmtFunc) Init(data *interfaces.Data) error {
//obj.data = data // TODO: ???
if err := obj.Func.Init(data); err != nil {
return err
}
return nil
}
// Interpolate returns a new node (or itself) once it has been expanded. This
// generally increases the size of the AST when it is used. It calls Interpolate
// on any child elements and builds the new node with those new node contents.
func (obj *StmtFunc) Interpolate() (interfaces.Stmt, error) {
interpolated, err := obj.Func.Interpolate()
if err != nil {
return nil, err
}
return &StmtFunc{
Name: obj.Name,
Func: interpolated,
}, nil
}
// Copy returns a light copy of this struct. Anything static will not be copied.
func (obj *StmtFunc) Copy() (interfaces.Stmt, error) {
copied := false
fn, err := obj.Func.Copy()
if err != nil {
return nil, err
}
if fn != obj.Func { // must have been copied, or pointer would be same
copied = true
}
if !copied { // it's static
return obj, nil
}
return &StmtFunc{
Name: obj.Name,
Func: fn,
}, nil
}
// Ordering returns a graph of the scope ordering that represents the data flow.
// This can be used in SetScope so that it knows the correct order to run it in.
// We only really care about the consumers here, because the "produces" aspect
// of this resource is handled by the StmtProg Ordering function. This is
// because the "prog" allows out-of-order statements, therefore it solves this
// by running an early (second) loop through the program and peering into this
// Stmt and extracting the produced name.
func (obj *StmtFunc) Ordering(produces map[string]interfaces.Node) (*pgraph.Graph, map[interfaces.Node]string, error) {
graph, err := pgraph.NewGraph("ordering")
if err != nil {
return nil, nil, errwrap.Wrapf(err, "could not create graph")
}
graph.AddVertex(obj)
// additional constraint...
edge := &pgraph.SimpleEdge{Name: "stmtfuncfunc"}
graph.AddEdge(obj.Func, obj, edge) // prod -> cons
cons := make(map[interfaces.Node]string)
g, c, err := obj.Func.Ordering(produces)
if err != nil {
return nil, nil, err
}
graph.AddGraph(g) // add in the child graph
for k, v := range c { // c is consumes
x, exists := cons[k]
if exists && v != x {
return nil, nil, fmt.Errorf("consumed value is different, got `%+v`, expected `%+v`", x, v)
}
cons[k] = v // add to map
n, exists := produces[v]
if !exists {
continue
}
edge := &pgraph.SimpleEdge{Name: "stmtfunc"}
graph.AddEdge(n, k, edge)
}
return graph, cons, nil
}
// SetScope sets the scope of the child expression bound to it. It seems this is
// necessary in order to reach this, in particular in situations when a bound
// expression points to a previously bound expression.
func (obj *StmtFunc) SetScope(scope *interfaces.Scope) error {
return obj.Func.SetScope(scope)
}
// Unify returns the list of invariants that this node produces. It recursively
// calls Unify on any children elements that exist in the AST, and returns the
// collection to the caller.
func (obj *StmtFunc) Unify() ([]interfaces.Invariant, error) {
if obj.Name == "" {
return nil, fmt.Errorf("missing function name")
}
// I think the invariants should come in from ExprCall instead, because
// ExprCall operates on an instatiated copy of the contained ExprFunc
// which will have different pointers than what is seen here.
//return obj.Func.Unify() // nope!
return []interfaces.Invariant{}, nil
}
// Graph returns the reactive function graph which is expressed by this node. It
// includes any vertices produced by this node, and the appropriate edges to any
// vertices that are produced by its children. Nodes which fulfill the Expr
// interface directly produce vertices (and possible children) where as nodes
// that fulfill the Stmt interface do not produces vertices, where as their
// children might. This particular func statement adds its linked expression to
// the graph.
func (obj *StmtFunc) Graph() (*pgraph.Graph, error) {
//return obj.Func.Graph() // nope!
return pgraph.NewGraph("stmtfunc") // do this in ExprCall instead
}
// Output for the func statement produces no output. Any values of interest come
// from the use of the func which this binds the function to.
func (obj *StmtFunc) Output() (*interfaces.Output, error) {
return interfaces.EmptyOutput(), nil
}
// StmtClass represents a user defined class. It's effectively a program body
// that can optionally take some parameterized inputs.
// TODO: We don't currently support defining polymorphic classes (eg: different
// signatures for the same class name) but it might be something to consider.
type StmtClass struct {
scope *interfaces.Scope // store for referencing this later
Name string
Args []*Arg
Body interfaces.Stmt // probably a *StmtProg
}
// String returns a short representation of this statement.
func (obj *StmtClass) String() string {
return fmt.Sprintf("class(%s)", obj.Name)
}
// Apply is a general purpose iterator method that operates on any AST node. It
// is not used as the primary AST traversal function because it is less readable
// and easy to reason about than manually implementing traversal for each node.
// Nevertheless, it is a useful facility for operations that might only apply to
// a select number of node types, since they won't need extra noop iterators...
func (obj *StmtClass) Apply(fn func(interfaces.Node) error) error {
if err := obj.Body.Apply(fn); err != nil {
return err
}
return fn(obj)
}
// Init initializes this branch of the AST, and returns an error if it fails to
// validate.
func (obj *StmtClass) Init(data *interfaces.Data) error {
return obj.Body.Init(data)
}
// Interpolate returns a new node (aka a copy) once it has been expanded. This
// generally increases the size of the AST when it is used. It calls Interpolate
// on any child elements and builds the new node with those new node contents.
func (obj *StmtClass) Interpolate() (interfaces.Stmt, error) {
interpolated, err := obj.Body.Interpolate()
if err != nil {
return nil, err
}
args := obj.Args
if obj.Args == nil {
args = []*Arg{}
}
return &StmtClass{
scope: obj.scope,
Name: obj.Name,
Args: args, // ensure this has length == 0 instead of nil
Body: interpolated,
}, nil
}
// Copy returns a light copy of this struct. Anything static will not be copied.
func (obj *StmtClass) Copy() (interfaces.Stmt, error) {
copied := false
body, err := obj.Body.Copy()
if err != nil {
return nil, err
}
if body != obj.Body { // must have been copied, or pointer would be same
copied = true
}
args := obj.Args
if obj.Args == nil {
args = []*Arg{}
}
if !copied { // it's static
return obj, nil
}
return &StmtClass{
scope: obj.scope,
Name: obj.Name,
Args: args, // ensure this has length == 0 instead of nil
Body: body,
}, nil
}
// Ordering returns a graph of the scope ordering that represents the data flow.
// This can be used in SetScope so that it knows the correct order to run it in.
// We only really care about the consumers here, because the "produces" aspect
// of this resource is handled by the StmtProg Ordering function. This is
// because the "prog" allows out-of-order statements, therefore it solves this
// by running an early (second) loop through the program and peering into this
// Stmt and extracting the produced name.
// TODO: Is Ordering in StmtInclude done properly and in sync with this?
// XXX: do we need to add ordering around named args, eg: obj.Args Name strings?
func (obj *StmtClass) Ordering(produces map[string]interfaces.Node) (*pgraph.Graph, map[interfaces.Node]string, error) {
graph, err := pgraph.NewGraph("ordering")
if err != nil {
return nil, nil, errwrap.Wrapf(err, "could not create graph")
}
graph.AddVertex(obj)
// additional constraint...
edge := &pgraph.SimpleEdge{Name: "stmtclassbody"}
graph.AddEdge(obj.Body, obj, edge) // prod -> cons
cons := make(map[interfaces.Node]string)
g, c, err := obj.Body.Ordering(produces)
if err != nil {
return nil, nil, err
}
graph.AddGraph(g) // add in the child graph
for k, v := range c { // c is consumes
x, exists := cons[k]
if exists && v != x {
return nil, nil, fmt.Errorf("consumed value is different, got `%+v`, expected `%+v`", x, v)
}
cons[k] = v // add to map
n, exists := produces[v]
if !exists {
continue
}
edge := &pgraph.SimpleEdge{Name: "stmtclass"}
graph.AddEdge(n, k, edge)
}
return graph, cons, nil
}
// SetScope sets the scope of the child expression bound to it. It seems this is
// necessary in order to reach this, in particular in situations when a bound
// expression points to a previously bound expression.
func (obj *StmtClass) SetScope(scope *interfaces.Scope) error {
if scope == nil {
scope = interfaces.EmptyScope()
}
obj.scope = scope // store for later
return obj.Body.SetScope(scope)
}
// Unify returns the list of invariants that this node produces. It recursively
// calls Unify on any children elements that exist in the AST, and returns the
// collection to the caller.
func (obj *StmtClass) Unify() ([]interfaces.Invariant, error) {
if obj.Name == "" {
return nil, fmt.Errorf("missing class name")
}
// TODO: do we need to add anything else here because of the obj.Args ?
return obj.Body.Unify()
}
// Graph returns the reactive function graph which is expressed by this node. It
// includes any vertices produced by this node, and the appropriate edges to any
// vertices that are produced by its children. Nodes which fulfill the Expr
// interface directly produce vertices (and possible children) where as nodes
// that fulfill the Stmt interface do not produces vertices, where as their
// children might. This particular func statement adds its linked expression to
// the graph.
func (obj *StmtClass) Graph() (*pgraph.Graph, error) {
return obj.Body.Graph()
}
// Output for the class statement produces no output. Any values of interest
// come from the use of the include which this binds the statements to. This is
// usually called from the parent in StmtProg, but it skips running it so that
// it can be called from the StmtInclude Output method.
func (obj *StmtClass) Output() (*interfaces.Output, error) {
return obj.Body.Output()
}
// StmtInclude causes a user defined class to get used. It's effectively the way
// to call a class except that it produces output instead of a value. Most of
// the interesting logic for classes happens here or in StmtProg.
type StmtInclude struct {
class *StmtClass // copy of class that we're using
orig *StmtInclude // original pointer to this
Name string
Args []interfaces.Expr
}
// String returns a short representation of this statement.
func (obj *StmtInclude) String() string {
return fmt.Sprintf("include(%s)", obj.Name)
}
// Apply is a general purpose iterator method that operates on any AST node. It
// is not used as the primary AST traversal function because it is less readable
// and easy to reason about than manually implementing traversal for each node.
// Nevertheless, it is a useful facility for operations that might only apply to
// a select number of node types, since they won't need extra noop iterators...
func (obj *StmtInclude) Apply(fn func(interfaces.Node) error) error {
// If the class exists, then descend into it, because at this point, the
// copy of the original class that is stored here, is the effective
// class that we care about for type unification, and everything else...
// It's not clear if this is needed, but it's probably nor harmful atm.
if obj.class != nil {
if err := obj.class.Apply(fn); err != nil {
return err
}
}
if obj.Args != nil {
for _, x := range obj.Args {
if err := x.Apply(fn); err != nil {
return err
}
}
}
return fn(obj)
}
// Init initializes this branch of the AST, and returns an error if it fails to
// validate.
func (obj *StmtInclude) Init(data *interfaces.Data) error {
if obj.Args != nil {
for _, x := range obj.Args {
if err := x.Init(data); err != nil {
return err
}
}
}
return nil
}
// Interpolate returns a new node (aka a copy) once it has been expanded. This
// generally increases the size of the AST when it is used. It calls Interpolate
// on any child elements and builds the new node with those new node contents.
func (obj *StmtInclude) Interpolate() (interfaces.Stmt, error) {
args := []interfaces.Expr{}
if obj.Args != nil {
for _, x := range obj.Args {
interpolated, err := x.Interpolate()
if err != nil {
return nil, err
}
args = append(args, interpolated)
}
}
orig := obj
if obj.orig != nil { // preserve the original pointer (the identifier!)
orig = obj.orig
}
return &StmtInclude{
//class: obj.class, // TODO: is this necessary?
orig: orig,
Name: obj.Name,
Args: args,
}, nil
}
// Copy returns a light copy of this struct. Anything static will not be copied.
func (obj *StmtInclude) Copy() (interfaces.Stmt, error) {
copied := false
args := []interfaces.Expr{}
if obj.Args != nil {
for _, x := range obj.Args {
cp, err := x.Copy()
if err != nil {
return nil, err
}
if cp != x { // must have been copied, or pointer would be same
copied = true
}
args = append(args, cp)
}
}
// TODO: is this necessary? (I doubt it even gets used.)
orig := obj
if obj.orig != nil { // preserve the original pointer (the identifier!)
orig = obj.orig
copied = true // TODO: is this what we want?
}
if !copied { // it's static
return obj, nil
}
return &StmtInclude{
//class: obj.class, // TODO: is this necessary?
orig: orig,
Name: obj.Name,
Args: args,
}, nil
}
// Ordering returns a graph of the scope ordering that represents the data flow.
// This can be used in SetScope so that it knows the correct order to run it in.
// TODO: Is Ordering in StmtClass done properly and in sync with this?
func (obj *StmtInclude) Ordering(produces map[string]interfaces.Node) (*pgraph.Graph, map[interfaces.Node]string, error) {
graph, err := pgraph.NewGraph("ordering")
if err != nil {
return nil, nil, errwrap.Wrapf(err, "could not create graph")
}
graph.AddVertex(obj)
if obj.Name == "" {
return nil, nil, fmt.Errorf("missing class name")
}
uid := classOrderingPrefix + obj.Name // ordering id
cons := make(map[interfaces.Node]string)
cons[obj] = uid
node, exists := produces[uid]
if exists {
edge := &pgraph.SimpleEdge{Name: "stmtinclude"}
graph.AddEdge(node, obj, edge) // prod -> cons
}
for _, node := range obj.Args {
g, c, err := node.Ordering(produces)
if err != nil {
return nil, nil, err
}
graph.AddGraph(g) // add in the child graph
// additional constraint...
edge := &pgraph.SimpleEdge{Name: "stmtincludeargs1"}
graph.AddEdge(node, obj, edge) // prod -> cons
for k, v := range c { // c is consumes
x, exists := cons[k]
if exists && v != x {
return nil, nil, fmt.Errorf("consumed value is different, got `%+v`, expected `%+v`", x, v)
}
cons[k] = v // add to map
n, exists := produces[v]
if !exists {
continue
}
edge := &pgraph.SimpleEdge{Name: "stmtincludeargs2"}
graph.AddEdge(n, k, edge)
}
}
return graph, cons, nil
}
// SetScope stores the scope for use in this statement. Since this is the first
// location where recursion would play an important role, this also detects and
// handles the recursion scenario.
func (obj *StmtInclude) SetScope(scope *interfaces.Scope) error {
if scope == nil {
scope = interfaces.EmptyScope()
}
stmt, exists := scope.Classes[obj.Name]
if !exists {
return fmt.Errorf("class `%s` does not exist in this scope", obj.Name)
}
class, ok := stmt.(*StmtClass)
if !ok {
return fmt.Errorf("class scope of `%s` does not contain a class", obj.Name)
}
// is it even possible for the signatures to match?
if len(class.Args) != len(obj.Args) {
return fmt.Errorf("class `%s` expected %d args but got %d", obj.Name, len(class.Args), len(obj.Args))
}
if obj.class != nil {
// possible programming error
return fmt.Errorf("include already contains a class pointer")
}
// make sure to propagate the scope to our input args!
if obj.Args != nil {
for _, x := range obj.Args {
if err := x.SetScope(scope); err != nil {
return err
}
}
}
for i := len(scope.Chain) - 1; i >= 0; i-- { // reverse order
x, ok := scope.Chain[i].(*StmtInclude)
if !ok {
continue
}
if x == obj.orig { // look for my original self
// scope chain found!
obj.class = class // same pointer, don't copy
return fmt.Errorf("recursive class `%s` found", obj.Name)
//return nil // if recursion was supported
}
}
// helper function to keep things more logical
cp := func(input *StmtClass) (*StmtClass, error) {
copied, err := input.Copy() // this does a light copy
if err != nil {
return nil, errwrap.Wrapf(err, "could not copy class")
}
class, ok := copied.(*StmtClass) // convert it back again
if !ok {
return nil, fmt.Errorf("copied class named `%s` is not a class", obj.Name)
}
return class, nil
}
copied, err := cp(class) // copy it for each use of the include
if err != nil {
return errwrap.Wrapf(err, "could not copy class")
}
obj.class = copied
// We start with the scope that the class had, and we augment it with
// our parameterized arg variables, which will be needed in that scope.
newScope := obj.class.scope.Copy()
// Add our args `include foo(42, "bar", true)` into the class scope.
for i, arg := range obj.class.Args { // copy
newScope.Variables[arg.Name] = obj.Args[i]
}
// recursion detection
newScope.Chain = append(newScope.Chain, obj.orig) // add stmt to list
newScope.Classes[obj.Name] = copied // overwrite with new pointer
// NOTE: This would overwrite the scope that was previously set here,
// which would break the scoping rules. Scopes are propagated into
// class definitions, but not into include definitions. Which is why we
// need to use the original scope of the class as it was set as the
// basis for this scope, so that we overwrite it only with the arg
// changes.
if err := obj.class.SetScope(newScope); err != nil {
return err
}
return nil
}
// Unify returns the list of invariants that this node produces. It recursively
// calls Unify on any children elements that exist in the AST, and returns the
// collection to the caller.
func (obj *StmtInclude) Unify() ([]interfaces.Invariant, error) {
if obj.Name == "" {
return nil, fmt.Errorf("missing include name")
}
if obj.class == nil {
// possible programming error
return nil, fmt.Errorf("include doesn't contain a class pointer yet")
}
// is it even possible for the signatures to match?
if len(obj.class.Args) != len(obj.Args) {
return nil, fmt.Errorf("class `%s` expected %d args but got %d", obj.Name, len(obj.class.Args), len(obj.Args))
}
var invariants []interfaces.Invariant
// do this here because we skip doing it in the StmtProg parent
invars, err := obj.class.Unify()
if err != nil {
return nil, err
}
invariants = append(invariants, invars...)
// collect all the invariants of each sub-expression
for i, x := range obj.Args {
invars, err := x.Unify()
if err != nil {
return nil, err
}
invariants = append(invariants, invars...)
// TODO: are additional invariants required?
// add invariants between the args and the class
if typ := obj.class.Args[i].Type; typ != nil {
invar := &unification.EqualsInvariant{
Expr: obj.Args[i],
Type: typ, // type of arg
}
invariants = append(invariants, invar)
}
}
return invariants, nil
}
// Graph returns the reactive function graph which is expressed by this node. It
// includes any vertices produced by this node, and the appropriate edges to any
// vertices that are produced by its children. Nodes which fulfill the Expr
// interface directly produce vertices (and possible children) where as nodes
// that fulfill the Stmt interface do not produces vertices, where as their
// children might. This particular func statement adds its linked expression to
// the graph.
func (obj *StmtInclude) Graph() (*pgraph.Graph, error) {
graph, err := pgraph.NewGraph("include")
if err != nil {
return nil, errwrap.Wrapf(err, "could not create graph")
}
g, err := obj.class.Graph()
if err != nil {
return nil, err
}
graph.AddGraph(g)
return graph, nil
}
// Output returns the output that this include produces. This output is what
// is used to build the output graph. This only exists for statements. The
// analogous function for expressions is Value. Those Value functions might get
// called by this Output function if they are needed to produce the output. The
// ultimate source of this output comes from the previously defined StmtClass
// which should be found in our scope.
func (obj *StmtInclude) Output() (*interfaces.Output, error) {
return obj.class.Output()
}
// StmtImport adds the exported scope definitions of a module into the current
// scope. It can be used anywhere a statement is allowed, and can even be nested
// inside a class definition. By convention, it is commonly used at the top of a
// file. As with any statement, it produces output, but that output is empty. To
// benefit from its inclusion, reference the scope definitions you want.
type StmtImport struct {
Name string
Alias string
}
// String returns a short representation of this statement.
func (obj *StmtImport) String() string {
return fmt.Sprintf("import(%s)", obj.Name)
}
// Apply is a general purpose iterator method that operates on any AST node. It
// is not used as the primary AST traversal function because it is less readable
// and easy to reason about than manually implementing traversal for each node.
