247 lines
8.3 KiB
Go
247 lines
8.3 KiB
Go
// Mgmt
|
|
// Copyright (C) 2013-2024+ James Shubin and the project contributors
|
|
// Written by James Shubin <james@shubin.ca> and the project contributors
|
|
//
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
//
|
|
// Additional permission under GNU GPL version 3 section 7
|
|
//
|
|
// If you modify this program, or any covered work, by linking or combining it
|
|
// with embedded mcl code and modules (and that the embedded mcl code and
|
|
// modules which link with this program, contain a copy of their source code in
|
|
// the authoritative form) containing parts covered by the terms of any other
|
|
// license, the licensors of this program grant you additional permission to
|
|
// convey the resulting work. Furthermore, the licensors of this program grant
|
|
// the original author, James Shubin, additional permission to update this
|
|
// additional permission if he deems it necessary to achieve the goals of this
|
|
// additional permission.
|
|
|
|
// Package unification contains the code related to type unification for the mcl
|
|
// language.
|
|
package unification
|
|
|
|
import (
|
|
"context"
|
|
"fmt"
|
|
"sort"
|
|
"strings"
|
|
|
|
"github.com/purpleidea/mgmt/lang/interfaces"
|
|
)
|
|
|
|
// Unifier holds all the data that the Unify function will need for it to run.
|
|
type Unifier struct {
|
|
// AST is the input abstract syntax tree to unify.
|
|
AST interfaces.Stmt
|
|
|
|
// Solver is the solver algorithm implementation to use.
|
|
Solver Solver
|
|
|
|
// Strategy is a hack to tune unification performance until we have an
|
|
// overall cleaner unification algorithm in place.
|
|
Strategy map[string]string
|
|
|
|
Debug bool
|
|
Logf func(format string, v ...interface{})
|
|
}
|
|
|
|
// Unify takes an AST expression tree and attempts to assign types to every node
|
|
// using the specified solver. The expression tree returns a list of invariants
|
|
// (or constraints) which must be met in order to find a unique value for the
|
|
// type of each expression. This list of invariants is passed into the solver,
|
|
// which hopefully finds a solution. If it cannot find a unique solution, then
|
|
// it will return an error. The invariants are available in different flavours
|
|
// which describe different constraint scenarios. The simplest expresses that a
|
|
// a particular node id (it's pointer) must be a certain type. More complicated
|
|
// invariants might express that two different node id's must have the same
|
|
// type. This function and logic was invented after the author could not find
|
|
// any proper literature or examples describing a well-known implementation of
|
|
// this process. Improvements and polite recommendations are welcome.
|
|
func (obj *Unifier) Unify(ctx context.Context) error {
|
|
if obj.AST == nil {
|
|
return fmt.Errorf("the AST is nil")
|
|
}
|
|
if obj.Solver == nil {
|
|
return fmt.Errorf("the Solver is missing")
|
|
}
|
|
if obj.Logf == nil {
|
|
return fmt.Errorf("the Logf function is missing")
|
|
}
|
|
|
|
init := &Init{
|
|
Strategy: obj.Strategy,
|
|
Logf: obj.Logf,
|
|
Debug: obj.Debug,
|
|
}
|
|
if err := obj.Solver.Init(init); err != nil {
|
|
return err
|
|
}
|
|
|
|
if obj.Debug {
|
|
obj.Logf("tree: %+v", obj.AST)
|
|
}
|
|
invariants, err := obj.AST.Unify()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// build a list of what we think we need to solve for to succeed
|
|
exprs := []interfaces.Expr{}
|
|
skips := make(map[interfaces.Expr]struct{})
|
|
for _, x := range invariants {
|
|
if si, ok := x.(*interfaces.SkipInvariant); ok {
|
|
skips[si.Expr] = struct{}{}
|
|
continue
|
|
}
|
|
|
|
exprs = append(exprs, x.ExprList()...)
|
|
}
|
|
exprMap := ExprListToExprMap(exprs) // makes searching faster
|
|
exprList := ExprMapToExprList(exprMap) // makes it unique (no duplicates)
|
|
|
|
solved, err := obj.Solver.Solve(ctx, invariants, exprList)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// determine what expr's we need to solve for
|
|
if obj.Debug {
|
|
obj.Logf("expr count: %d", len(exprList))
|
|
//for _, x := range exprList {
|
|
// obj.Logf("> %p (%+v)", x, x)
|
|
//}
|
|
}
|
|
|
|
// XXX: why doesn't `len(exprList)` always == `len(solved.Solutions)` ?
|
|
// XXX: is it due to the extra ExprAny ??? I see an extra function sometimes...