// Nevertheless, it is a useful facility for operations that might only apply to
// a select number of node types, since they won't need extra noop iterators...
func (obj *StmtImport) Apply(fn func(interfaces.Node) error) error { return fn(obj) }
// Init initializes this branch of the AST, and returns an error if it fails to
// validate.
func (obj *StmtImport) Init(*interfaces.Data) error { return nil }
// Interpolate returns a new node (aka a copy) once it has been expanded. This
// generally increases the size of the AST when it is used. It calls Interpolate
// on any child elements and builds the new node with those new node contents.
func (obj *StmtImport) Interpolate() (interfaces.Stmt, error) {
return &StmtImport{
Name: obj.Name,
Alias: obj.Alias,
}, nil
}
// Copy returns a light copy of this struct. Anything static will not be copied.
func (obj *StmtImport) Copy() (interfaces.Stmt, error) {
return obj, nil // always static
}
// Ordering returns a graph of the scope ordering that represents the data flow.
// This can be used in SetScope so that it knows the correct order to run it in.
// Nothing special happens in this method, the import magic happens in StmtProg.
func (obj *StmtImport) Ordering(produces map[string]interfaces.Node) (*pgraph.Graph, map[interfaces.Node]string, error) {
graph, err := pgraph.NewGraph("ordering")
if err != nil {
return nil, nil, errwrap.Wrapf(err, "could not create graph")
}
graph.AddVertex(obj)
cons := make(map[interfaces.Node]string)
return graph, cons, nil
}
// SetScope stores the scope for later use in this resource and it's children,
// which it propagates this downwards to.
func (obj *StmtImport) SetScope(*interfaces.Scope) error { return nil }
// Unify returns the list of invariants that this node produces. It recursively
// calls Unify on any children elements that exist in the AST, and returns the
// collection to the caller.
func (obj *StmtImport) Unify() ([]interfaces.Invariant, error) {
if obj.Name == "" {
return nil, fmt.Errorf("missing import name")
}
return []interfaces.Invariant{}, nil
}
// Graph returns the reactive function graph which is expressed by this node. It
// includes any vertices produced by this node, and the appropriate edges to any
// vertices that are produced by its children. Nodes which fulfill the Expr
// interface directly produce vertices (and possible children) where as nodes
// that fulfill the Stmt interface do not produces vertices, where as their
// children might. This particular statement just returns an empty graph.
func (obj *StmtImport) Graph() (*pgraph.Graph, error) {
graph, err := pgraph.NewGraph("import")
return graph, errwrap.Wrapf(err, "could not create graph")
}
// Output returns the output that this include produces. This output is what
// is used to build the output graph. This only exists for statements. The
// analogous function for expressions is Value. Those Value functions might get
// called by this Output function if they are needed to produce the output. This
// import statement itself produces no output, as it is only used to populate
// the scope so that others can use that to produce values and output.
func (obj *StmtImport) Output() (*interfaces.Output, error) {
return interfaces.EmptyOutput(), nil
}
// StmtComment is a representation of a comment. It is currently unused. It
// probably makes sense to make a third kind of Node (not a Stmt or an Expr) so
// that comments can still be part of the AST (for eventual automatic code
// formatting) but so that they can exist anywhere in the code. Currently these
// are dropped by the lexer.
type StmtComment struct {
Value string
}
// String returns a short representation of this statement.
func (obj *StmtComment) String() string {
return fmt.Sprintf("comment(%s)", obj.Value)
}
// Apply is a general purpose iterator method that operates on any AST node. It
// is not used as the primary AST traversal function because it is less readable
// and easy to reason about than manually implementing traversal for each node.
// Nevertheless, it is a useful facility for operations that might only apply to
// a select number of node types, since they won't need extra noop iterators...
func (obj *StmtComment) Apply(fn func(interfaces.Node) error) error { return fn(obj) }
// Init initializes this branch of the AST, and returns an error if it fails to
// validate.
func (obj *StmtComment) Init(*interfaces.Data) error {
return nil
}
// Interpolate returns a new node (aka a copy) once it has been expanded. This
// generally increases the size of the AST when it is used. It calls Interpolate
// on any child elements and builds the new node with those new node contents.
// Here it simply returns itself, as no interpolation is possible.
func (obj *StmtComment) Interpolate() (interfaces.Stmt, error) {
return &StmtComment{
Value: obj.Value,
}, nil
}
// Copy returns a light copy of this struct. Anything static will not be copied.
func (obj *StmtComment) Copy() (interfaces.Stmt, error) {
return obj, nil // always static
}
// Ordering returns a graph of the scope ordering that represents the data flow.
// This can be used in SetScope so that it knows the correct order to run it in.
func (obj *StmtComment) Ordering(produces map[string]interfaces.Node) (*pgraph.Graph, map[interfaces.Node]string, error) {
graph, err := pgraph.NewGraph("ordering")
if err != nil {
return nil, nil, errwrap.Wrapf(err, "could not create graph")
}
graph.AddVertex(obj)
cons := make(map[interfaces.Node]string)
return graph, cons, nil
}
// SetScope does nothing for this struct, because it has no child nodes, and it
// does not need to know about the parent scope.
func (obj *StmtComment) SetScope(*interfaces.Scope) error { return nil }
// Unify returns the list of invariants that this node produces. It recursively
// calls Unify on any children elements that exist in the AST, and returns the
// collection to the caller.
func (obj *StmtComment) Unify() ([]interfaces.Invariant, error) {
return []interfaces.Invariant{}, nil
}
// Graph returns the reactive function graph which is expressed by this node. It
// includes any vertices produced by this node, and the appropriate edges to any
// vertices that are produced by its children. Nodes which fulfill the Expr
// interface directly produce vertices (and possible children) where as nodes
// that fulfill the Stmt interface do not produces vertices, where as their
// children might. This particular graph does nothing clever.
func (obj *StmtComment) Graph() (*pgraph.Graph, error) {
graph, err := pgraph.NewGraph("comment")
if err != nil {
return nil, errwrap.Wrapf(err, "could not create graph")
}
return graph, nil
}
// Output for the comment statement produces no output.
func (obj *StmtComment) Output() (*interfaces.Output, error) {
return interfaces.EmptyOutput(), nil
}
// ExprAny is a placeholder expression that is used for type unification hacks.
type ExprAny struct {
typ *types.Type
}
// String returns a short representation of this expression.
func (obj *ExprAny) String() string { return "any" }
// Apply is a general purpose iterator method that operates on any AST node. It
// is not used as the primary AST traversal function because it is less readable
// and easy to reason about than manually implementing traversal for each node.
// Nevertheless, it is a useful facility for operations that might only apply to
// a select number of node types, since they won't need extra noop iterators...
func (obj *ExprAny) Apply(fn func(interfaces.Node) error) error { return fn(obj) }
// Init initializes this branch of the AST, and returns an error if it fails to
// validate.
func (obj *ExprAny) Init(*interfaces.Data) error { return nil }
// Interpolate returns a new node (aka a copy) once it has been expanded. This
// generally increases the size of the AST when it is used. It calls Interpolate
// on any child elements and builds the new node with those new node contents.
// Here it simply returns itself, as no interpolation is possible.
func (obj *ExprAny) Interpolate() (interfaces.Expr, error) {
return &ExprAny{
typ: obj.typ,
}, nil
}
// Copy returns a light copy of this struct. Anything static will not be copied.
func (obj *ExprAny) Copy() (interfaces.Expr, error) {
return obj, nil // always static
}
// Ordering returns a graph of the scope ordering that represents the data flow.
// This can be used in SetScope so that it knows the correct order to run it in.
func (obj *ExprAny) Ordering(produces map[string]interfaces.Node) (*pgraph.Graph, map[interfaces.Node]string, error) {
graph, err := pgraph.NewGraph("ordering")
if err != nil {
return nil, nil, errwrap.Wrapf(err, "could not create graph")
}
graph.AddVertex(obj)
cons := make(map[interfaces.Node]string)
return graph, cons, nil
}
// SetScope does nothing for this struct, because it has no child nodes, and it
// does not need to know about the parent scope.
func (obj *ExprAny) SetScope(*interfaces.Scope) error { return nil }
// SetType is used to set the type of this expression once it is known. This
// usually happens during type unification, but it can also happen during
// parsing if a type is specified explicitly. Since types are static and don't
// change on expressions, if you attempt to set a different type than what has
// previously been set (when not initially known) this will error.
func (obj *ExprAny) SetType(typ *types.Type) error {
if obj.typ != nil {
return obj.typ.Cmp(typ) // if not set, ensure it doesn't change
}
obj.typ = typ // set
return nil
}
// Type returns the type of this expression.
func (obj *ExprAny) Type() (*types.Type, error) {
if obj.typ == nil {
return nil, interfaces.ErrTypeCurrentlyUnknown
}
return obj.typ, nil
}
// Unify returns the list of invariants that this node produces. It recursively
// calls Unify on any children elements that exist in the AST, and returns the
// collection to the caller.
func (obj *ExprAny) Unify() ([]interfaces.Invariant, error) {
invariants := []interfaces.Invariant{
&unification.AnyInvariant{ // it has to be something, anything!
Expr: obj,
},
}
return invariants, nil
}
// Graph returns the reactive function graph which is expressed by this node. It
// includes any vertices produced by this node, and the appropriate edges to any
// vertices that are produced by its children. Nodes which fulfill the Expr
// interface directly produce vertices (and possible children) where as nodes
// that fulfill the Stmt interface do not produces vertices, where as their
// children might. This returns a graph with a single vertex (itself) in it, and
// the edges from all of the child graphs to this.
func (obj *ExprAny) Graph() (*pgraph.Graph, error) {
graph, err := pgraph.NewGraph("any")
if err != nil {
return nil, errwrap.Wrapf(err, "could not create graph")
}
graph.AddVertex(obj)
return graph, nil
}
// Func returns the reactive stream of values that this expression produces.
func (obj *ExprAny) Func() (interfaces.Func, error) {
return nil, fmt.Errorf("programming error") // this should not be called
}
// SetValue here is a no-op, because algorithmically when this is called from
// the func engine, the child elements (the list elements) will have had this
// done to them first, and as such when we try and retrieve the set value from
// this expression by calling `Value`, it will build it from scratch!
func (obj *ExprAny) SetValue(value types.Value) error {
return fmt.Errorf("programming error") // this should not be called
}
// Value returns the value of this expression in our type system. This will
// usually only be valid once the engine has run and values have been produced.
// This might get called speculatively (early) during unification to learn more.
func (obj *ExprAny) Value() (types.Value, error) {
return nil, fmt.Errorf("programming error") // this should not be called
}
// ExprBool is a representation of a boolean.
type ExprBool struct {
scope *interfaces.Scope // store for referencing this later
V bool
}
// String returns a short representation of this expression.
func (obj *ExprBool) String() string { return fmt.Sprintf("bool(%t)", obj.V) }
// Apply is a general purpose iterator method that operates on any AST node. It
// is not used as the primary AST traversal function because it is less readable
// and easy to reason about than manually implementing traversal for each node.
// Nevertheless, it is a useful facility for operations that might only apply to
// a select number of node types, since they won't need extra noop iterators...
func (obj *ExprBool) Apply(fn func(interfaces.Node) error) error { return fn(obj) }
// Init initializes this branch of the AST, and returns an error if it fails to
// validate.
func (obj *ExprBool) Init(*interfaces.Data) error { return nil }
// Interpolate returns a new node (aka a copy) once it has been expanded. This
// generally increases the size of the AST when it is used. It calls Interpolate
// on any child elements and builds the new node with those new node contents.
// Here it simply returns itself, as no interpolation is possible.
func (obj *ExprBool) Interpolate() (interfaces.Expr, error) {
return &ExprBool{
scope: obj.scope,
V: obj.V,
}, nil
}
// Copy returns a light copy of this struct. Anything static will not be copied.
func (obj *ExprBool) Copy() (interfaces.Expr, error) {
return obj, nil // always static
}
// Ordering returns a graph of the scope ordering that represents the data flow.
// This can be used in SetScope so that it knows the correct order to run it in.
func (obj *ExprBool) Ordering(produces map[string]interfaces.Node) (*pgraph.Graph, map[interfaces.Node]string, error) {
graph, err := pgraph.NewGraph("ordering")
if err != nil {
return nil, nil, errwrap.Wrapf(err, "could not create graph")
}
graph.AddVertex(obj)
cons := make(map[interfaces.Node]string)
return graph, cons, nil
}
// SetScope does nothing for this struct, because it has no child nodes, and it
// does not need to know about the parent scope. It does however store it for
// later possible use.
func (obj *ExprBool) SetScope(scope *interfaces.Scope) error {
if scope == nil {
scope = interfaces.EmptyScope()
}
obj.scope = scope
return nil
}
// SetType will make no changes if called here. It will error if anything other
// than a Bool is passed in, and doesn't need to be called for this expr to work.
func (obj *ExprBool) SetType(typ *types.Type) error { return types.TypeBool.Cmp(typ) }
// Type returns the type of this expression. This method always returns Bool here.
func (obj *ExprBool) Type() (*types.Type, error) { return types.TypeBool, nil }
// Unify returns the list of invariants that this node produces. It recursively
// calls Unify on any children elements that exist in the AST, and returns the
// collection to the caller.
func (obj *ExprBool) Unify() ([]interfaces.Invariant, error) {
invariants := []interfaces.Invariant{
&unification.EqualsInvariant{
Expr: obj,
Type: types.TypeBool,
},
}
return invariants, nil
}
// Graph returns the reactive function graph which is expressed by this node. It
// includes any vertices produced by this node, and the appropriate edges to any
// vertices that are produced by its children. Nodes which fulfill the Expr
// interface directly produce vertices (and possible children) where as nodes
// that fulfill the Stmt interface do not produces vertices, where as their
// children might. This returns a graph with a single vertex (itself) in it.
func (obj *ExprBool) Graph() (*pgraph.Graph, error) {
graph, err := pgraph.NewGraph("bool")
if err != nil {
return nil, errwrap.Wrapf(err, "could not create graph")
}
graph.AddVertex(obj)
return graph, nil
}
// Func returns the reactive stream of values that this expression produces.
func (obj *ExprBool) Func() (interfaces.Func, error) {
return &structs.ConstFunc{
Value: &types.BoolValue{V: obj.V},
}, nil
}
// SetValue for a bool expression is always populated statically, and does not
// ever receive any incoming values (no incoming edges) so this should never be
// called. It has been implemented for uniformity.
func (obj *ExprBool) SetValue(value types.Value) error {
if err := types.TypeBool.Cmp(value.Type()); err != nil {
return err
}
// XXX: should we compare the incoming value with the stored value?
obj.V = value.Bool()
return nil
}
// Value returns the value of this expression in our type system. This will
// usually only be valid once the engine has run and values have been produced.
// This might get called speculatively (early) during unification to learn more.
// This particular value is always known since it is a constant.
func (obj *ExprBool) Value() (types.Value, error) {
return &types.BoolValue{
V: obj.V,
}, nil
}
// ExprStr is a representation of a string.
type ExprStr struct {
data *interfaces.Data
scope *interfaces.Scope // store for referencing this later
V string // value of this string
}
// String returns a short representation of this expression.
func (obj *ExprStr) String() string { return fmt.Sprintf("str(%s)", strconv.Quote(obj.V)) }
// Apply is a general purpose iterator method that operates on any AST node. It
// is not used as the primary AST traversal function because it is less readable
// and easy to reason about than manually implementing traversal for each node.
// Nevertheless, it is a useful facility for operations that might only apply to
// a select number of node types, since they won't need extra noop iterators...
func (obj *ExprStr) Apply(fn func(interfaces.Node) error) error { return fn(obj) }
// Init initializes this branch of the AST, and returns an error if it fails to
// validate.
func (obj *ExprStr) Init(data *interfaces.Data) error {
obj.data = data
return nil
}
// Interpolate returns a new node (aka a copy) once it has been expanded. This
// generally increases the size of the AST when it is used. It calls Interpolate
// on any child elements and builds the new node with those new node contents.
// Here it attempts to expand the string if there are any internal variables
// which need interpolation. If any are found, it returns a larger AST which
// has a function which returns a string as its root. Otherwise it returns
// itself.
func (obj *ExprStr) Interpolate() (interfaces.Expr, error) {
pos := &Pos{
// column/line number, starting at 1
//Column: -1, // TODO
//Line: -1, // TODO
//Filename: "", // optional source filename, if known
}
data := &interfaces.Data{
// TODO: add missing fields here if/when needed
Fs: obj.data.Fs,
FsURI: obj.data.FsURI,
Base: obj.data.Base,
Files: obj.data.Files,
Imports: obj.data.Imports,
Metadata: obj.data.Metadata,
Modules: obj.data.Modules,
Downloader: obj.data.Downloader,
//World: obj.data.World,
Prefix: obj.data.Prefix,
Debug: obj.data.Debug,
Logf: func(format string, v ...interface{}) {
obj.data.Logf("interpolate: "+format, v...)
},
}
result, err := InterpolateStr(obj.V, pos, data)
if err != nil {
return nil, err
}
if result == nil {
return &ExprStr{
data: obj.data,
scope: obj.scope,
V: obj.V,
}, nil
}
// we got something, overwrite the existing static str
return result, nil // replacement
}
// Copy returns a light copy of this struct. Anything static will not be copied.
func (obj *ExprStr) Copy() (interfaces.Expr, error) {
return obj, nil // always static
}
// Ordering returns a graph of the scope ordering that represents the data flow.
// This can be used in SetScope so that it knows the correct order to run it in.
// This Ordering method runs *after* the Interpolate method, so if this
// originally would have expanded into a bigger AST, but the time Ordering runs,
// this is only used on a raw string expression. As a result, it doesn't need to
// build a map of consumed nodes, because none are consumed. The returned graph
// is empty!
func (obj *ExprStr) Ordering(produces map[string]interfaces.Node) (*pgraph.Graph, map[interfaces.Node]string, error) {
graph, err := pgraph.NewGraph("ordering")
if err != nil {
return nil, nil, errwrap.Wrapf(err, "could not create graph")
}
graph.AddVertex(obj)
cons := make(map[interfaces.Node]string)
return graph, cons, nil
}
// SetScope does nothing for this struct, because it has no child nodes, and it
// does not need to know about the parent scope. It does however store it for
// later possible use.
func (obj *ExprStr) SetScope(scope *interfaces.Scope) error {
if scope == nil {
scope = interfaces.EmptyScope()
}
obj.scope = scope
return nil
}
// SetType will make no changes if called here. It will error if anything other
// than an Str is passed in, and doesn't need to be called for this expr to work.
func (obj *ExprStr) SetType(typ *types.Type) error { return types.TypeStr.Cmp(typ) }
// Type returns the type of this expression. This method always returns Str here.
func (obj *ExprStr) Type() (*types.Type, error) { return types.TypeStr, nil }
// Unify returns the list of invariants that this node produces. It recursively
// calls Unify on any children elements that exist in the AST, and returns the
// collection to the caller.
func (obj *ExprStr) Unify() ([]interfaces.Invariant, error) {
invariants := []interfaces.Invariant{
&unification.EqualsInvariant{
Expr: obj, // unique id for this expression (a pointer)
Type: types.TypeStr,
},
}
return invariants, nil
}
// Graph returns the reactive function graph which is expressed by this node. It
// includes any vertices produced by this node, and the appropriate edges to any
// vertices that are produced by its children. Nodes which fulfill the Expr
// interface directly produce vertices (and possible children) where as nodes
// that fulfill the Stmt interface do not produces vertices, where as their
// children might. This returns a graph with a single vertex (itself) in it.
func (obj *ExprStr) Graph() (*pgraph.Graph, error) {
graph, err := pgraph.NewGraph("str")
if err != nil {
return nil, errwrap.Wrapf(err, "could not create graph")
}
graph.AddVertex(obj)
return graph, nil
}
// Func returns the reactive stream of values that this expression produces.
func (obj *ExprStr) Func() (interfaces.Func, error) {
return &structs.ConstFunc{
Value: &types.StrValue{V: obj.V},
}, nil
}
// SetValue for an str expression is always populated statically, and does not
// ever receive any incoming values (no incoming edges) so this should never be
// called. It has been implemented for uniformity.
func (obj *ExprStr) SetValue(value types.Value) error {
if err := types.TypeStr.Cmp(value.Type()); err != nil {
return err
}
obj.V = value.Str()
return nil
}
// Value returns the value of this expression in our type system. This will
// usually only be valid once the engine has run and values have been produced.
// This might get called speculatively (early) during unification to learn more.
// This particular value is always known since it is a constant.
func (obj *ExprStr) Value() (types.Value, error) {
return &types.StrValue{
V: obj.V,
}, nil
}
// ExprInt is a representation of an int.
type ExprInt struct {
scope *interfaces.Scope // store for referencing this later
V int64
}
// String returns a short representation of this expression.
func (obj *ExprInt) String() string { return fmt.Sprintf("int(%d)", obj.V) }
// Apply is a general purpose iterator method that operates on any AST node. It
// is not used as the primary AST traversal function because it is less readable
// and easy to reason about than manually implementing traversal for each node.
// Nevertheless, it is a useful facility for operations that might only apply to
// a select number of node types, since they won't need extra noop iterators...
func (obj *ExprInt) Apply(fn func(interfaces.Node) error) error { return fn(obj) }
// Init initializes this branch of the AST, and returns an error if it fails to
// validate.
func (obj *ExprInt) Init(*interfaces.Data) error { return nil }
// Interpolate returns a new node (aka a copy) once it has been expanded. This
// generally increases the size of the AST when it is used. It calls Interpolate
// on any child elements and builds the new node with those new node contents.
// Here it simply returns itself, as no interpolation is possible.
func (obj *ExprInt) Interpolate() (interfaces.Expr, error) {
return &ExprInt{
scope: obj.scope,
V: obj.V,
}, nil
}
// Copy returns a light copy of this struct. Anything static will not be copied.
func (obj *ExprInt) Copy() (interfaces.Expr, error) {
return obj, nil // always static
}
// Ordering returns a graph of the scope ordering that represents the data flow.
// This can be used in SetScope so that it knows the correct order to run it in.
func (obj *ExprInt) Ordering(produces map[string]interfaces.Node) (*pgraph.Graph, map[interfaces.Node]string, error) {
graph, err := pgraph.NewGraph("ordering")
if err != nil {
return nil, nil, errwrap.Wrapf(err, "could not create graph")
}
graph.AddVertex(obj)
cons := make(map[interfaces.Node]string)
return graph, cons, nil
}
// SetScope does nothing for this struct, because it has no child nodes, and it
// does not need to know about the parent scope. It does however store it for
// later possible use.
func (obj *ExprInt) SetScope(scope *interfaces.Scope) error {
if scope == nil {
scope = interfaces.EmptyScope()
}
obj.scope = scope
return nil
}
// SetType will make no changes if called here. It will error if anything other
// than an Int is passed in, and doesn't need to be called for this expr to work.
func (obj *ExprInt) SetType(typ *types.Type) error { return types.TypeInt.Cmp(typ) }
// Type returns the type of this expression. This method always returns Int here.
func (obj *ExprInt) Type() (*types.Type, error) { return types.TypeInt, nil }
// Unify returns the list of invariants that this node produces. It recursively
// calls Unify on any children elements that exist in the AST, and returns the
// collection to the caller.
func (obj *ExprInt) Unify() ([]interfaces.Invariant, error) {
invariants := []interfaces.Invariant{
&unification.EqualsInvariant{
Expr: obj,
Type: types.TypeInt,
},
}
return invariants, nil
}
// Graph returns the reactive function graph which is expressed by this node. It
// includes any vertices produced by this node, and the appropriate edges to any
// vertices that are produced by its children. Nodes which fulfill the Expr
// interface directly produce vertices (and possible children) where as nodes
// that fulfill the Stmt interface do not produces vertices, where as their
// children might. This returns a graph with a single vertex (itself) in it.
func (obj *ExprInt) Graph() (*pgraph.Graph, error) {
graph, err := pgraph.NewGraph("int")
if err != nil {
return nil, errwrap.Wrapf(err, "could not create graph")
}
graph.AddVertex(obj)
return graph, nil
}
// Func returns the reactive stream of values that this expression produces.
func (obj *ExprInt) Func() (interfaces.Func, error) {
return &structs.ConstFunc{
Value: &types.IntValue{V: obj.V},
}, nil
}
// SetValue for an int expression is always populated statically, and does not
// ever receive any incoming values (no incoming edges) so this should never be
// called. It has been implemented for uniformity.
func (obj *ExprInt) SetValue(value types.Value) error {
if err := types.TypeInt.Cmp(value.Type()); err != nil {
return err
}
obj.V = value.Int()
return nil
}
// Value returns the value of this expression in our type system. This will
// usually only be valid once the engine has run and values have been produced.
// This might get called speculatively (early) during unification to learn more.
// This particular value is always known since it is a constant.
func (obj *ExprInt) Value() (types.Value, error) {
return &types.IntValue{
V: obj.V,
}, nil
}
// ExprFloat is a representation of a float.
type ExprFloat struct {
scope *interfaces.Scope // store for referencing this later
V float64
}
// String returns a short representation of this expression.
func (obj *ExprFloat) String() string {
return fmt.Sprintf("float(%g)", obj.V) // TODO: %f instead?
}
// Apply is a general purpose iterator method that operates on any AST node. It
// is not used as the primary AST traversal function because it is less readable
// and easy to reason about than manually implementing traversal for each node.
// Nevertheless, it is a useful facility for operations that might only apply to
// a select number of node types, since they won't need extra noop iterators...
func (obj *ExprFloat) Apply(fn func(interfaces.Node) error) error { return fn(obj) }
// Init initializes this branch of the AST, and returns an error if it fails to
// validate.
func (obj *ExprFloat) Init(*interfaces.Data) error { return nil }
// Interpolate returns a new node (aka a copy) once it has been expanded. This
// generally increases the size of the AST when it is used. It calls Interpolate
// on any child elements and builds the new node with those new node contents.
// Here it simply returns itself, as no interpolation is possible.
func (obj *ExprFloat) Interpolate() (interfaces.Expr, error) {
return &ExprFloat{
scope: obj.scope,
V: obj.V,
}, nil
}
// Copy returns a light copy of this struct. Anything static will not be copied.
func (obj *ExprFloat) Copy() (interfaces.Expr, error) {
return obj, nil // always static
}
// Ordering returns a graph of the scope ordering that represents the data flow.
// This can be used in SetScope so that it knows the correct order to run it in.
func (obj *ExprFloat) Ordering(produces map[string]interfaces.Node) (*pgraph.Graph, map[interfaces.Node]string, error) {
graph, err := pgraph.NewGraph("ordering")
if err != nil {
return nil, nil, errwrap.Wrapf(err, "could not create graph")
}
graph.AddVertex(obj)
cons := make(map[interfaces.Node]string)
return graph, cons, nil
}
// SetScope does nothing for this struct, because it has no child nodes, and it
// does not need to know about the parent scope. It does however store it for
// later possible use.
func (obj *ExprFloat) SetScope(scope *interfaces.Scope) error {
if scope == nil {
scope = interfaces.EmptyScope()
}
obj.scope = scope
return nil
}
// SetType will make no changes if called here. It will error if anything other
// than a Float is passed in, and doesn't need to be called for this expr to work.
func (obj *ExprFloat) SetType(typ *types.Type) error { return types.TypeFloat.Cmp(typ) }
// Type returns the type of this expression. This method always returns Float here.
func (obj *ExprFloat) Type() (*types.Type, error) { return types.TypeFloat, nil }
// Unify returns the list of invariants that this node produces. It recursively
// calls Unify on any children elements that exist in the AST, and returns the
// collection to the caller.
func (obj *ExprFloat) Unify() ([]interfaces.Invariant, error) {
invariants := []interfaces.Invariant{
&unification.EqualsInvariant{
Expr: obj,
Type: types.TypeFloat,
},
}
return invariants, nil
}
// Graph returns the reactive function graph which is expressed by this node. It
// includes any vertices produced by this node, and the appropriate edges to any
// vertices that are produced by its children. Nodes which fulfill the Expr
// interface directly produce vertices (and possible children) where as nodes
// that fulfill the Stmt interface do not produces vertices, where as their
// children might. This returns a graph with a single vertex (itself) in it.
func (obj *ExprFloat) Graph() (*pgraph.Graph, error) {
graph, err := pgraph.NewGraph("float")
if err != nil {
return nil, errwrap.Wrapf(err, "could not create graph")
}
graph.AddVertex(obj)
return graph, nil
}
// Func returns the reactive stream of values that this expression produces.
func (obj *ExprFloat) Func() (interfaces.Func, error) {
return &structs.ConstFunc{
Value: &types.FloatValue{V: obj.V},
}, nil
}
// SetValue for a float expression is always populated statically, and does not
// ever receive any incoming values (no incoming edges) so this should never be
// called. It has been implemented for uniformity.
func (obj *ExprFloat) SetValue(value types.Value) error {
if err := types.TypeFloat.Cmp(value.Type()); err != nil {
return err
}
obj.V = value.Float()
return nil
}
// Value returns the value of this expression in our type system. This will
// usually only be valid once the engine has run and values have been produced.
// This might get called speculatively (early) during unification to learn more.
// This particular value is always known since it is a constant.
func (obj *ExprFloat) Value() (types.Value, error) {
return &types.FloatValue{
V: obj.V,
}, nil
}
// ExprList is a representation of a list.
type ExprList struct {
scope *interfaces.Scope // store for referencing this later
typ *types.Type
//Elements []*ExprListElement
Elements []interfaces.Expr
}
// String returns a short representation of this expression.
func (obj *ExprList) String() string {
var s []string
for _, x := range obj.Elements {
s = append(s, x.String())
}
return fmt.Sprintf("list(%s)", strings.Join(s, ", "))
}
// Apply is a general purpose iterator method that operates on any AST node. It
// is not used as the primary AST traversal function because it is less readable
// and easy to reason about than manually implementing traversal for each node.
// Nevertheless, it is a useful facility for operations that might only apply to
// a select number of node types, since they won't need extra noop iterators...
func (obj *ExprList) Apply(fn func(interfaces.Node) error) error {
for _, x := range obj.Elements {
if err := x.Apply(fn); err != nil {
return err
}
}
return fn(obj)
}
// Init initializes this branch of the AST, and returns an error if it fails to
// validate.
func (obj *ExprList) Init(data *interfaces.Data) error {
for _, x := range obj.Elements {
if err := x.Init(data); err != nil {
return err
}
}
return nil
}
// Interpolate returns a new node (aka a copy) once it has been expanded. This
// generally increases the size of the AST when it is used. It calls Interpolate
// on any child elements and builds the new node with those new node contents.
func (obj *ExprList) Interpolate() (interfaces.Expr, error) {
elements := []interfaces.Expr{}
for _, x := range obj.Elements {
interpolated, err := x.Interpolate()
if err != nil {
return nil, err
}
elements = append(elements, interpolated)
}
return &ExprList{
scope: obj.scope,
typ: obj.typ,
Elements: elements,
}, nil
}
// Copy returns a light copy of this struct. Anything static will not be copied.
func (obj *ExprList) Copy() (interfaces.Expr, error) {
copied := false
elements := []interfaces.Expr{}
for _, x := range obj.Elements {
cp, err := x.Copy()
if err != nil {
return nil, err
}
if cp != x { // must have been copied, or pointer would be same
copied = true
}
elements = append(elements, cp)
}
if !copied { // it's static
return obj, nil
}
return &ExprList{
scope: obj.scope,
typ: obj.typ,
Elements: elements,
}, nil
}
// Ordering returns a graph of the scope ordering that represents the data flow.
// This can be used in SetScope so that it knows the correct order to run it in.
func (obj *ExprList) Ordering(produces map[string]interfaces.Node) (*pgraph.Graph, map[interfaces.Node]string, error) {
graph, err := pgraph.NewGraph("ordering")
if err != nil {
return nil, nil, errwrap.Wrapf(err, "could not create graph")
}
graph.AddVertex(obj)
cons := make(map[interfaces.Node]string)
for _, node := range obj.Elements {
g, c, err := node.Ordering(produces)
if err != nil {
return nil, nil, err
}
graph.AddGraph(g) // add in the child graph
// additional constraint...
edge := &pgraph.SimpleEdge{Name: "exprlistelement"}
graph.AddEdge(node, obj, edge) // prod -> cons
for k, v := range c { // c is consumes
x, exists := cons[k]
if exists && v != x {
return nil, nil, fmt.Errorf("consumed value is different, got `%+v`, expected `%+v`", x, v)
}
cons[k] = v // add to map
n, exists := produces[v]
if !exists {
continue
}
edge := &pgraph.SimpleEdge{Name: "exprlist"}
graph.AddEdge(n, k, edge)
}
}
return graph, cons, nil
}
// SetScope stores the scope for later use in this resource and it's children,
// which it propagates this downwards to.
func (obj *ExprList) SetScope(scope *interfaces.Scope) error {
if scope == nil {
scope = interfaces.EmptyScope()
}
obj.scope = scope
for _, x := range obj.Elements {
if err := x.SetScope(scope); err != nil {
return err
}
}
return nil
}
// SetType is used to set the type of this expression once it is known. This
// usually happens during type unification, but it can also happen during
// parsing if a type is specified explicitly. Since types are static and don't
// change on expressions, if you attempt to set a different type than what has
// previously been set (when not initially known) this will error.
func (obj *ExprList) SetType(typ *types.Type) error {
// TODO: should we ensure this is set to a KindList ?
if obj.typ != nil {
return obj.typ.Cmp(typ) // if not set, ensure it doesn't change
}
obj.typ = typ // set
return nil
}
// Type returns the type of this expression.
func (obj *ExprList) Type() (*types.Type, error) {
var typ *types.Type
var err error
for i, expr := range obj.Elements {
etyp, e := expr.Type()
if e != nil {
err = errwrap.Wrapf(e, "list index `%d` did not return a type", i)
break
}
if typ == nil {
typ = etyp
}
if e := typ.Cmp(etyp); e != nil {
err = errwrap.Wrapf(e, "list elements have different types")
break
}
}
if err == nil && obj.typ == nil && len(obj.Elements) > 0 {
return &types.Type{ // speculate!
Kind: types.KindList,
Val: typ,
}, nil
}
if obj.typ == nil {
if err != nil {
return nil, errwrap.Wrapf(interfaces.ErrTypeCurrentlyUnknown, err.Error())
}
return nil, interfaces.ErrTypeCurrentlyUnknown
}
return obj.typ, nil
}
// Unify returns the list of invariants that this node produces. It recursively
// calls Unify on any children elements that exist in the AST, and returns the
// collection to the caller.
func (obj *ExprList) Unify() ([]interfaces.Invariant, error) {
var invariants []interfaces.Invariant
// if this was set explicitly by the parser
if obj.typ != nil {
invar := &unification.EqualsInvariant{
Expr: obj,
Type: obj.typ,
}
invariants = append(invariants, invar)
}
// collect all the invariants of each sub-expression
for _, x := range obj.Elements {
invars, err := x.Unify()
if err != nil {
return nil, err
}
invariants = append(invariants, invars...)
}
// each element must be equal to each other
if len(obj.Elements) > 1 {
invariant := &unification.EqualityInvariantList{
Exprs: obj.Elements,
}
invariants = append(invariants, invariant)
}
// we should be type list of (type of element)
if len(obj.Elements) > 0 {
invariant := &unification.EqualityWrapListInvariant{
Expr1: obj, // unique id for this expression (a pointer)
Expr2Val: obj.Elements[0],
}
invariants = append(invariants, invariant)
}
// make sure this empty list gets an element type somehow
if len(obj.Elements) == 0 {
invariant := &unification.AnyInvariant{
Expr: obj,
}
invariants = append(invariants, invariant)
// build a placeholder expr to represent a contained element...
exprAny := &ExprAny{}
invars, err := exprAny.Unify()
if err != nil {
return nil, err
}
invariants = append(invariants, invars...)
// FIXME: instead of using `ExprAny`, we could actually teach
// our unification engine to ensure that our expr kind is list,
// eg:
//&unification.EqualityKindInvariant{
// Expr1: obj,
// Kind: types.KindList,
//}
invar := &unification.EqualityWrapListInvariant{
Expr1: obj,
Expr2Val: exprAny, // hack
}
invariants = append(invariants, invar)
}
return invariants, nil
}
// Graph returns the reactive function graph which is expressed by this node. It
// includes any vertices produced by this node, and the appropriate edges to any
// vertices that are produced by its children. Nodes which fulfill the Expr
// interface directly produce vertices (and possible children) where as nodes
// that fulfill the Stmt interface do not produces vertices, where as their
// children might. This returns a graph with a single vertex (itself) in it, and
// the edges from all of the child graphs to this.
func (obj *ExprList) Graph() (*pgraph.Graph, error) {
graph, err := pgraph.NewGraph("list")
if err != nil {
return nil, errwrap.Wrapf(err, "could not create graph")
}
graph.AddVertex(obj)
// each list element needs to point to the final list expression
for index, x := range obj.Elements { // list elements in order
g, err := x.Graph()
if err != nil {
return nil, err
}
fieldName := fmt.Sprintf("%d", index) // argNames as integers!
edge := &funcs.Edge{Args: []string{fieldName}}
var once bool
edgeGenFn := func(v1, v2 pgraph.Vertex) pgraph.Edge {
if once {
panic(fmt.Sprintf("edgeGenFn for list, index `%d` was called twice", index))
}
once = true
return edge
}
graph.AddEdgeGraphVertexLight(g, obj, edgeGenFn) // element -> list
}
return graph, nil
}
// Func returns the reactive stream of values that this expression produces.
func (obj *ExprList) Func() (interfaces.Func, error) {
typ, err := obj.Type()
if err != nil {
return nil, err
}
// composite func (list, map, struct)
return &structs.CompositeFunc{
Type: typ,
Len: len(obj.Elements),
}, nil
}
// SetValue here is a no-op, because algorithmically when this is called from
// the func engine, the child elements (the list elements) will have had this
// done to them first, and as such when we try and retrieve the set value from
// this expression by calling `Value`, it will build it from scratch!
func (obj *ExprList) SetValue(value types.Value) error {
if err := obj.typ.Cmp(value.Type()); err != nil {
return err
}
// noop!
//obj.V = value
return nil
}
// Value returns the value of this expression in our type system. This will
// usually only be valid once the engine has run and values have been produced.
// This might get called speculatively (early) during unification to learn more.
func (obj *ExprList) Value() (types.Value, error) {
values := []types.Value{}
var typ *types.Type
for i, expr := range obj.Elements {
etyp, err := expr.Type()
if err != nil {
return nil, errwrap.Wrapf(err, "list index `%d` did not return a type", i)
}
if typ == nil {
typ = etyp
}
if err := typ.Cmp(etyp); err != nil {
return nil, errwrap.Wrapf(err, "list elements have different types")
}
value, err := expr.Value()
if err != nil {
return nil, err
}
if value == nil {
return nil, fmt.Errorf("value for list index `%d` was nil", i)
}
values = append(values, value)
}
if len(obj.Elements) > 0 {
t := &types.Type{
Kind: types.KindList,
Val: typ,
}
// Run SetType to ensure type is consistent with what we found,
// which is an easy way to ensure the Cmp passes as expected...
if err := obj.SetType(t); err != nil {
return nil, errwrap.Wrapf(err, "type did not match expected!")
}
}
return &types.ListValue{
T: obj.typ,
V: values,
}, nil
}
// ExprMap is a representation of a (dictionary) map.
type ExprMap struct {
scope *interfaces.Scope // store for referencing this later
typ *types.Type
KVs []*ExprMapKV
}
// String returns a short representation of this expression.
func (obj *ExprMap) String() string {
var s []string
for _, x := range obj.KVs {
s = append(s, fmt.Sprintf("%s: %s", x.Key.String(), x.Val.String()))
}
return fmt.Sprintf("map(%s)", strings.Join(s, ", "))
}
// Apply is a general purpose iterator method that operates on any AST node. It
// is not used as the primary AST traversal function because it is less readable
// and easy to reason about than manually implementing traversal for each node.