|
|
|
|
if obj.Debug {
|
|
obj.Logf("solutions count: %d", len(solved.Solutions))
|
|
//for _, x := range solved.Solutions {
|
|
// obj.Logf("> %p (%+v) -- %s", x.Expr, x.Type, x.Expr.String())
|
|
//}
|
|
}
|
|
|
|
// Determine that our solver produced a solution for every expr that
|
|
// we're interested in. If it didn't, and it didn't error, then it's a
|
|
// bug. We check for this because we care about safety, this ensures
|
|
// that our AST will get fully populated with the correct types!
|
|
for _, x := range solved.Solutions {
|
|
delete(exprMap, x.Expr) // remove everything we know about
|
|
}
|
|
if c := len(exprMap); c > 0 { // if there's anything left, it's bad...
|
|
ptrs := []string{}
|
|
disp := make(map[string]string) // display hack
|
|
for i := range exprMap {
|
|
s := fmt.Sprintf("%p", i) // pointer
|
|
ptrs = append(ptrs, s)
|
|
disp[s] = i.String()
|
|
}
|
|
sort.Strings(ptrs)
|
|
// programming error!
|
|
s := strings.Join(ptrs, ", ")
|
|
|
|
obj.Logf("got %d unbound expr's: %s", c, s)
|
|
for i, s := range ptrs {
|
|
obj.Logf("(%d) %s => %s", i, s, disp[s])
|
|
}
|
|
return fmt.Errorf("got %d unbound expr's: %s", c, s)
|
|
}
|
|
|
|
if obj.Debug {
|
|
obj.Logf("found a solution!")
|
|
}
|
|
// solver has found a solution, apply it...
|
|
// we're modifying the AST, so code can't error now...
|
|
for _, x := range solved.Solutions {
|
|
if x.Expr == nil {
|
|
// programming error ?
|
|
return fmt.Errorf("unexpected invalid solution at: %p", x)
|
|
}
|
|
if _, exists := skips[x.Expr]; exists {
|
|
continue
|
|
}
|
|
|
|
if obj.Debug {
|
|
obj.Logf("solution: %p => %+v\t(%+v)", x.Expr, x.Type, x.Expr.String())
|
|
}
|
|
// apply this to each AST node
|
|
if err := x.Expr.SetType(x.Type); err != nil {
|
|
// programming error!
|
|
// If we error here, it's probably a bug. Likely we
|
|
// should have caught something during type unification,
|
|
// but it slipped through and the function Build API is
|
|
// catching it instead. Try and root cause it to avoid
|
|
// leaving any ghosts in the code.
|
|
return fmt.Errorf("error setting type: %+v, error: %+v", x.Expr, err)
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// InvariantSolution lists a trivial set of EqualsInvariant mappings so that you
|
|
// can populate your AST with SetType calls in a simple loop.
|
|
type InvariantSolution struct {
|
|
Solutions []*interfaces.EqualsInvariant // list of trivial solutions for each node
|
|
}
|
|
|
|
// ExprList returns the list of valid expressions. This struct is not part of
|
|
// the invariant interface, but it implements this anyways.
|
|
func (obj *InvariantSolution) ExprList() []interfaces.Expr {
|
|
exprs := []interfaces.Expr{}
|
|
for _, x := range obj.Solutions {
|
|
exprs = append(exprs, x.ExprList()...)
|
|
}
|
|
return exprs
|
|
}
|
|
|
|
// ExclusivesProduct returns a list of different products produced from the
|
|
// combinatorial product of the list of exclusives. Each ExclusiveInvariant must
|
|
// contain between one and more Invariants. This takes every combination of
|
|
// Invariants (choosing one from each ExclusiveInvariant) and returns that list.
|
|
// In other words, if you have three exclusives, with invariants named (A1, B1),
|
|
// (A2), and (A3, B3, C3) you'll get: (A1, A2, A3), (A1, A2, B3), (A1, A2, C3),
|
|
// (B1, A2, A3), (B1, A2, B3), (B1, A2, C3) as results for this function call.
|
|
func ExclusivesProduct(exclusives []*interfaces.ExclusiveInvariant) [][]interfaces.Invariant {
|
|
if len(exclusives) == 0 {
|
|
return nil
|
|
}
|
|
|
|
length := func(i int) int { return len(exclusives[i].Invariants) }
|
|
|
|
// NextIx sets ix to the lexicographically next value,
|
|
// such that for each i > 0, 0 <= ix[i] < length(i).
|
|
NextIx := func(ix []int) {
|
|
for i := len(ix) - 1; i >= 0; i-- {
|
|
ix[i]++
|
|
if i == 0 || ix[i] < length(i) {
|
|
return
|
|
}
|
|
ix[i] = 0
|
|
}
|
|
}
|
|
|
|
results := [][]interfaces.Invariant{}
|
|
|
|
for ix := make([]int, len(exclusives)); ix[0] < length(0); NextIx(ix) {
|
|
x := []interfaces.Invariant{}
|
|
for j, k := range ix {
|
|
x = append(x, exclusives[j].Invariants[k])
|
|
}
|
|
results = append(results, x)
|
|
}
|
|
|
|
return results
|
|
}
|