// Nevertheless, it is a useful facility for operations that might only apply to
// a select number of node types, since they won't need extra noop iterators...
func (obj *ExprMap) Apply(fn func(interfaces.Node) error) error {
for _, x := range obj.KVs {
if err := x.Key.Apply(fn); err != nil {
return err
}
if err := x.Val.Apply(fn); err != nil {
return err
}
}
return fn(obj)
}
// Init initializes this branch of the AST, and returns an error if it fails to
// validate.
func (obj *ExprMap) Init(data *interfaces.Data) error {
for _, x := range obj.KVs {
if err := x.Key.Init(data); err != nil {
return err
}
if err := x.Val.Init(data); err != nil {
return err
}
}
return nil
}
// Interpolate returns a new node (aka a copy) once it has been expanded. This
// generally increases the size of the AST when it is used. It calls Interpolate
// on any child elements and builds the new node with those new node contents.
func (obj *ExprMap) Interpolate() (interfaces.Expr, error) {
kvs := []*ExprMapKV{}
for _, x := range obj.KVs {
interpolatedKey, err := x.Key.Interpolate()
if err != nil {
return nil, err
}
interpolatedVal, err := x.Val.Interpolate()
if err != nil {
return nil, err
}
kv := &ExprMapKV{
Key: interpolatedKey,
Val: interpolatedVal,
}
kvs = append(kvs, kv)
}
return &ExprMap{
scope: obj.scope,
typ: obj.typ,
KVs: kvs,
}, nil
}
// Copy returns a light copy of this struct. Anything static will not be copied.
func (obj *ExprMap) Copy() (interfaces.Expr, error) {
copied := false
kvs := []*ExprMapKV{}
for _, x := range obj.KVs {
copiedKV := false
copyKey, err := x.Key.Copy()
if err != nil {
return nil, err
}
// must have been copied, or pointer would be same
if copyKey != x.Key {
copiedKV = true
}
copyVal, err := x.Val.Copy()
if err != nil {
return nil, err
}
if copyVal != x.Val {
copiedKV = true
}
kv := &ExprMapKV{
Key: copyKey,
Val: copyVal,
}
if copiedKV {
copied = true
} else {
kv = x // don't re-package it unnecessarily!
}
kvs = append(kvs, kv)
}
if !copied { // it's static
return obj, nil
}
return &ExprMap{
scope: obj.scope,
typ: obj.typ,
KVs: kvs,
}, nil
}
// Ordering returns a graph of the scope ordering that represents the data flow.
// This can be used in SetScope so that it knows the correct order to run it in.
func (obj *ExprMap) Ordering(produces map[string]interfaces.Node) (*pgraph.Graph, map[interfaces.Node]string, error) {
graph, err := pgraph.NewGraph("ordering")
if err != nil {
return nil, nil, errwrap.Wrapf(err, "could not create graph")
}
graph.AddVertex(obj)
cons := make(map[interfaces.Node]string)
for _, node := range obj.KVs {
g1, c1, err := node.Key.Ordering(produces)
if err != nil {
return nil, nil, err
}
graph.AddGraph(g1) // add in the child graph
// additional constraint...
edge1 := &pgraph.SimpleEdge{Name: "exprmapkey"}
graph.AddEdge(node.Key, obj, edge1) // prod -> cons
for k, v := range c1 { // c1 is consumes
x, exists := cons[k]
if exists && v != x {
return nil, nil, fmt.Errorf("consumed value is different, got `%+v`, expected `%+v`", x, v)
}
cons[k] = v // add to map
n, exists := produces[v]
if !exists {
continue
}
edge := &pgraph.SimpleEdge{Name: "exprmapkey"}
graph.AddEdge(n, k, edge)
}
g2, c2, err := node.Val.Ordering(produces)
if err != nil {
return nil, nil, err
}
graph.AddGraph(g2) // add in the child graph
// additional constraint...
edge2 := &pgraph.SimpleEdge{Name: "exprmapval"}
graph.AddEdge(node.Val, obj, edge2) // prod -> cons
for k, v := range c2 { // c2 is consumes
x, exists := cons[k]
if exists && v != x {
return nil, nil, fmt.Errorf("consumed value is different, got `%+v`, expected `%+v`", x, v)
}
cons[k] = v // add to map
n, exists := produces[v]
if !exists {
continue
}
edge := &pgraph.SimpleEdge{Name: "exprmapval"}
graph.AddEdge(n, k, edge)
}
}
return graph, cons, nil
}
// SetScope stores the scope for later use in this resource and it's children,
// which it propagates this downwards to.
func (obj *ExprMap) SetScope(scope *interfaces.Scope) error {
if scope == nil {
scope = interfaces.EmptyScope()
}
obj.scope = scope
for _, x := range obj.KVs {
if err := x.Key.SetScope(scope); err != nil {
return err
}
if err := x.Val.SetScope(scope); err != nil {
return err
}
}
return nil
}
// SetType is used to set the type of this expression once it is known. This
// usually happens during type unification, but it can also happen during
// parsing if a type is specified explicitly. Since types are static and don't
// change on expressions, if you attempt to set a different type than what has
// previously been set (when not initially known) this will error.
func (obj *ExprMap) SetType(typ *types.Type) error {
// TODO: should we ensure this is set to a KindMap ?
if obj.typ != nil {
return obj.typ.Cmp(typ) // if not set, ensure it doesn't change
}
obj.typ = typ // set
return nil
}
// Type returns the type of this expression.
func (obj *ExprMap) Type() (*types.Type, error) {
var ktyp, vtyp *types.Type
var err error
for i, x := range obj.KVs {
// keys
kt, e := x.Key.Type()
if e != nil {
err = errwrap.Wrapf(e, "map key, index `%d` did not return a type", i)
break
}
if ktyp == nil {
ktyp = kt
}
if e := ktyp.Cmp(kt); e != nil {
err = errwrap.Wrapf(e, "key elements have different types")
break
}
// vals
vt, e := x.Val.Type()
if e != nil {
err = errwrap.Wrapf(e, "map val, index `%d` did not return a type", i)
break
}
if vtyp == nil {
vtyp = vt
}
if e := vtyp.Cmp(vt); e != nil {
err = errwrap.Wrapf(e, "val elements have different types")
break
}
}
if err == nil && obj.typ == nil && len(obj.KVs) > 0 {
return &types.Type{ // speculate!
Kind: types.KindMap,
Key: ktyp,
Val: vtyp,
}, nil
}
if obj.typ == nil {
if err != nil {
return nil, errwrap.Wrapf(interfaces.ErrTypeCurrentlyUnknown, err.Error())
}
return nil, interfaces.ErrTypeCurrentlyUnknown
}
return obj.typ, nil
}
// Unify returns the list of invariants that this node produces. It recursively
// calls Unify on any children elements that exist in the AST, and returns the
// collection to the caller.
func (obj *ExprMap) Unify() ([]interfaces.Invariant, error) {
var invariants []interfaces.Invariant
// if this was set explicitly by the parser
if obj.typ != nil {
invar := &unification.EqualsInvariant{
Expr: obj,
Type: obj.typ,
}
invariants = append(invariants, invar)
}
// collect all the invariants of each sub-expression
for _, x := range obj.KVs {
keyInvars, err := x.Key.Unify()
if err != nil {
return nil, err
}
invariants = append(invariants, keyInvars...)
valInvars, err := x.Val.Unify()
if err != nil {
return nil, err
}
invariants = append(invariants, valInvars...)
}
// all keys must have the same type, all vals must have the same type
if len(obj.KVs) > 1 {
keyExprs, valExprs := []interfaces.Expr{}, []interfaces.Expr{}
for i := range obj.KVs {
keyExprs = append(keyExprs, obj.KVs[i].Key)
valExprs = append(valExprs, obj.KVs[i].Val)
}
keyInvariant := &unification.EqualityInvariantList{
Exprs: keyExprs,
}
invariants = append(invariants, keyInvariant)
valInvariant := &unification.EqualityInvariantList{
Exprs: valExprs,
}
invariants = append(invariants, valInvariant)
}
// we should be type map of (type of element)
if len(obj.KVs) > 0 {
invariant := &unification.EqualityWrapMapInvariant{
Expr1: obj, // unique id for this expression (a pointer)
Expr2Key: obj.KVs[0].Key,
Expr2Val: obj.KVs[0].Val,
}
invariants = append(invariants, invariant)
}
// make sure this empty map gets a type for its key/value somehow
if len(obj.KVs) == 0 {
invariant := &unification.AnyInvariant{
Expr: obj,
}
invariants = append(invariants, invariant)
// build a placeholder expr to represent a contained key...
exprAnyKey, exprAnyVal := &ExprAny{}, &ExprAny{}
invarsKey, err := exprAnyKey.Unify()
if err != nil {
return nil, err
}
invariants = append(invariants, invarsKey...)
invarsVal, err := exprAnyVal.Unify()
if err != nil {
return nil, err
}
invariants = append(invariants, invarsVal...)
// FIXME: instead of using `ExprAny`, we could actually teach
// our unification engine to ensure that our expr kind is list,
// eg:
//&unification.EqualityKindInvariant{
// Expr1: obj,
// Kind: types.KindMap,
//}
invar := &unification.EqualityWrapMapInvariant{
Expr1: obj,
Expr2Key: exprAnyKey, // hack
Expr2Val: exprAnyVal, // hack
}
invariants = append(invariants, invar)
}
return invariants, nil
}
// Graph returns the reactive function graph which is expressed by this node. It
// includes any vertices produced by this node, and the appropriate edges to any
// vertices that are produced by its children. Nodes which fulfill the Expr
// interface directly produce vertices (and possible children) where as nodes
// that fulfill the Stmt interface do not produces vertices, where as their
// children might. This returns a graph with a single vertex (itself) in it, and
// the edges from all of the child graphs to this.
func (obj *ExprMap) Graph() (*pgraph.Graph, error) {
graph, err := pgraph.NewGraph("map")
if err != nil {
return nil, errwrap.Wrapf(err, "could not create graph")
}
graph.AddVertex(obj)
// each map key value pair needs to point to the final map expression
for index, x := range obj.KVs { // map fields in order
g, err := x.Key.Graph()
if err != nil {
return nil, err
}
// do the key names ever change? -- yes
fieldName := fmt.Sprintf("key:%d", index) // stringify map key
edge := &funcs.Edge{Args: []string{fieldName}}
var once bool
edgeGenFn := func(v1, v2 pgraph.Vertex) pgraph.Edge {
if once {
panic(fmt.Sprintf("edgeGenFn for map, key `%s` was called twice", fieldName))
}
once = true
return edge
}
graph.AddEdgeGraphVertexLight(g, obj, edgeGenFn) // key -> func
}
// each map key value pair needs to point to the final map expression
for index, x := range obj.KVs { // map fields in order
g, err := x.Val.Graph()
if err != nil {
return nil, err
}
fieldName := fmt.Sprintf("val:%d", index) // stringify map val
edge := &funcs.Edge{Args: []string{fieldName}}
var once bool
edgeGenFn := func(v1, v2 pgraph.Vertex) pgraph.Edge {
if once {
panic(fmt.Sprintf("edgeGenFn for map, val `%s` was called twice", fieldName))
}
once = true
return edge
}
graph.AddEdgeGraphVertexLight(g, obj, edgeGenFn) // val -> func
}
return graph, nil
}
// Func returns the reactive stream of values that this expression produces.
func (obj *ExprMap) Func() (interfaces.Func, error) {
typ, err := obj.Type()
if err != nil {
return nil, err
}
// composite func (list, map, struct)
return &structs.CompositeFunc{
Type: typ, // the key/val types are known via this type
Len: len(obj.KVs),
}, nil
}
// SetValue here is a no-op, because algorithmically when this is called from
// the func engine, the child key/value's (the map elements) will have had this
// done to them first, and as such when we try and retrieve the set value from
// this expression by calling `Value`, it will build it from scratch!
func (obj *ExprMap) SetValue(value types.Value) error {
if err := obj.typ.Cmp(value.Type()); err != nil {
return err
}
// noop!
//obj.V = value
return nil
}
// Value returns the value of this expression in our type system. This will
// usually only be valid once the engine has run and values have been produced.
// This might get called speculatively (early) during unification to learn more.
func (obj *ExprMap) Value() (types.Value, error) {
kvs := make(map[types.Value]types.Value)
var ktyp, vtyp *types.Type
for i, x := range obj.KVs {
// keys
kt, err := x.Key.Type()
if err != nil {
return nil, errwrap.Wrapf(err, "map key, index `%d` did not return a type", i)
}
if ktyp == nil {
ktyp = kt
}
if err := ktyp.Cmp(kt); err != nil {
return nil, errwrap.Wrapf(err, "key elements have different types")
}
key, err := x.Key.Value()
if err != nil {
return nil, err
}
if key == nil {
return nil, fmt.Errorf("key for map index `%d` was nil", i)
}
// vals
vt, err := x.Val.Type()
if err != nil {
return nil, errwrap.Wrapf(err, "map val, index `%d` did not return a type", i)
}
if vtyp == nil {
vtyp = vt
}
if err := vtyp.Cmp(vt); err != nil {
return nil, errwrap.Wrapf(err, "val elements have different types")
}
val, err := x.Val.Value()
if err != nil {
return nil, err
}
if val == nil {
return nil, fmt.Errorf("val for map index `%d` was nil", i)
}
kvs[key] = val // add to map
}
if len(obj.KVs) > 0 {
t := &types.Type{
Kind: types.KindMap,
Key: ktyp,
Val: vtyp,
}
// Run SetType to ensure type is consistent with what we found,
// which is an easy way to ensure the Cmp passes as expected...
if err := obj.SetType(t); err != nil {
return nil, errwrap.Wrapf(err, "type did not match expected!")
}
}
return &types.MapValue{
T: obj.typ,
V: kvs,
}, nil
}
// ExprMapKV represents a key and value pair in a (dictionary) map. This does
// not satisfy the Expr interface.
type ExprMapKV struct {
Key interfaces.Expr // keys can be strings, int's, etc...
Val interfaces.Expr
}
// ExprStruct is a representation of a struct.
type ExprStruct struct {
scope *interfaces.Scope // store for referencing this later
typ *types.Type
Fields []*ExprStructField // the list (fields) are intentionally ordered!
}
// String returns a short representation of this expression.
func (obj *ExprStruct) String() string {
var s []string
for _, x := range obj.Fields {
s = append(s, fmt.Sprintf("%s: %s", x.Name, x.Value.String()))
}
return fmt.Sprintf("struct(%s)", strings.Join(s, "; "))
}
// Apply is a general purpose iterator method that operates on any AST node. It
// is not used as the primary AST traversal function because it is less readable
// and easy to reason about than manually implementing traversal for each node.
// Nevertheless, it is a useful facility for operations that might only apply to
// a select number of node types, since they won't need extra noop iterators...
func (obj *ExprStruct) Apply(fn func(interfaces.Node) error) error {
for _, x := range obj.Fields {
if err := x.Value.Apply(fn); err != nil {
return err
}
}
return fn(obj)
}
// Init initializes this branch of the AST, and returns an error if it fails to
// validate.
func (obj *ExprStruct) Init(data *interfaces.Data) error {
for _, x := range obj.Fields {
if err := x.Value.Init(data); err != nil {
return err
}
}
return nil
}
// Interpolate returns a new node (aka a copy) once it has been expanded. This
// generally increases the size of the AST when it is used. It calls Interpolate
// on any child elements and builds the new node with those new node contents.
func (obj *ExprStruct) Interpolate() (interfaces.Expr, error) {
fields := []*ExprStructField{}
for _, x := range obj.Fields {
interpolated, err := x.Value.Interpolate()
if err != nil {
return nil, err
}
field := &ExprStructField{
Name: x.Name, // don't interpolate the key
Value: interpolated,
}
fields = append(fields, field)
}
return &ExprStruct{
scope: obj.scope,
typ: obj.typ,
Fields: fields,
}, nil
}
// Copy returns a light copy of this struct. Anything static will not be copied.
func (obj *ExprStruct) Copy() (interfaces.Expr, error) {
copied := false
fields := []*ExprStructField{}
for _, x := range obj.Fields {
cp, err := x.Value.Copy()
if err != nil {
return nil, err
}
// must have been copied, or pointer would be same
if cp != x.Value {
copied = true
}
field := &ExprStructField{
Name: x.Name,
Value: cp,
}
fields = append(fields, field)
}
if !copied { // it's static
return obj, nil
}
return &ExprStruct{
scope: obj.scope,
typ: obj.typ,
Fields: fields,
}, nil
}
// Ordering returns a graph of the scope ordering that represents the data flow.
// This can be used in SetScope so that it knows the correct order to run it in.
func (obj *ExprStruct) Ordering(produces map[string]interfaces.Node) (*pgraph.Graph, map[interfaces.Node]string, error) {
graph, err := pgraph.NewGraph("ordering")
if err != nil {
return nil, nil, errwrap.Wrapf(err, "could not create graph")
}
graph.AddVertex(obj)
cons := make(map[interfaces.Node]string)
for _, node := range obj.Fields {
g, c, err := node.Value.Ordering(produces)
if err != nil {
return nil, nil, err
}
graph.AddGraph(g) // add in the child graph
// additional constraint...
edge := &pgraph.SimpleEdge{Name: "exprstructfield"}
graph.AddEdge(node.Value, obj, edge) // prod -> cons
for k, v := range c { // c is consumes
x, exists := cons[k]
if exists && v != x {
return nil, nil, fmt.Errorf("consumed value is different, got `%+v`, expected `%+v`", x, v)
}
cons[k] = v // add to map
n, exists := produces[v]
if !exists {
continue
}
edge := &pgraph.SimpleEdge{Name: "exprstruct"}
graph.AddEdge(n, k, edge)
}
}
return graph, cons, nil
}
// SetScope stores the scope for later use in this resource and it's children,
// which it propagates this downwards to.
func (obj *ExprStruct) SetScope(scope *interfaces.Scope) error {
if scope == nil {
scope = interfaces.EmptyScope()
}
obj.scope = scope
for _, x := range obj.Fields {
if err := x.Value.SetScope(scope); err != nil {
return err
}
}
return nil
}
// SetType is used to set the type of this expression once it is known. This
// usually happens during type unification, but it can also happen during
// parsing if a type is specified explicitly. Since types are static and don't
// change on expressions, if you attempt to set a different type than what has
// previously been set (when not initially known) this will error.
func (obj *ExprStruct) SetType(typ *types.Type) error {
// TODO: should we ensure this is set to a KindStruct ?
if obj.typ != nil {
return obj.typ.Cmp(typ) // if not set, ensure it doesn't change
}
obj.typ = typ // set
return nil
}
// Type returns the type of this expression.
func (obj *ExprStruct) Type() (*types.Type, error) {
var m = make(map[string]*types.Type)
ord := []string{}
var err error
for i, x := range obj.Fields {
// vals
t, e := x.Value.Type()
if e != nil {
err = errwrap.Wrapf(e, "field val, index `%d` did not return a type", i)
break
}
if _, exists := m[x.Name]; exists {
err = fmt.Errorf("struct type field index `%d` already exists", i)
break
}
m[x.Name] = t
ord = append(ord, x.Name)
}
if err == nil && obj.typ == nil && len(obj.Fields) > 0 {
return &types.Type{ // speculate!
Kind: types.KindStruct,
Map: m,
Ord: ord, // assume same order as fields
}, nil
}
if obj.typ == nil {
if err != nil {
return nil, errwrap.Wrapf(interfaces.ErrTypeCurrentlyUnknown, err.Error())
}
return nil, interfaces.ErrTypeCurrentlyUnknown
}
return obj.typ, nil
}
// Unify returns the list of invariants that this node produces. It recursively
// calls Unify on any children elements that exist in the AST, and returns the
// collection to the caller.
func (obj *ExprStruct) Unify() ([]interfaces.Invariant, error) {
var invariants []interfaces.Invariant
// if this was set explicitly by the parser
if obj.typ != nil {
invar := &unification.EqualsInvariant{
Expr: obj,
Type: obj.typ,
}
invariants = append(invariants, invar)
}
// collect all the invariants of each sub-expression
for _, x := range obj.Fields {
invars, err := x.Value.Unify()
if err != nil {
return nil, err
}
invariants = append(invariants, invars...)
}
// build the reference to ourself if we have undetermined field types
mapped := make(map[string]interfaces.Expr)
ordered := []string{}
for _, x := range obj.Fields {
mapped[x.Name] = x.Value
ordered = append(ordered, x.Name)
}
invariant := &unification.EqualityWrapStructInvariant{
Expr1: obj, // unique id for this expression (a pointer)
Expr2Map: mapped,
Expr2Ord: ordered,
}
invariants = append(invariants, invariant)
return invariants, nil
}
// Graph returns the reactive function graph which is expressed by this node. It
// includes any vertices produced by this node, and the appropriate edges to any
// vertices that are produced by its children. Nodes which fulfill the Expr
// interface directly produce vertices (and possible children) where as nodes
// that fulfill the Stmt interface do not produces vertices, where as their
// children might. This returns a graph with a single vertex (itself) in it, and
// the edges from all of the child graphs to this.
func (obj *ExprStruct) Graph() (*pgraph.Graph, error) {
graph, err := pgraph.NewGraph("struct")
if err != nil {
return nil, errwrap.Wrapf(err, "could not create graph")
}
graph.AddVertex(obj)
// each struct field needs to point to the final struct expression
for _, x := range obj.Fields { // struct fields in order
g, err := x.Value.Graph()
if err != nil {
return nil, err
}
fieldName := x.Name
edge := &funcs.Edge{Args: []string{fieldName}}
var once bool
edgeGenFn := func(v1, v2 pgraph.Vertex) pgraph.Edge {
if once {
panic(fmt.Sprintf("edgeGenFn for struct, arg `%s` was called twice", fieldName))
}
once = true
return edge
}
graph.AddEdgeGraphVertexLight(g, obj, edgeGenFn) // arg -> func
}
return graph, nil
}
// Func returns the reactive stream of values that this expression produces.
func (obj *ExprStruct) Func() (interfaces.Func, error) {
typ, err := obj.Type()
if err != nil {
return nil, err
}
// composite func (list, map, struct)
return &structs.CompositeFunc{
Type: typ,
}, nil
}
// SetValue here is a no-op, because algorithmically when this is called from
// the func engine, the child fields (the struct elements) will have had this
// done to them first, and as such when we try and retrieve the set value from
// this expression by calling `Value`, it will build it from scratch!
func (obj *ExprStruct) SetValue(value types.Value) error {
if err := obj.typ.Cmp(value.Type()); err != nil {
return err
}
// noop!
//obj.V = value
return nil
}
// Value returns the value of this expression in our type system. This will
// usually only be valid once the engine has run and values have been produced.
// This might get called speculatively (early) during unification to learn more.
func (obj *ExprStruct) Value() (types.Value, error) {
fields := make(map[string]types.Value)
typ := &types.Type{
Kind: types.KindStruct,
Map: make(map[string]*types.Type),
//Ord: obj.typ.Ord, // assume same order
}
ord := []string{} // can't use obj.typ b/c it can be nil during speculation
for i, x := range obj.Fields {
// vals
t, err := x.Value.Type()
if err != nil {
return nil, errwrap.Wrapf(err, "field val, index `%d` did not return a type", i)
}
if _, exists := typ.Map[x.Name]; exists {
return nil, fmt.Errorf("struct type field index `%d` already exists", i)
}
typ.Map[x.Name] = t
val, err := x.Value.Value()
if err != nil {
return nil, err
}
if val == nil {
return nil, fmt.Errorf("val for field index `%d` was nil", i)
}
if _, exists := fields[x.Name]; exists {
return nil, fmt.Errorf("struct field index `%d` already exists", i)
}
fields[x.Name] = val // add to map
ord = append(ord, x.Name)
}
typ.Ord = ord
if len(obj.Fields) > 0 {
// Run SetType to ensure type is consistent with what we found,
// which is an easy way to ensure the Cmp passes as expected...
if err := obj.SetType(typ); err != nil {
return nil, errwrap.Wrapf(err, "type did not match expected!")
}
}
return &types.StructValue{
T: obj.typ,
V: fields,
}, nil
}
// ExprStructField represents a name value pair in a struct field. This does not
// satisfy the Expr interface.
type ExprStructField struct {
Name string
Value interfaces.Expr
}
// ExprFunc is a representation of a function value. This is not a function
// call, that is represented by ExprCall. This can represent either the contents
// of a StmtFunc, a lambda function, or a core system function. You may only use
// one of the internal representations of a function to build this, if you use
// more than one then the behaviour is not defined, and could conceivably panic.
// The first possibility is to specify the function via the Args, Return, and
// Body fields. This is used for native mcl code. The second possibility is to
// specify the function via the Function field only. This is used for built-in
// functions that implement the Func API. The third possibility is to specify a
// list of function values via the Values field. This is used for built-in
// functions that implement the simple function API or the simplepoly function
// API and that aren't wrapped in the Func API. (This was the historical case.)
type ExprFunc struct {
data *interfaces.Data
scope *interfaces.Scope // store for referencing this later
typ *types.Type
// Title is a friendly-name to use for identifying the function. It can
// be used in debugging and error-handling. It is not required. It is
// *not* called Name, because that could get confused with the Name
// field in ExprCall and similar nodes.
Title string
// Args are the list of args that were used when defining the function.
// This can include a string name and a type, however the type might be
// absent here.
Args []*Arg
// Return is the return type of the function if it was defined.
Return *types.Type // return type if specified
// Body is the contents of the function. It can be any expression.
Body interfaces.Expr
// Function is the built implementation of the function interface as
// represented by the top-level function API.
Function func() interfaces.Func // store like this to build on demand!
function interfaces.Func // store the built version here...
// Values represents a list of simple functions. This means this can be
// polymorphic if more than one was specified!
Values []*types.FuncValue
// XXX: is this necessary?
V func([]types.Value) (types.Value, error)
}
// String returns a short representation of this expression.
func (obj *ExprFunc) String() string {
if len(obj.Values) == 1 {
if obj.Title != "" {
return fmt.Sprintf("func() { <built-in:%s (simple)> }", obj.Title)
}
return "func() { <built-in (simple)> }"
} else if len(obj.Values) > 0 {
if obj.Title != "" {
return fmt.Sprintf("func() { <built-in:%s (simple, poly)> }", obj.Title)
}
return "func() { <built-in (simple, poly)> }"
}
if obj.Function != nil {
if obj.Title != "" {
return fmt.Sprintf("func() { <built-in:%s> }", obj.Title)
}
return "func() { <built-in> }"
}
if obj.Body == nil {
panic("function expression was not built correctly")
}
var a []string
for _, x := range obj.Args {
a = append(a, fmt.Sprintf("%s", x.String()))
}
args := strings.Join(a, ", ")
s := fmt.Sprintf("func(%s)", args)
if obj.Title != "" {
s = fmt.Sprintf("func:%s(%s)", obj.Title, args) // overwrite!
}
if obj.Return != nil {
s += fmt.Sprintf(" %s", obj.Return.String())
}
s += fmt.Sprintf(" { %s }", obj.Body.String())
return s
}
// Apply is a general purpose iterator method that operates on any AST node. It
// is not used as the primary AST traversal function because it is less readable
// and easy to reason about than manually implementing traversal for each node.
// Nevertheless, it is a useful facility for operations that might only apply to
// a select number of node types, since they won't need extra noop iterators...
func (obj *ExprFunc) Apply(fn func(interfaces.Node) error) error {
if obj.Body != nil {
if err := obj.Body.Apply(fn); err != nil {
return err
}
}
return fn(obj)
}
// Init initializes this branch of the AST, and returns an error if it fails to
// validate.
func (obj *ExprFunc) Init(data *interfaces.Data) error {
obj.data = data // TODO: why is this sometimes nil?
// validate that we're using *only* one correct representation
a := obj.Body != nil
b := obj.Function != nil
c := len(obj.Values) > 0
if (a && b || b && c) || !a && !b && !c {
return fmt.Errorf("function expression was not built correctly")
}
if obj.Body != nil {
if err := obj.Body.Init(data); err != nil {
return err
}
}
if obj.Function != nil {
if obj.function != nil { // check for double Init!
// programming error!
return fmt.Errorf("func is being re-built")
}
obj.function = obj.Function() // build it
// pass in some data to the function
// TODO: do we want to pass in the full obj.data instead ?
if dataFunc, ok := obj.function.(interfaces.DataFunc); ok {
dataFunc.SetData(&interfaces.FuncData{
Fs: obj.data.Fs,
FsURI: obj.data.FsURI,
Base: obj.data.Base,
})
}
}
if len(obj.Values) > 0 {
typs := []*types.Type{}
for _, f := range obj.Values {
if f.T == nil {
return fmt.Errorf("func contains a nil type signature")
}
typs = append(typs, f.T)
}
if err := langutil.HasDuplicateTypes(typs); err != nil {
return errwrap.Wrapf(err, "func list contains a duplicate signature")
}
}
return nil
}
// Interpolate returns a new node (aka a copy) once it has been expanded. This
// generally increases the size of the AST when it is used. It calls Interpolate
// on any child elements and builds the new node with those new node contents.
// Here it simply returns itself, as no interpolation is possible.
func (obj *ExprFunc) Interpolate() (interfaces.Expr, error) {
var body interfaces.Expr
if obj.Body != nil {
var err error
body, err = obj.Body.Interpolate()
if err != nil {
return nil, errwrap.Wrapf(err, "could not interpolate Body")
}
}
args := obj.Args
if obj.Args == nil {
args = []*Arg{}
}
return &ExprFunc{
data: obj.data,
scope: obj.scope,
typ: obj.typ,
Title: obj.Title,
Args: args,
Return: obj.Return,
Body: body,
Function: obj.Function,
function: obj.function,
Values: obj.Values,
V: obj.V,
}, nil
}
// Copy returns a light copy of this struct. Anything static will not be copied.
// All the constants aren't copied, because we don't want to duplicate them
// unnecessarily in the function graph. For example, an static integer will not
// ever change, where as a function value (expr) might get used with two
// different signatures depending on the caller.
func (obj *ExprFunc) Copy() (interfaces.Expr, error) {
// I think we want to copy anything in the Expr tree that has at least
// one input... Eg: we DON'T want to copy an ExprStr but we DO want to
// copy an ExprVar because it gets an input edge.
copied := false
var body interfaces.Expr
if obj.Body != nil {
var err error
//body, err = obj.Body.Interpolate() // an inefficient copy works!
body, err = obj.Body.Copy()
if err != nil {
return nil, err
}
// must have been copied, or pointer would be same
if body != obj.Body {
copied = true
}
}
var function interfaces.Func
if obj.Function != nil {
function = obj.Function() // force re-build a new pointer here!
// pass in some data to the function
// TODO: do we want to pass in the full obj.data instead ?
if dataFunc, ok := function.(interfaces.DataFunc); ok {
dataFunc.SetData(&interfaces.FuncData{
Fs: obj.data.Fs,
FsURI: obj.data.FsURI,
Base: obj.data.Base,
})
}
copied = true
}
if len(obj.Values) > 0 {
// copied = true // XXX: add this if anyone isn't static?
}
// We wan't to allow static functions, although we have to be careful...
// Doing this for static functions causes us to hit a strange case in
// the SetScope function for ExprCall... Investigate if we find a bug...
if !copied { // it's static
return obj, nil
}
return &ExprFunc{
data: obj.data,
scope: obj.scope, // TODO: copy?
typ: obj.typ,
Title: obj.Title,
Args: obj.Args,
Return: obj.Return,
Body: body, // definitely copy
Function: obj.Function,
function: function,
Values: obj.Values, // XXX: do we need to force rebuild these?
V: obj.V,
}, nil
}
// Ordering returns a graph of the scope ordering that represents the data flow.
// This can be used in SetScope so that it knows the correct order to run it in.
// XXX: do we need to add ordering around named args, eg: obj.Args Name strings?
func (obj *ExprFunc) Ordering(produces map[string]interfaces.Node) (*pgraph.Graph, map[interfaces.Node]string, error) {
graph, err := pgraph.NewGraph("ordering")
if err != nil {
return nil, nil, errwrap.Wrapf(err, "could not create graph")
}
graph.AddVertex(obj)
cons := make(map[interfaces.Node]string)
// TODO: do we need ordering for other aspects of ExprFunc ?
if obj.Body != nil {
g, c, err := obj.Body.Ordering(produces)
if err != nil {
return nil, nil, err
}
graph.AddGraph(g) // add in the child graph
// additional constraint...
edge := &pgraph.SimpleEdge{Name: "exprfuncbody"}
graph.AddEdge(obj.Body, obj, edge) // prod -> cons
for k, v := range c { // c is consumes
x, exists := cons[k]
if exists && v != x {
return nil, nil, fmt.Errorf("consumed value is different, got `%+v`, expected `%+v`", x, v)
}
cons[k] = v // add to map
n, exists := produces[v]
if !exists {
continue
}
edge := &pgraph.SimpleEdge{Name: "exprfunc"}
graph.AddEdge(n, k, edge)
}
}
return graph, cons, nil
}
// SetScope stores the scope for later use in this resource and it's children,
// which it propagates this downwards to.
func (obj *ExprFunc) SetScope(scope *interfaces.Scope) error {
// TODO: Should we merge the existing obj.scope with the new one? This
// gets called multiple times, maybe doing that would simplify other
// parts of the code.
if scope == nil {
scope = interfaces.EmptyScope()
}
obj.scope = scope // store for later
if obj.Body != nil {
newScope := scope.Copy()
if obj.data.Debug {
if obj.Title != "" {
obj.data.Logf("func: %s: scope: pull index 0", obj.Title)
} else {
obj.data.Logf("func: scope: pull index 0")
}
}
indexes, exists := newScope.PullIndexes()
if exists {
if i, j := len(indexes), len(obj.Args); i != j {
return fmt.Errorf("called with %d args, but function requires %d", i, j)
}
// this version is more future proof, but less logical...
// in particular, if there are no indices, then this is skipped!
for i, arg := range indexes { // unrename
name := obj.Args[i].Name
newScope.Variables[name] = arg
}
// this version is less future proof, but more logical...
//for i, arg := range obj.Args { // copy (unrename)
// newScope.Variables[arg.Name] = indexes[i]
//}
}
// We used to store newScope here as bodyScope for later lookup!
//obj.bodyScope = newScope // store for later
// Instead we just added a private getScope method for expr's...
if err := obj.Body.SetScope(newScope); err != nil {
return err
}
}
if obj.Function != nil {
// TODO: if interfaces.Func grows a SetScope method do it here
}
if len(obj.Values) > 0 {
// TODO: if *types.FuncValue grows a SetScope method do it here
}
return nil
}
// SetType is used to set the type of this expression once it is known. This
// usually happens during type unification, but it can also happen during
// parsing if a type is specified explicitly. Since types are static and don't
// change on expressions, if you attempt to set a different type than what has
// previously been set (when not initially known) this will error.
func (obj *ExprFunc) SetType(typ *types.Type) error {
if obj.Body != nil {
// FIXME: check that it's compatible with Args/Body/Return
}
// TODO: should we ensure this is set to a KindFunc ?
if obj.Function != nil {
polyFn, ok := obj.function.(interfaces.PolyFunc) // is it statically polymorphic?
if ok {
if err := polyFn.Build(typ); err != nil {
return errwrap.Wrapf(err, "could not build expr func")
}
}
}
if len(obj.Values) > 0 {
// search for the compatible type
_, err := langutil.FnMatch(typ, obj.Values)
if err != nil {
return errwrap.Wrapf(err, "could not build values func")
}
// TODO: build the function here for later use if that is wanted
//fn := obj.Values[index].Copy().(*types.FuncValue)
//fn.T = typ.Copy() // overwrites any contained "variant" type
}
if obj.typ != nil {
return obj.typ.Cmp(typ) // if not set, ensure it doesn't change
}
obj.typ = typ // set
return nil
}
// Type returns the type of this expression. It will attempt to speculate on the
// type if it can be determined statically before type unification.
func (obj *ExprFunc) Type() (*types.Type, error) {
if len(obj.Values) == 1 {
// speculative, type is known statically
if typ := obj.Values[0].Type(); !typ.HasVariant() && obj.typ == nil {
return typ, nil
}
if obj.typ == nil {
return nil, interfaces.ErrTypeCurrentlyUnknown
}
return obj.typ, nil
} else if len(obj.Values) > 0 {
// there's nothing we can do to speculate at this time
if obj.typ == nil {
return nil, interfaces.ErrTypeCurrentlyUnknown
}
return obj.typ, nil
}
if obj.Function != nil {
sig := obj.function.Info().Sig
if sig != nil && !sig.HasVariant() && obj.typ == nil { // type is now known statically
return sig, nil
}
if obj.typ == nil {
return nil, interfaces.ErrTypeCurrentlyUnknown
}
return obj.typ, nil
}
var m = make(map[string]*types.Type)
ord := []string{}
var err error
for i, arg := range obj.Args {
if _, exists := m[arg.Name]; exists {
err = fmt.Errorf("func arg index `%d` already exists", i)
break
}
if arg.Type == nil {
err = fmt.Errorf("func arg type `%s` at index `%d` is unknown", arg.Name, i)
break
}
m[arg.Name] = arg.Type
ord = append(ord, arg.Name)
}
rtyp, e := obj.Body.Type()
if e != nil {
// TODO: do we want to include this speculative snippet below?
// function return type cannot be determined...
if obj.Return == nil {
e := errwrap.Wrapf(e, "body/return type is unknown")
err = errwrap.Append(err, e)
} else {
// probably unnecessary except for speculative execution
// because there is an invariant to determine this type!
rtyp = obj.Return // bonus, happens to be known
}
}
if err == nil && obj.typ == nil { // type is now known statically
return &types.Type{
Kind: types.KindFunc,
Map: m,
Ord: ord,
Out: rtyp,
}, nil
}
if obj.typ == nil {
if err != nil {
return nil, errwrap.Wrapf(interfaces.ErrTypeCurrentlyUnknown, err.Error())
}
return nil, interfaces.ErrTypeCurrentlyUnknown
}
return obj.typ, nil
}
// Unify returns the list of invariants that this node produces. It recursively
// calls Unify on any children elements that exist in the AST, and returns the
// collection to the caller.
func (obj *ExprFunc) Unify() ([]interfaces.Invariant, error) {
var invariants []interfaces.Invariant
// if this was set explicitly by the parser
if obj.typ != nil {
invar := &unification.EqualsInvariant{
Expr: obj,
Type: obj.typ,
}
invariants = append(invariants, invar)
}
// if we know the type statically...
// TODO: is this redundant, or do we need something similar elsewhere?
if typ, err := obj.Type(); err == nil {
invar := &unification.EqualsInvariant{
Expr: obj,
Type: typ,
}
invariants = append(invariants, invar)
}
// collect all the invariants of the body
if obj.Body != nil {
invars, err := obj.Body.Unify()
if err != nil {
return nil, err
}
invariants = append(invariants, invars...)
mapped := make(map[string]interfaces.Expr)
ordered := []string{}
// If the args are passed in by index, then we can use this,
// otherwise we can try and look them up in the standard scope.
if indexes, exists := obj.scope.Indexes[0]; exists {
if i, j := len(indexes), len(obj.Args); i != j {
return nil, fmt.Errorf("called with %d args, but function requires %d", i, j)
}
// this version is more future proof, but less logical...
// in particular, if there are no indices, then this is skipped!
for i, arg := range indexes { // unrename
name := obj.Args[i].Name
mapped[name] = arg
ordered = append(ordered, name)
// if the arg's type is known statically...
if typ := obj.Args[i].Type; typ != nil {
invar := &unification.EqualsInvariant{
Expr: arg,
Type: typ,
}
invariants = append(invariants, invar)
}
// The scope that is built for the body, should
// have variables that correspond to the inputs.
bodyScope, err := getScope(obj.Body)
if err != nil {
// programming error?
return nil, errwrap.Wrapf(err, "can't get body scope")
}
if bodyScope != nil { // TODO: can this be nil?
invar := &unification.EqualityInvariant{
Expr1: arg,
Expr2: bodyScope.Variables[name],
}
invariants = append(invariants, invar)
}
}
} else {
// XXX: i don't think this branch is ever used...
return nil, fmt.Errorf("unexpected branch")
//for _, arg := range obj.Args {
// expr, exists := obj.scope.Variables[arg.Name]
// if !exists {
// // programming error ?
// return nil, fmt.Errorf("expected arg `%s` was missing from scope", arg.Name)
// }
// mapped[arg.Name] = expr
// ordered = append(ordered, arg.Name)
//
// // if the arg's type is known statically...
// if typ := arg.Type; typ != nil {
// invar := &unification.EqualsInvariant{
// Expr: expr,
// Type: typ,
// }
// invariants = append(invariants, invar)
// }
//
// // TODO: do we need to add something like this?
// //bodyScope, err := getScope(obj.Body)
// //if err != nil {
// // // programming error?
// // return nil, errwrap.Wrapf(err, "can't get body scope")
// //}
// //// The scoped variable should match the arg.
// //invar := &unification.EqualityInvariant{
// // Expr1: expr,
// // Expr2: bodyScope.Variables[name], // ???
// //}
// //invariants = append(invariants, invar)
//}
}
// XXX: is this the right kind of invariant???
invariant := &unification.EqualityWrapFuncInvariant{
Expr1: obj,
Expr2Map: mapped,
Expr2Ord: ordered,
Expr2Out: obj.Body,
}
invariants = append(invariants, invariant)
}
// return type must be equal to the body expression
if obj.Body != nil && obj.Return != nil {
invar := &unification.EqualsInvariant{
Expr: obj.Body,
Type: obj.Return,
}
invariants = append(invariants, invar)
}
if obj.Function != nil {
// XXX: can we add anything here, perhaps this?
//fn := obj.Function()
//polyFn, ok := fn.(interfaces.PolyFunc) // is it statically polymorphic?
//if !ok {
// sig := fn.Info().Sig
// if sig != nil && !sig.HasVariant() {
// invar := &unification.EqualsInvariant{
// Expr: obj,
// Type: sig,
// }
// invariants = append(invariants, invar)
// }
//} else {
// results, err := polyFn.Polymorphisms(nil, nil) // TODO: is this okay?
// if err == nil {
// // TODO: build an exclusive here...
// }
//}
}
//if len(obj.Values) > 0
ors := []interfaces.Invariant{} // solve only one from this list
once := false
for _, fn := range obj.Values {
typ := fn.Type()
if typ.Kind != types.KindFunc {
// programming error
return nil, fmt.Errorf("overloaded value was not of kind func")
}
// NOTE: if we have more than one possibility here, *and* at
// least one of them contains a variant, *and* at least one does
// not, then we *can't* use any of these until the unification
// engine supports variants, because instead of an "OR" between
// multiple possibilities, this will look like fewer
// possibilities exist, and that the answer must be one of them!
// TODO: Previously, we just skipped all of these invariants! If
// we get examples that don't work well, just abandon this part.
if !typ.HasVariant() {
invar := &unification.EqualsInvariant{
Expr: obj,
Type: typ,
}
ors = append(ors, invar) // one solution added!
} else if !once {
// Add at *most* only one any invariant in an exclusive
// set, otherwise two or more possibilities will have
// equivalent answers.
anyInvar := &unification.AnyInvariant{
Expr: obj,
}
ors = append(ors, anyInvar)
once = true
}
} // end results loop
if len(ors) > 0 {
var invar interfaces.Invariant = &unification.ExclusiveInvariant{
Invariants: ors, // one and only one of these should be true
}
if len(ors) == 1 {
invar = ors[0] // there should only be one
}
invariants = append(invariants, invar)
}
return invariants, nil
}
// Graph returns the reactive function graph which is expressed by this node. It
// includes any vertices produced by this node, and the appropriate edges to any
// vertices that are produced by its children. Nodes which fulfill the Expr
// interface directly produce vertices (and possible children) where as nodes
// that fulfill the Stmt interface do not produces vertices, where as their
// children might. This returns a graph with a single vertex (itself) in it.
func (obj *ExprFunc) Graph() (*pgraph.Graph, error) {
graph, err := pgraph.NewGraph("func")
if err != nil {
return nil, errwrap.Wrapf(err, "could not create graph")
}
graph.AddVertex(obj)
if obj.Body != nil {
g, err := obj.Body.Graph()
if err != nil {
return nil, err
}
// We need to add this edge, because if this isn't linked, then
// when we add an edge from this, then we'll get two because the
// contents aren't linked.
name := "body" // TODO: what should we name this?
edge := &funcs.Edge{Args: []string{name}}
var once bool
edgeGenFn := func(v1, v2 pgraph.Vertex) pgraph.Edge {
if once {
panic(fmt.Sprintf("edgeGenFn for func was called twice"))
}
once = true
return edge
}
graph.AddEdgeGraphVertexLight(g, obj, edgeGenFn) // body -> func
}
if obj.Function != nil { // no input args are needed, func is built-in.
// TODO: is there anything to do ?
}
if len(obj.Values) > 0 { // no input args are needed, func is built-in.
// TODO: is there anything to do ?
}
return graph, nil
}
// Func returns the reactive stream of values that this expression produces. We
// need this indirection, because our returned function that actually runs also
// accepts the "body" of the function (an expr) as an input.
func (obj *ExprFunc) Func() (interfaces.Func, error) {
typ, err := obj.Type()
if err != nil {
return nil, err
}
if obj.Body != nil {
// TODO: i think this is unused
//f, err := obj.Body.Func()
//if err != nil {
// return nil, err
//}
// direct func
return &structs.FunctionFunc{
Type: typ, // this is a KindFunc
//Func: f,
Edge: "body", // the edge name used above in Graph is this...
}, nil
}
if obj.Function != nil {
// XXX: is this correct?
return &structs.FunctionFunc{
Type: typ, // this is a KindFunc
Func: obj.function, // pass it through
Edge: "", // no edge, since nothing is incoming to the built-in
}, nil
}
// third kind
//if len(obj.Values) > 0
index, err := langutil.FnMatch(typ, obj.Values)
if err != nil {
// programming error ?
return nil, errwrap.Wrapf(err, "no valid function found")
}
// build
// TODO: this could probably be done in SetType and cached in the struct
fn := obj.Values[index].Copy().(*types.FuncValue)
fn.T = typ.Copy() // overwrites any contained "variant" type
return &structs.FunctionFunc{
Type: typ, // this is a KindFunc
Fn: fn, // pass it through
Edge: "", // no edge, since nothing is incoming to the built-in
}, nil
}
// SetValue for a func expression is always populated statically, and does not
// ever receive any incoming values (no incoming edges) so this should never be
// called. It has been implemented for uniformity.
func (obj *ExprFunc) SetValue(value types.Value) error {
if err := obj.typ.Cmp(value.Type()); err != nil {
return err
}
// FIXME: is this part necessary?
obj.V = value.Func()
return nil
}
// Value returns the value of this expression in our type system. This will
// usually only be valid once the engine has run and values have been produced.
// This might get called speculatively (early) during unification to learn more.
// This particular value is always known since it is a constant.
func (obj *ExprFunc) Value() (types.Value, error) {
// TODO: implement speculative value lookup (if not already sufficient)
return &types.FuncValue{
V: obj.V,
T: obj.typ,
}, nil
}
// ExprCall is a representation of a function call. This does not represent the
// declaration or implementation of a new function value. This struct has an
// analogous symmetry with ExprVar.
type ExprCall struct {
data *interfaces.Data
scope *interfaces.Scope // store for referencing this later
typ *types.Type
expr interfaces.Expr // copy of what we're calling
orig *ExprCall // original pointer to this
V types.Value // stored result (set with SetValue)
// Name of the function to be called. We look for it in the scope.
Name string
// Args are the list of inputs to this function.
Args []interfaces.Expr // list of args in parsed order
// Var specifies whether the function being called is a lambda in a var.
Var bool
}
// String returns a short representation of this expression.
func (obj *ExprCall) String() string {
var s []string
for _, x := range obj.Args {
s = append(s, fmt.Sprintf("%s", x.String()))
}
return fmt.Sprintf("call:%s(%s)", obj.Name, strings.Join(s, ", "))
}
// Apply is a general purpose iterator method that operates on any AST node. It
// is not used as the primary AST traversal function because it is less readable
// and easy to reason about than manually implementing traversal for each node.
// Nevertheless, it is a useful facility for operations that might only apply to
// a select number of node types, since they won't need extra noop iterators...
func (obj *ExprCall) Apply(fn func(interfaces.Node) error) error {
for _, x := range obj.Args {
if err := x.Apply(fn); err != nil {
return err
}
}
return fn(obj)
}
// Init initializes this branch of the AST, and returns an error if it fails to
// validate.
func (obj *ExprCall) Init(data *interfaces.Data) error {
obj.data = data
for _, x := range obj.Args {
if err := x.Init(data); err != nil {
return err
}
}
return nil
}
// Interpolate returns a new node (aka a copy) once it has been expanded. This
// generally increases the size of the AST when it is used. It calls Interpolate
// on any child elements and builds the new node with those new node contents.
func (obj *ExprCall) Interpolate() (interfaces.Expr, error) {
args := []interfaces.Expr{}
for _, x := range obj.Args {
interpolated, err := x.Interpolate()
if err != nil {
return nil, err
}
args = append(args, interpolated)
}
orig := obj
if obj.orig != nil { // preserve the original pointer (the identifier!)
orig = obj.orig
}
return &ExprCall{
data: obj.data,
scope: obj.scope,
typ: obj.typ,
// XXX: Copy copies this, do we want to here as well? (or maybe
// we want to do it here, but not in Copy?)
expr: obj.expr,
orig: orig,
V: obj.V,
Name: obj.Name,
Args: args,
Var: obj.Var,
}, nil
}
// Copy returns a light copy of this struct. Anything static will not be copied.
func (obj *ExprCall) Copy() (interfaces.Expr, error) {
copied := false
copiedArgs := false
args := []interfaces.Expr{}
for _, x := range obj.Args {
cp, err := x.Copy()
if err != nil {
return nil, err
}
if cp != x { // must have been copied, or pointer would be same
copiedArgs = true
}
args = append(args, cp)
}
if copiedArgs {
copied = true
} else {
args = obj.Args // don't re-package it unnecessarily!
}
var err error
var expr interfaces.Expr
if obj.expr != nil {
expr, err = obj.expr.Copy()
if err != nil {
return nil, err
}
if expr != obj.expr {
copied = true
}
}
// TODO: is this necessary? (I doubt it even gets used.)
orig := obj
if obj.orig != nil { // preserve the original pointer (the identifier!)
orig = obj.orig
copied = true // TODO: is this what we want?
}
// FIXME: do we want to allow a static ExprCall ?
if !copied { // it's static
return obj, nil
}
return &ExprCall{
data: obj.data,
scope: obj.scope,
typ: obj.typ,
expr: expr, // it seems that we need to copy this for it to work
orig: orig,
V: obj.V,
Name: obj.Name,
Args: args,
Var: obj.Var,
}, nil
}
// Ordering returns a graph of the scope ordering that represents the data flow.
// This can be used in SetScope so that it knows the correct order to run it in.
func (obj *ExprCall) Ordering(produces map[string]interfaces.Node) (*pgraph.Graph, map[interfaces.Node]string, error) {
graph, err := pgraph.NewGraph("ordering")
if err != nil {
return nil, nil, errwrap.Wrapf(err, "could not create graph")
}
graph.AddVertex(obj)
if obj.Name == "" {
return nil, nil, fmt.Errorf("missing call name")
}
uid := funcOrderingPrefix + obj.Name // ordering id
if obj.Var { // lambda
uid = varOrderingPrefix + obj.Name // ordering id
}
cons := make(map[interfaces.Node]string)
cons[obj] = uid
node, exists := produces[uid]
if exists {
edge := &pgraph.SimpleEdge{Name: "exprcallname"}
graph.AddEdge(node, obj, edge) // prod -> cons
}
for _, node := range obj.Args {
g, c, err := node.Ordering(produces)
if err != nil {
return nil, nil, err
}
graph.AddGraph(g) // add in the child graph
// additional constraint...
edge := &pgraph.SimpleEdge{Name: "exprcallargs1"}
graph.AddEdge(node, obj, edge) // prod -> cons
for k, v := range c { // c is consumes
x, exists := cons[k]
if exists && v != x {
return nil, nil, fmt.Errorf("consumed value is different, got `%+v`, expected `%+v`", x, v)
}
cons[k] = v // add to map
n, exists := produces[v]
if !exists {
continue
}
edge := &pgraph.SimpleEdge{Name: "exprcallargs2"}
graph.AddEdge(n, k, edge)
}
}
return graph, cons, nil
}
// SetScope stores the scope for later use in this resource and it's children,
// which it propagates this downwards to. This particular function has been
// heavily optimized to work correctly with calling functions with the correct
// args. Edit cautiously and with extensive testing.
func (obj *ExprCall) SetScope(scope *interfaces.Scope) error {
if scope == nil {
scope = interfaces.EmptyScope()
}
obj.scope = scope
if obj.data.Debug {
obj.data.Logf("call: %s(%t): scope: variables: %+v", obj.Name, obj.Var, obj.scope.Variables)
obj.data.Logf("call: %s(%t): scope: functions: %+v", obj.Name, obj.Var, obj.scope.Functions)
}
// Remember that we *want* to propagate this scope into the args that
// we use, but we DON'T want to propagate it into the function body...
// Only the args should get propagated into it that way.
for _, x := range obj.Args {
if err := x.SetScope(scope); err != nil {
return err
}
}
// which scope should we look in for our function?
var funcScope map[string]interfaces.Expr
if obj.Var {
funcScope = obj.scope.Variables // lambda value
} else {
funcScope = obj.scope.Functions // func statement
}
// Lookup function from scope...
f, exists := funcScope[obj.Name]
if !exists {
return fmt.Errorf("func `%s` does not exist in this scope", obj.Name)
}
// Whether or not this is an ExprCall or ExprFunc, we do the same thing!
fn, isFn := f.(*ExprFunc)
if !isFn {
// this logic is now combined into the main execution flow...
//_, ok := f.(*ExprCall)
}
if isFn && fn.Body != nil {
if i, j := len(obj.Args), len(fn.Args); i != j {
return fmt.Errorf("func `%s` is being called with %d args, but expected %d args", obj.Name, i, j)
}
}
// XXX: is this check or the above one logical here before unification?
if isFn && fn.Function != nil {
//if i, j := len(obj.Args), len(???.Args); i != j {
// return fmt.Errorf("func `%s` is being called with %d args, but expected %d args", obj.Name, i, j)
//}
}
if isFn && len(fn.Values) > 0 {
// XXX: what can we add here?
}
// XXX: we do this twice, so we should avoid the first one somehow...
// XXX: why do we do it twice???
if obj.expr != nil {
// possible programming error
//return fmt.Errorf("call already contains a func pointer")
}
// FIXME: do we want scope or obj.fn.scope (below, and after it's set) ?
for i := len(scope.Chain) - 1; i >= 0; i-- { // reverse order
x, ok := scope.Chain[i].(*ExprCall)
if !ok {
continue
}
if x == obj.orig { // look for my original self
// scope chain found!
obj.expr = f // same pointer, don't copy
return fmt.Errorf("recursive func `%s` found", obj.Name)
//return nil // if recursion was supported
}
}
// Don't copy using interpolate, because we don't want to recursively
// copy things. We copy it for each use of the call.
// TODO: We want to recursively copy, but do we want to keep all the
// pointers the same, except for the obj.Args[i] ones that we stick in
// the scope for lookups...?
copied, err := f.Copy() // this does a light copy
if err != nil {
return errwrap.Wrapf(err, "could not copy expr")
}
obj.expr = copied
if obj.data.Debug {
obj.data.Logf("call(%s): set scope: func pointer: %p (before) -> %p (after)", obj.Name, f, copied)
}
// Here, in the below loop, we want to do the equivalent of:
// `newScope.Variables["foo"] = obj.Args[i]`, which we can't because we
// only know the positional, indexed arguments. So, instead we build an
// indexed scope that is unpacked as such.
// Can't add the args `call:foo(42, "bar", true)` into the func scope...
//for i, arg := range obj.fn.Args { // copy
// newScope.Variables[arg.Name] = obj.Args[i]
//}
// Instead we use the special indexes to do that...
indexes := []interfaces.Expr{}
for _, arg := range obj.Args {
indexes = append(indexes, arg)
}
// We start with the scope that the func had, and we augment it with our
// indexed arg variables, which will be needed in that scope. It is very
// important to *NOT* add the surrounding scope into the body because it
// shouldn't be able to jump into the function, only the args go into it
// from this point. We also need to extract the indexed args that are in
// the current scope that we've been building up via the SetScope stuff.
// FIXME: check I didn't pick the wrong scope in class/include...
s, err := getScope(obj.expr)
if err == ErrNoStoredScope {
s = interfaces.EmptyScope()
//s = scope // XXX: or this?
} else if err != nil {
// programming error?
return errwrap.Wrapf(err, "could not get scope from: %+v", obj.expr)
}
newScope := s.Copy()
//newScope := obj.fn.scope.Copy() // formerly
oldScope := scope.Copy()
// We need to keep the function's scope, because that's what matters,
// but we need to augment it with the indexes we have currently. Plan:
// 1) Push indexes of "travelling" scope onto existing function scope.
// 2) Append to indexes any args that we're currently calling.
// 3) Propagate this new scope into the function.
// 4) In case of a future bug, consider dealing with this edge case!
if len(newScope.Indexes) > 0 {
// programming error ?
// TODO: this happens when we don't copy a static function... Is
// it a problem that we overwrite it below? It seems to be ok...
//return fmt.Errorf("edge case in ExprCall:SetScope, newScope is non-zero")
}
newScope.Indexes = oldScope.Indexes
newScope.PushIndexes(indexes) // obj.Args added to [0]
if obj.data.Debug {
obj.data.Logf("call(%s): set scope: adding to indexes: %+v", obj.Name, newScope.Indexes)
}
// recursion detection
newScope.Chain = append(newScope.Chain, obj.orig) // add expr to list
// TODO: switch based on obj.Var ?
//newScope.Functions[obj.Name] = copied // overwrite with new pointer
err = obj.expr.SetScope(newScope)
return errwrap.Wrapf(err, "could not set call expr scope")
}
// SetType is used to set the type of this expression once it is known. This
// usually happens during type unification, but it can also happen during
// parsing if a type is specified explicitly. Since types are static and don't
// change on expressions, if you attempt to set a different type than what has
// previously been set (when not initially known) this will error. Remember that
// for this function expression, the type is the *return type* of the function,
// not the full type of the function signature.
func (obj *ExprCall) SetType(typ *types.Type) error {
if obj.typ != nil {
return obj.typ.Cmp(typ) // if not set, ensure it doesn't change
}
obj.typ = typ // set
return nil
}
// Type returns the type of this expression, which is the return type of the
// function call.
func (obj *ExprCall) Type() (*types.Type, error) {
if obj.expr == nil {
// possible programming error
return nil, fmt.Errorf("call doesn't contain an expr pointer yet")
}
// function specific code follows...
fn, isFn := obj.expr.(*ExprFunc)
if !isFn {
if obj.typ == nil {
return nil, interfaces.ErrTypeCurrentlyUnknown
}
return obj.typ, nil
}
sig, err := fn.Type()
if err != nil {
return nil, err
}
if typ := sig.Out; typ != nil && !typ.HasVariant() && obj.typ == nil {
return typ, nil // speculate!
}
// speculate if a partial return type is known
if fn.Body != nil {
if fn.Return != nil && obj.typ == nil {
return fn.Return, nil
}
if typ, err := fn.Body.Type(); err == nil && obj.typ == nil {
return typ, nil
}
}
if fn.Function != nil {
// is it statically polymorphic or not?
_, isPoly := fn.function.(interfaces.PolyFunc)
if !isPoly && obj.typ == nil {
if info := fn.function.Info(); info != nil {
if sig := info.Sig; sig != nil {
if typ := sig.Out; typ != nil && !typ.HasVariant() {
return typ, nil // speculate!
}
}
}
}
// TODO: we could also check if a truly polymorphic type has
// consistent return values across all possibilities available
}
//if len(fn.Values) > 0
// check to see if we have a unique return type
for _, fn := range fn.Values {
typ := fn.Type()
if typ == nil || typ.Out == nil {
continue // skip, not available yet
}
if obj.typ == nil {
return typ, nil
}
}
if obj.typ == nil {
return nil, interfaces.ErrTypeCurrentlyUnknown
}
return obj.typ, nil
}
// Unify returns the list of invariants that this node produces. It recursively
// calls Unify on any children elements that exist in the AST, and returns the
// collection to the caller.
func (obj *ExprCall) Unify() ([]interfaces.Invariant, error) {
if obj.expr == nil {
// possible programming error
return nil, fmt.Errorf("call doesn't contain an expr pointer yet")
}
var invariants []interfaces.Invariant
// if this was set explicitly by the parser
if obj.typ != nil {
invar := &unification.EqualsInvariant{
Expr: obj,
Type: obj.typ,
}
invariants = append(invariants, invar)
}
//if obj.typ != nil { // XXX: i think this is probably incorrect...
// invar := &unification.EqualsInvariant{
// Expr: obj.expr,
// Type: obj.typ,
// }
// invariants = append(invariants, invar)
//}
// collect all the invariants of each sub-expression
for _, x := range obj.Args {
invars, err := x.Unify()
if err != nil {
return nil, err
}
invariants = append(invariants, invars...)
}
// add the invariants from the actual function that we'll be using...
// don't add them from the pre-copied function, which is never used...
invars, err := obj.expr.Unify()
if err != nil {
return nil, err
}
invariants = append(invariants, invars...)
anyInvar := &unification.AnyInvariant{ // TODO: maybe this isn't needed?
Expr: obj.expr,
}
invariants = append(invariants, anyInvar)
// our type should equal the return type of the called function
invar := &unification.EqualityWrapCallInvariant{
// TODO: should Expr1 and Expr2 be reversed???
Expr1: obj, // return type expression from calling the function
Expr2Func: obj.expr,
// Expr2Args: obj.Args, XXX: ???
}
invariants = append(invariants, invar)
// function specific code follows...
fn, isFn := obj.expr.(*ExprFunc)
if !isFn {
return invariants, nil
}
// if we know the return type, it should match our type
if fn.Body != nil && fn.Return != nil {
invar := &unification.EqualsInvariant{
Expr: obj, // return type from calling the function
Type: fn.Return, // specified return type
}
invariants = append(invariants, invar)
}
// If ExprFunc is built from mcl code. Note: Unify on fn.Body is called
// from within StmtBind or StmtFunc, depending on whether it's a lambda.
// Instead, we'll block it there, and run it from here instead...
if fn.Body != nil {
if i, j := len(obj.Args), len(fn.Args); i != j {
return nil, fmt.Errorf("func `%s` is being called with %d args, but expected %d args", obj.Name, i, j)
}
// do the specified args match any specified arg types?
for i, x := range fn.Args {
if x.Type == nil { // unknown type
continue
}
invar := &unification.EqualsInvariant{
Expr: obj.Args[i],
Type: x.Type,
}
invariants = append(invariants, invar)
}
// do the variables in the body match the arg types ?
// XXX: test this section to ensure it's the right scope (should
// it be getScope(fn) ?) and is it what we want...
for _, x := range fn.Args {
expr, exists := obj.scope.Variables[x.Name] // XXX: test!
if !exists || x.Type == nil {
continue
}
invar := &unification.EqualsInvariant{
Expr: expr,
Type: x.Type,
}
invariants = append(invariants, invar)
}
// build the reference to ourself if we have undetermined field types
mapped := make(map[string]interfaces.Expr)
ordered := []string{}
for i, x := range fn.Args {
mapped[x.Name] = obj.Args[i]
ordered = append(ordered, x.Name)
}
// determine the type of the function itself
invariant := &unification.EqualityWrapFuncInvariant{
Expr1: fn, // unique id for this expression (a pointer)
Expr2Map: mapped,
Expr2Ord: ordered,
Expr2Out: fn.Body,
}
invariants = append(invariants, invariant)
//if fn.Return != nil {
// invariant := &unification.EqualityWrapFuncInvariant{
// Expr1: fn, // unique id for this expression (a pointer)
// Expr2Map: mapped,
// Expr2Ord: ordered,
// Expr2Out: fn.Return, // XXX: ???
// }
// invariants = append(invariants, invariant)
//}
// TODO: Do we need to add an EqualityWrapCallInvariant here?
// the return type of this call expr, should match the body type
invar := &unification.EqualityInvariant{
Expr1: obj,
Expr2: fn.Body,
}
invariants = append(invariants, invar)
//if fn.Return != nil {
// invar := &unification.EqualityInvariant{
// Expr1: obj,
// Expr2: fn.Return, XXX: ???
// }
// invariants = append(invariants, invar)
//}
return invariants, nil
}
//if fn.Function != nil ...
var results []*types.Type
argGen := func(x int) (string, error) {
// assume (incorrectly?) for now...
return util.NumToAlpha(x), nil
}
if fn.Function != nil {
namedArgsFn, ok := fn.function.(interfaces.NamedArgsFunc) // are the args named?
if ok {
argGen = namedArgsFn.ArgGen // func(int) string
}
}
// build partial type and partial input values to aid in filtering...
argNames := []string{}
mapped := make(map[string]*types.Type)
partialValues := []types.Value{}
for i := range obj.Args {
name, err := argGen(i) // get the Nth arg name
if err != nil {
return nil, errwrap.Wrapf(err, "error getting arg name #%d for func `%s`", i, obj.Name)
}
if name == "" {
// possible programming error
return nil, fmt.Errorf("can't get arg name #%d for func `%s`", i, obj.Name)
}
argNames = append(argNames, name)
mapped[name] = nil // unknown type
partialValues = append(partialValues, nil) // XXX: is this safe?
// optimization: if zeroth arg is a static string, specify this!
// TODO: this is a more specialized version of the next check...
if x, ok := obj.Args[0].(*ExprStr); i == 0 && ok { // is static?
mapped[name], _ = x.Type()
partialValues[i], _ = x.Value() // store value
}
// optimization: if type is already known, specify it now!
if t, err := obj.Args[i].Type(); err == nil { // is known?
mapped[name] = t
// if value is completely static, pass it in now!
if v, err := obj.Args[i].Value(); err == nil {
partialValues[i] = v // store value
}
}
}
out, err := obj.Type() // do we know the return type yet?
if err != nil {
out = nil // just to make sure...
}
// partial type can have some type components that are nil!
// this means they are not yet known at this time...
partialType := &types.Type{
Kind: types.KindFunc,
Map: mapped,
Ord: argNames,
Out: out, // possibly nil
}
var polyFn interfaces.PolyFunc
var ok bool
// do we have a special case like the operator or template function?
if fn.Function != nil {
polyFn, ok = fn.function.(interfaces.PolyFunc) // is it statically polymorphic?
}
if fn.Function != nil && ok {
var err error
results, err = polyFn.Polymorphisms(partialType, partialValues)
if err != nil {
return nil, errwrap.Wrapf(err, "polymorphic signatures for func `%s` could not be found", obj.Name)
}
} else if fn.Function != nil && !ok {
sig := fn.function.Info().Sig
results = []*types.Type{sig} // only one (non-polymorphic)
}
// if len(fn.Values) > 0
for _, f := range fn.Values {
// FIXME: can we filter based on partialValues too?
// TODO: if status is "both", should we skip as too difficult?
_, err := f.T.ComplexCmp(partialType)
if err != nil {
continue
}
results = append(results, f.T)
}
// build invariants from a list of possible types
ors := []interfaces.Invariant{} // solve only one from this list
// each of these is a different possible signature
for _, typ := range results {
if typ.Kind != types.KindFunc {
panic("overloaded result was not of kind func")
}
// XXX: how do we deal with template returning a variant?
// XXX: i think we need more invariant types, and if it's
// going to be a variant, just return no results, and the
// defaults from the engine should just match it anyways!
if typ.HasVariant() { // XXX: ¯\_(ツ)_/¯
//continue // XXX: alternate strategy...
//return nil, fmt.Errorf("variant type not yet supported, got: %+v", typ) // XXX: old strategy
}
if typ.Kind == types.KindVariant { // XXX: ¯\_(ツ)_/¯
// XXX: maybe needed to avoid an oversimplified exclusive!
anyInvar := &unification.AnyInvariant{
Expr: fn, // TODO: fn or obj ?
}
ors = append(ors, anyInvar)
continue // can't deal with raw variant a.t.m.
}
if i, j := len(typ.Ord), len(obj.Args); i != j {
continue // this signature won't work for us, skip!
}
// what would a set of invariants for this sig look like?
var invars []interfaces.Invariant
// use Map and Ord for Input (Kind == Function)
for i, x := range typ.Ord {
if typ.Map[x].HasVariant() { // XXX: ¯\_(ツ)_/¯
// TODO: maybe this isn't needed?
invar := &unification.AnyInvariant{
Expr: obj.Args[i],
}
invars = append(invars, invar)
continue
}
invar := &unification.EqualsInvariant{
Expr: obj.Args[i],
Type: typ.Map[x], // type of arg
}
invars = append(invars, invar)
}
if typ.Out != nil {
// this expression should equal the output type of the function
if typ.Out.HasVariant() { // XXX: ¯\_(ツ)_/¯
// TODO: maybe this isn't needed?
invar := &unification.AnyInvariant{
Expr: obj,
}
invars = append(invars, invar)
} else {
invar := &unification.EqualsInvariant{
Expr: obj,
Type: typ.Out,
}
invars = append(invars, invar)
}
}
// add more invariants to link the partials...
mapped := make(map[string]interfaces.Expr)
ordered := []string{}
for pos, x := range obj.Args {
name := argNames[pos]
mapped[name] = x
ordered = append(ordered, name)
}
if !typ.HasVariant() { // XXX: ¯\_(ツ)_/¯
funcInvariant := &unification.EqualsInvariant{
Expr: fn,
Type: typ,
}
invars = append(invars, funcInvariant)
} else {
// XXX: maybe needed to avoid an oversimplified exclusive!
anyInvar := &unification.AnyInvariant{
Expr: fn, // TODO: fn or obj ?
}
invars = append(invars, anyInvar)
}
// Note: The usage of this invariant is different from the other
// wrap* invariants, because in this case, the expression type
// is the return type which is produced, where as the entire
// function itself has its own type which includes the types of
// the input arguments...
invar := &unification.EqualityWrapFuncInvariant{
Expr1: fn,
Expr2Map: mapped,
Expr2Ord: ordered,
Expr2Out: obj, // type of expression is return type of function
}
invars = append(invars, invar)
// all of these need to be true together
and := &unification.ConjunctionInvariant{
Invariants: invars,
}
ors = append(ors, and) // one solution added!
} // end results loop
// don't error here, we might not want to add any invariants!
//if len(results) == 0 {
// return nil, fmt.Errorf("can't find any valid signatures that match func `%s`", obj.Name)
//}
if len(ors) > 0 {
var invar interfaces.Invariant = &unification.ExclusiveInvariant{
Invariants: ors, // one and only one of these should be true
}
if len(ors) == 1 {
invar = ors[0] // there should only be one
}
invariants = append(invariants, invar)
}
return invariants, nil
}
// Graph returns the reactive function graph which is expressed by this node. It
// includes any vertices produced by this node, and the appropriate edges to any
// vertices that are produced by its children. Nodes which fulfill the Expr
// interface directly produce vertices (and possible children) where as nodes
// that fulfill the Stmt interface do not produces vertices, where as their
// children might. This returns a graph with a single vertex (itself) in it, and
// the edges from all of the child graphs to this.
func (obj *ExprCall) Graph() (*pgraph.Graph, error) {
if obj.expr == nil {
// possible programming error
return nil, fmt.Errorf("call doesn't contain an expr pointer yet")
}
graph, err := pgraph.NewGraph("call")
if err != nil {
return nil, errwrap.Wrapf(err, "could not create graph")
}
graph.AddVertex(obj)
// argnames!
argNames := []string{}
typ, err := obj.expr.Type()
if err != nil {
return nil, err
}
// TODO: can we use this method for all of the kinds of obj.expr?
// TODO: probably, but i've left in the expanded versions for now
argNames = typ.Ord
var inconsistentEdgeNames = false // probably better off with this off!
// function specific code follows...
fn, isFn := obj.expr.(*ExprFunc)
if isFn && inconsistentEdgeNames {
if fn.Body != nil {
// add arg names that are seen in the ExprFunc struct!
a := []string{}
for _, x := range fn.Args {
a = append(a, x.Name)
}
argNames = a
}
if fn.Function != nil {
argNames = fn.function.Info().Sig.Ord
}
if len(fn.Values) > 0 {
// add the expected arg names from the selected function
typ, err := fn.Type()
if err != nil {
return nil, err
}
argNames = typ.Ord
}
}
if len(argNames) != len(obj.Args) { // extra safety...
return nil, fmt.Errorf("func `%s` expected %d args, got %d", obj.Name, len(argNames), len(obj.Args))
}
// Each func argument needs to point to the final function expression.
for pos, x := range obj.Args { // function arguments in order
g, err := x.Graph()
if err != nil {
return nil, err
}
//argName := fmt.Sprintf("%d", pos) // indexed!
argName := argNames[pos]
edge := &funcs.Edge{Args: []string{argName}}
// TODO: replace with:
//edge := &funcs.Edge{Args: []string{fmt.Sprintf("arg:%s", argName)}}
var once bool
edgeGenFn := func(v1, v2 pgraph.Vertex) pgraph.Edge {
if once {
panic(fmt.Sprintf("edgeGenFn for func `%s`, arg `%s` was called twice", obj.Name, argName))
}
once = true
return edge
}
graph.AddEdgeGraphVertexLight(g, obj, edgeGenFn) // arg -> func
}
// This is important, because we don't want an extra, unnecessary edge!
if isFn && (fn.Function != nil || len(fn.Values) > 0) {
return graph, nil // built-in's don't need a vertex or an edge!
}
// Add the graph of the expression which must proceed the call... This
// might already exist in graph (i think)...
// Note: This can cause a panic if you get two NOT-connected vertices,
// in the source graph, because it tries to add two edges! Solution: add
// the missing edge between those in the source... Happy bug killing =D
graph.AddVertex(obj.expr) // duplicate additions are ignored and are harmless
g, err := obj.expr.Graph()
if err != nil {
return nil, err
}
edge := &funcs.Edge{Args: []string{fmt.Sprintf("call:%s", obj.Name)}}
var once bool
edgeGenFn := func(v1, v2 pgraph.Vertex) pgraph.Edge {
if once {
panic(fmt.Sprintf("edgeGenFn for call `%s` was called twice", obj.Name))
}
once = true
return edge
}
graph.AddEdgeGraphVertexLight(g, obj, edgeGenFn) // expr -> call
return graph, nil
}
// Func returns the reactive stream of values that this expression produces.
// Reminder that this looks very similar to ExprVar...
func (obj *ExprCall) Func() (interfaces.Func, error) {
if obj.expr == nil {
// possible programming error
return nil, fmt.Errorf("call doesn't contain an expr pointer yet")
}
typ, err := obj.Type()
if err != nil {
return nil, err
}
ftyp, err := obj.expr.Type()
if err != nil {
return nil, err
}
// function specific code follows...
fn, isFn := obj.expr.(*ExprFunc)
if isFn && fn.Function != nil {
// NOTE: This has to be a unique pointer each time, which is why
// the ExprFunc builds a special unique copy into .function that
// is used here. If it was shared across the function graph, the
// function engine would error, because it would be operating on
// the same struct that is being touched from multiple places...
return fn.function, nil
//return obj.fn.Func() // this is incorrect. see ExprVar comment
}
// XXX: receive the ExprFunc properly, and use it in CallFunc...
//if isFn && len(fn.Values) > 0 {
// return &structs.CallFunc{
// Type: typ, // this is the type of what the func returns
// FuncType: ftyp,
// Edge: "???",
// Fn: ???,
// }, nil
//}
// direct func
return &structs.CallFunc{
Type: typ, // this is the type of what the func returns
FuncType: ftyp,
// the edge name used above in Graph is this...
Edge: fmt.Sprintf("call:%s", obj.Name),
//Indexed: true, // 0, 1, 2 ... TODO: is this useful?
}, nil
}
// SetValue here is used to store the result of the last computation of this
// expression node after it has received all the required input values. This
// value is cached and can be retrieved by calling Value.
func (obj *ExprCall) SetValue(value types.Value) error {
if err := obj.typ.Cmp(value.Type()); err != nil {
return err
}
obj.V = value
return nil
}
// Value returns the value of this expression in our type system. This will
// usually only be valid once the engine has run and values have been produced.
// This might get called speculatively (early) during unification to learn more.
// It is often unlikely that this kind of speculative execution finds something.
// This particular implementation of the function returns the previously stored
// and cached value as received by SetValue.
func (obj *ExprCall) Value() (types.Value, error) {
if obj.V == nil {
return nil, fmt.Errorf("func value does not yet exist")
}
return obj.V, nil
}
// ExprVar is a representation of a variable lookup. It returns the expression
// that that variable refers to.
type ExprVar struct {
scope *interfaces.Scope // store for referencing this later
typ *types.Type
Name string // name of the variable
}
// String returns a short representation of this expression.
func (obj *ExprVar) String() string { return fmt.Sprintf("var(%s)", obj.Name) }
// Apply is a general purpose iterator method that operates on any AST node. It
// is not used as the primary AST traversal function because it is less readable
// and easy to reason about than manually implementing traversal for each node.
// Nevertheless, it is a useful facility for operations that might only apply to
// a select number of node types, since they won't need extra noop iterators...
func (obj *ExprVar) Apply(fn func(interfaces.Node) error) error { return fn(obj) }
// Init initializes this branch of the AST, and returns an error if it fails to
// validate.
func (obj *ExprVar) Init(*interfaces.Data) error { return nil }
// Interpolate returns a new node (aka a copy) once it has been expanded. This
// generally increases the size of the AST when it is used. It calls Interpolate
// on any child elements and builds the new node with those new node contents.
// Here it returns itself, since variable names cannot be interpolated. We don't
// support variable, variables or anything crazy like that.
func (obj *ExprVar) Interpolate() (interfaces.Expr, error) {
return &ExprVar{
scope: obj.scope,
typ: obj.typ,
Name: obj.Name,
}, nil
}
// Copy returns a light copy of this struct. Anything static will not be copied.
// This intentionally returns a copy, because if a function (usually a lambda)
// that is used more than once, contains this variable, we will want each
// instantiation of it to be unique, otherwise they will be the same pointer,
// and they won't be able to have different values.
func (obj *ExprVar) Copy() (interfaces.Expr, error) {
return &ExprVar{
scope: obj.scope,
typ: obj.typ,
Name: obj.Name,
}, nil
}
// Ordering returns a graph of the scope ordering that represents the data flow.
// This can be used in SetScope so that it knows the correct order to run it in.
func (obj *ExprVar) Ordering(produces map[string]interfaces.Node) (*pgraph.Graph, map[interfaces.Node]string, error) {
graph, err := pgraph.NewGraph("ordering")
if err != nil {
return nil, nil, errwrap.Wrapf(err, "could not create graph")
}
graph.AddVertex(obj)
if obj.Name == "" {
return nil, nil, fmt.Errorf("missing var name")
}
uid := varOrderingPrefix + obj.Name // ordering id
cons := make(map[interfaces.Node]string)
cons[obj] = uid
node, exists := produces[uid]
if exists {
edge := &pgraph.SimpleEdge{Name: "exprvar"}
graph.AddEdge(node, obj, edge) // prod -> cons
}
return graph, cons, nil
}
// SetScope stores the scope for use in this resource.
func (obj *ExprVar) SetScope(scope *interfaces.Scope) error {
if scope == nil {
scope = interfaces.EmptyScope()
}
obj.scope = scope
return nil
}
// SetType is used to set the type of this expression once it is known. This
// usually happens during type unification, but it can also happen during
// parsing if a type is specified explicitly. Since types are static and don't
// change on expressions, if you attempt to set a different type than what has
// previously been set (when not initially known) this will error.
func (obj *ExprVar) SetType(typ *types.Type) error {
if obj.typ != nil {
return obj.typ.Cmp(typ) // if not set, ensure it doesn't change
}
obj.typ = typ // set
return nil
}
// Type returns the type of this expression.
func (obj *ExprVar) Type() (*types.Type, error) {
// TODO: should this look more like Type() in ExprCall or vice-versa?
// Return the type if it is already known statically... It is useful for
// type unification to have some extra info early.
expr, exists := obj.scope.Variables[obj.Name]
// If !exists, just ignore the error for now since this is speculation!
// This logic simplifies down to just this!
if exists && obj.typ == nil {
return expr.Type()
}
if obj.typ == nil {
return nil, interfaces.ErrTypeCurrentlyUnknown
}
return obj.typ, nil
}
// Unify returns the list of invariants that this node produces. It recursively
// calls Unify on any children elements that exist in the AST, and returns the
// collection to the caller.
func (obj *ExprVar) Unify() ([]interfaces.Invariant, error) {
var invariants []interfaces.Invariant
// lookup value from scope
expr, exists := obj.scope.Variables[obj.Name]
if !exists {
return nil, fmt.Errorf("var `%s` does not exist in this scope", obj.Name)
}
// if this was set explicitly by the parser
if obj.typ != nil {
invar := &unification.EqualsInvariant{
Expr: obj,
Type: obj.typ,
}
invariants = append(invariants, invar)
}
// don't recurse because we already got this through the bind statement
// FIXME: see the comment in StmtBind... keep this in for now...
invars, err := expr.Unify()
if err != nil {
return nil, err
}
invariants = append(invariants, invars...)
// this expression's type must be the type of what the var is bound to!
// TODO: does this always cause an identical duplicate invariant?
invar := &unification.EqualityInvariant{
Expr1: obj,
Expr2: expr,
}
invariants = append(invariants, invar)
return invariants, nil
}
// Graph returns the reactive function graph which is expressed by this node. It
// includes any vertices produced by this node, and the appropriate edges to any
// vertices that are produced by its children. Nodes which fulfill the Expr
// interface directly produce vertices (and possible children) where as nodes
// that fulfill the Stmt interface do not produces vertices, where as their
// children might. This returns a graph with a single vertex (itself) in it, and
// the edges from all of the child graphs to this. The child graph in this case
// is the graph which is obtained from the bound expression. The edge points
// from that expression to this vertex. The function used for this vertex is a
// simple placeholder which sucks incoming values in and passes them on. This is
// important for filling the logical requirements of the graph type checker, and
// to avoid duplicating production of the incoming input value from the bound
// expression.
func (obj *ExprVar) Graph() (*pgraph.Graph, error) {
graph, err := pgraph.NewGraph("var")
if err != nil {
return nil, errwrap.Wrapf(err, "could not create graph")
}
graph.AddVertex(obj)
// ??? = $foo (this is the foo)
// lookup value from scope
expr, exists := obj.scope.Variables[obj.Name]
if !exists {
return nil, fmt.Errorf("var `%s` does not exist in this scope", obj.Name)
}
// should already exist in graph (i think)...
graph.AddVertex(expr) // duplicate additions are ignored and are harmless
// the expr needs to point to the var lookup expression
g, err := expr.Graph()
if err != nil {
return nil, err
}
edge := &funcs.Edge{Args: []string{fmt.Sprintf("var:%s", obj.Name)}}
var once bool
edgeGenFn := func(v1, v2 pgraph.Vertex) pgraph.Edge {
if once {
panic(fmt.Sprintf("edgeGenFn for var `%s` was called twice", obj.Name))
}
once = true
return edge
}
graph.AddEdgeGraphVertexLight(g, obj, edgeGenFn) // expr -> var
return graph, nil
}
// Func returns a "pass-through" function which receives the bound value, and
// passes it to the consumer. This is essential for satisfying the type checker
// of the function graph engine. Reminder that this looks very similar to
// ExprCall...
func (obj *ExprVar) Func() (interfaces.Func, error) {
//expr, exists := obj.scope.Variables[obj.Name]
//if !exists {
// return nil, fmt.Errorf("var `%s` does not exist in scope", obj.Name)
//}
// this is wrong, if we did it this way, this expr wouldn't exist as a
// distinct node in the function graph to relay values through, instead,
// it would be acting as a "substitution/lookup" function, which just
// copies the bound function over into here. As a result, we'd have N
// copies of that function (based on the number of times N that that
// variable is used) instead of having that single bound function as
// input which is sent via N different edges to the multiple locations
// where the variables are used. Since the bound function would still
// have a single unique pointer, this wouldn't actually exist more than
// once in the graph, although since it's illogical, it causes the graph
// type checking (the edge counting in the function graph engine) to
// notice a problem and error.
//return expr.Func() // recurse?
// instead, return a function which correctly does a lookup in the scope
// and returns *that* stream of values instead.
typ, err := obj.Type()
if err != nil {
return nil, err
}
// var func
return &structs.VarFunc{
Type: typ,
Edge: fmt.Sprintf("var:%s", obj.Name), // the edge name used above in Graph is this...
}, nil
}
// SetValue here is a no-op, because algorithmically when this is called from
// the func engine, the child fields (the dest lookup expr) will have had this
// done to them first, and as such when we try and retrieve the set value from
// this expression by calling `Value`, it will build it from scratch!
func (obj *ExprVar) SetValue(value types.Value) error {
if err := obj.typ.Cmp(value.Type()); err != nil {
return err
}
// noop!
//obj.V = value
return nil
}
// Value returns the value of this expression in our type system. This will
// usually only be valid once the engine has run and values have been produced.
// This might get called speculatively (early) during unification to learn more.
// This returns the value this variable points to. It is able to do so because
// it can lookup in the previous set scope which expression this points to, and
// then it can call Value on that expression.
func (obj *ExprVar) Value() (types.Value, error) {
expr, exists := obj.scope.Variables[obj.Name]
if !exists {
return nil, fmt.Errorf("var `%s` does not exist in scope", obj.Name)
}
return expr.Value() // recurse
}
// Arg represents a name identifier for a func or class argument declaration and
// is sometimes accompanied by a type. This does not satisfy the Expr interface.
type Arg struct {
Name string
Type *types.Type // nil if unspecified (needs to be solved for)
}
// String returns a short representation of this arg.
func (obj *Arg) String() string {
s := obj.Name
if obj.Type != nil {
s += fmt.Sprintf(" %s", obj.Type.String())
}
return s
}
// ExprIf represents an if expression which *must* have both branches, and which
// returns a value. As a result, it has a type. This is different from a StmtIf,
// which does not need to have both branches, and which does not return a value.
type ExprIf struct {
scope *interfaces.Scope // store for referencing this later
typ *types.Type
Condition interfaces.Expr
ThenBranch interfaces.Expr // could be an ExprBranch
ElseBranch interfaces.Expr // could be an ExprBranch
}
// String returns a short representation of this expression.
func (obj *ExprIf) String() string {
condition := obj.Condition.String()
thenBranch := obj.ThenBranch.String()
elseBranch := obj.ElseBranch.String()
return fmt.Sprintf("if( %s ) { %s } else { %s }", condition, thenBranch, elseBranch)
}
// Apply is a general purpose iterator method that operates on any AST node. It
// is not used as the primary AST traversal function because it is less readable
// and easy to reason about than manually implementing traversal for each node.
// Nevertheless, it is a useful facility for operations that might only apply to
// a select number of node types, since they won't need extra noop iterators...
func (obj *ExprIf) Apply(fn func(interfaces.Node) error) error {
if err := obj.Condition.Apply(fn); err != nil {
return err
}
if err := obj.ThenBranch.Apply(fn); err != nil {
return err
}
if err := obj.ElseBranch.Apply(fn); err != nil {
return err
}
return fn(obj)
}
// Init initializes this branch of the AST, and returns an error if it fails to
// validate.
func (obj *ExprIf) Init(data *interfaces.Data) error {
if err := obj.Condition.Init(data); err != nil {
return err
}
if err := obj.ThenBranch.Init(data); err != nil {
return err
}
if err := obj.ElseBranch.Init(data); err != nil {
return err
}
return nil
}
// Interpolate returns a new node (aka a copy) once it has been expanded. This
// generally increases the size of the AST when it is used. It calls Interpolate
// on any child elements and builds the new node with those new node contents.
func (obj *ExprIf) Interpolate() (interfaces.Expr, error) {
condition, err := obj.Condition.Interpolate()
if err != nil {
return nil, errwrap.Wrapf(err, "could not interpolate Condition")
}
thenBranch, err := obj.ThenBranch.Interpolate()
if err != nil {
return nil, errwrap.Wrapf(err, "could not interpolate ThenBranch")
}
elseBranch, err := obj.ElseBranch.Interpolate()
if err != nil {
return nil, errwrap.Wrapf(err, "could not interpolate ElseBranch")
}
return &ExprIf{
scope: obj.scope,
typ: obj.typ,
Condition: condition,
ThenBranch: thenBranch,
ElseBranch: elseBranch,
}, nil
}
// Copy returns a light copy of this struct. Anything static will not be copied.
func (obj *ExprIf) Copy() (interfaces.Expr, error) {
copied := false
condition, err := obj.Condition.Copy()
if err != nil {
return nil, err
}
// must have been copied, or pointer would be same
if condition != obj.Condition {
copied = true
}
thenBranch, err := obj.ThenBranch.Copy()
if err != nil {
return nil, err
}
if thenBranch != obj.ThenBranch {
copied = true
}
elseBranch, err := obj.ElseBranch.Copy()
if err != nil {
return nil, err
}
if elseBranch != obj.ElseBranch {
copied = true
}
if !copied { // it's static
return obj, nil
}
return &ExprIf{
scope: obj.scope,
typ: obj.typ,
Condition: condition,
ThenBranch: thenBranch,
ElseBranch: elseBranch,
}, nil
}
// Ordering returns a graph of the scope ordering that represents the data flow.
// This can be used in SetScope so that it knows the correct order to run it in.
func (obj *ExprIf) Ordering(produces map[string]interfaces.Node) (*pgraph.Graph, map[interfaces.Node]string, error) {
graph, err := pgraph.NewGraph("ordering")
if err != nil {
return nil, nil, errwrap.Wrapf(err, "could not create graph")
}
graph.AddVertex(obj)
// Additional constraints: We know the condition has to be satisfied
// before this if expression itself can be used, since we depend on that
// value.
edge := &pgraph.SimpleEdge{Name: "exprif"}
graph.AddEdge(obj.Condition, obj, edge) // prod -> cons
cons := make(map[interfaces.Node]string)
g, c, err := obj.Condition.Ordering(produces)
if err != nil {
return nil, nil, err
}
graph.AddGraph(g) // add in the child graph
for k, v := range c { // c is consumes
x, exists := cons[k]
if exists && v != x {
return nil, nil, fmt.Errorf("consumed value is different, got `%+v`, expected `%+v`", x, v)
}
cons[k] = v // add to map
n, exists := produces[v]
if !exists {
continue
}
edge := &pgraph.SimpleEdge{Name: "exprifcondition"}
graph.AddEdge(n, k, edge)
}
// don't put obj.Condition here because this adds an extra edge to it!
nodes := []interfaces.Expr{obj.ThenBranch, obj.ElseBranch}
for _, node := range nodes { // "dry"
g, c, err := node.Ordering(produces)
if err != nil {
return nil, nil, err
}
graph.AddGraph(g) // add in the child graph
// additional constraints...
edge1 := &pgraph.SimpleEdge{Name: "exprifbranch1"}
graph.AddEdge(obj.Condition, node, edge1) // prod -> cons
edge2 := &pgraph.SimpleEdge{Name: "exprifbranchcondition"}
graph.AddEdge(node, obj, edge2) // prod -> cons
for k, v := range c { // c is consumes
x, exists := cons[k]
if exists && v != x {
return nil, nil, fmt.Errorf("consumed value is different, got `%+v`, expected `%+v`", x, v)
}
cons[k] = v // add to map
n, exists := produces[v]
if !exists {
continue
}
edge := &pgraph.SimpleEdge{Name: "exprifbranch2"}
graph.AddEdge(n, k, edge)
}
}
return graph, cons, nil
}
// SetScope stores the scope for later use in this resource and it's children,
// which it propagates this downwards to.
func (obj *ExprIf) SetScope(scope *interfaces.Scope) error {
if scope == nil {
scope = interfaces.EmptyScope()
}
obj.scope = scope
if err := obj.ThenBranch.SetScope(scope); err != nil {
return err
}
if err := obj.ElseBranch.SetScope(scope); err != nil {
return err
}
return obj.Condition.SetScope(scope)
}
// SetType is used to set the type of this expression once it is known. This
// usually happens during type unification, but it can also happen during
// parsing if a type is specified explicitly. Since types are static and don't
// change on expressions, if you attempt to set a different type than what has
// previously been set (when not initially known) this will error.
func (obj *ExprIf) SetType(typ *types.Type) error {
if obj.typ != nil {
return obj.typ.Cmp(typ) // if not set, ensure it doesn't change
}
obj.typ = typ // set
return nil
}
// Type returns the type of this expression.
func (obj *ExprIf) Type() (*types.Type, error) {
boolValue, err := obj.Condition.Value() // attempt early speculation
if err == nil && obj.typ == nil {
branch := obj.ElseBranch
if boolValue.Bool() { // must not panic
branch = obj.ThenBranch
}
return branch.Type()
}
if obj.typ == nil {
if err != nil {
return nil, errwrap.Wrapf(interfaces.ErrTypeCurrentlyUnknown, err.Error())
}
return nil, interfaces.ErrTypeCurrentlyUnknown
}
return obj.typ, nil
}
// Unify returns the list of invariants that this node produces. It recursively
// calls Unify on any children elements that exist in the AST, and returns the
// collection to the caller.
func (obj *ExprIf) Unify() ([]interfaces.Invariant, error) {
var invariants []interfaces.Invariant
// if this was set explicitly by the parser
if obj.typ != nil {
invar := &unification.EqualsInvariant{
Expr: obj,
Type: obj.typ,
}
invariants = append(invariants, invar)
}
// conditional expression might have some children invariants to share
condition, err := obj.Condition.Unify()
if err != nil {
return nil, err
}
invariants = append(invariants, condition...)
// the condition must ultimately be a boolean
conditionInvar := &unification.EqualsInvariant{
Expr: obj.Condition,
Type: types.TypeBool,
}
invariants = append(invariants, conditionInvar)
// recurse into the two branches
thenBranch, err := obj.ThenBranch.Unify()
if err != nil {
return nil, err
}
invariants = append(invariants, thenBranch...)
elseBranch, err := obj.ElseBranch.Unify()
if err != nil {
return nil, err
}
invariants = append(invariants, elseBranch...)
// the two branches must be equally typed
branchesInvar := &unification.EqualityInvariant{
Expr1: obj.ThenBranch,
Expr2: obj.ElseBranch,
}
invariants = append(invariants, branchesInvar)
// the two branches must match the type of the whole expression
thenInvar := &unification.EqualityInvariant{
Expr1: obj,
Expr2: obj.ThenBranch,
}
invariants = append(invariants, thenInvar)
elseInvar := &unification.EqualityInvariant{
Expr1: obj,
Expr2: obj.ElseBranch,
}
invariants = append(invariants, elseInvar)
return invariants, nil
}
// Graph returns the reactive function graph which is expressed by this node. It
// includes any vertices produced by this node, and the appropriate edges to any
// vertices that are produced by its children. Nodes which fulfill the Expr
// interface directly produce vertices (and possible children) where as nodes
// that fulfill the Stmt interface do not produces vertices, where as their
// children might. This particular if expression doesn't do anything clever here
// other than adding in both branches of the graph. Since we're functional, this
// shouldn't have any ill effects.
// XXX: is this completely true if we're running technically impure, but safe
// built-in functions on both branches? Can we turn off half of this?
func (obj *ExprIf) Graph() (*pgraph.Graph, error) {
graph, err := pgraph.NewGraph("if")
if err != nil {
return nil, errwrap.Wrapf(err, "could not create graph")
}
graph.AddVertex(obj)
exprs := map[string]interfaces.Expr{
"c": obj.Condition,
"a": obj.ThenBranch,
"b": obj.ElseBranch,
}
for _, argName := range []string{"c", "a", "b"} { // deterministic order
x := exprs[argName]
g, err := x.Graph()
if err != nil {
return nil, err
}
edge := &funcs.Edge{Args: []string{argName}}
var once bool
edgeGenFn := func(v1, v2 pgraph.Vertex) pgraph.Edge {
if once {
panic(fmt.Sprintf("edgeGenFn for ifexpr edge `%s` was called twice", argName))
}
once = true
return edge
}
graph.AddEdgeGraphVertexLight(g, obj, edgeGenFn) // branch -> if
}
return graph, nil
}
// Func returns a function which returns the correct branch based on the ever
// changing conditional boolean input.
func (obj *ExprIf) Func() (interfaces.Func, error) {
typ, err := obj.Type()
if err != nil {
return nil, err
}
return &structs.IfFunc{
Type: typ, // this is the output type of the expression
}, nil
}
// SetValue here is a no-op, because algorithmically when this is called from
// the func engine, the child fields (the branches expr's) will have had this
// done to them first, and as such when we try and retrieve the set value from
// this expression by calling `Value`, it will build it from scratch!
func (obj *ExprIf) SetValue(value types.Value) error {
if err := obj.typ.Cmp(value.Type()); err != nil {
return err
}
// noop!
//obj.V = value
return nil
}
// Value returns the value of this expression in our type system. This will
// usually only be valid once the engine has run and values have been produced.
// This might get called speculatively (early) during unification to learn more.
// This particular expression evaluates the condition and returns the correct
// branch's value accordingly.
func (obj *ExprIf) Value() (types.Value, error) {
boolValue, err := obj.Condition.Value()
if err != nil {
return nil, err
}
if boolValue.Bool() { // must not panic
return obj.ThenBranch.Value()
}
return obj.ElseBranch.Value()
}
// getScope pulls the local stored scope out of an Expr, without needing to add
// a similarly named method to the Expr interface. This is private and not part
// of the interface, because it is only used internally.
// is only used
// TODO: we could extend this to include Stmt's if it was ever useful
func getScope(node interfaces.Expr) (*interfaces.Scope, error) {
//if _, ok := node.(interfaces.Expr); !ok {
// return nil, fmt.Errorf("unexpected: %+v", node)
//}
switch expr := node.(type) {
case *ExprBool:
return expr.scope, nil
case *ExprStr:
return expr.scope, nil
case *ExprInt:
return expr.scope, nil
case *ExprFloat:
return expr.scope, nil
case *ExprList:
return expr.scope, nil
case *ExprMap:
return expr.scope, nil
case *ExprStruct:
return expr.scope, nil
case *ExprFunc:
return expr.scope, nil
case *ExprCall:
return expr.scope, nil
case *ExprVar:
return expr.scope, nil
case *ExprIf:
return expr.scope, nil
//case *ExprAny: // unexpected!
default:
return nil, fmt.Errorf("unexpected: %+v", node)
}
}