Files
mgmt/pgraph.go
James Shubin fc24c91dde Resources: Add retry and retry delay meta parameters
All resources can now set a retry limit (-1 for infinite) and a delay
between retries. This applies to both the CheckApply methods, and the
Watch methods as well. They each have their own separate counts, but use
the same input meta param, since I decided it wouldn't be useful to have
a separate watchRetry and watchDelay set of meta parameters.

In the process, we got rid of about 15 error cases which would normally
panic.

This patch required a slight overhaul of the Event system.

The previous commit is an earlier version of this patch which I decided
to leave in to "show my work" as I used to have to do in math class.
It's slightly more correct with the current event system, and this
version is less correct and has a few bugs, but that is because the
event system needs a massive overhaul, and once that's done this should
all work properly for the corner cases.
2016-09-19 06:32:21 -04:00

1059 lines
33 KiB
Go

// Mgmt
// Copyright (C) 2013-2016+ James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
// Pgraph (Pointer Graph)
package main
import (
"errors"
"fmt"
"io/ioutil"
"log"
"math"
"os"
"os/exec"
"sort"
"strconv"
"sync"
"syscall"
"time"
)
//go:generate stringer -type=graphState -output=graphstate_stringer.go
type graphState int
const (
graphStateNil graphState = iota
graphStateStarting
graphStateStarted
graphStatePausing
graphStatePaused
)
// Graph is the graph structure in this library.
// The graph abstract data type (ADT) is defined as follows:
// * the directed graph arrows point from left to right ( -> )
// * the arrows point away from their dependencies (eg: arrows mean "before")
// * IOW, you might see package -> file -> service (where package runs first)
// * This is also the direction that the notify should happen in...
type Graph struct {
Name string
Adjacency map[*Vertex]map[*Vertex]*Edge // *Vertex -> *Vertex (edge)
state graphState
mutex sync.Mutex // used when modifying graph State variable
}
// Vertex is the primary vertex struct in this library.
type Vertex struct {
Res // anonymous field
timestamp int64 // last updated timestamp ?
}
// Edge is the primary edge struct in this library.
type Edge struct {
Name string
}
// NewGraph builds a new graph.
func NewGraph(name string) *Graph {
return &Graph{
Name: name,
Adjacency: make(map[*Vertex]map[*Vertex]*Edge),
state: graphStateNil,
}
}
// NewVertex returns a new graph vertex struct with a contained resource.
func NewVertex(r Res) *Vertex {
return &Vertex{
Res: r,
}
}
// NewEdge returns a new graph edge struct.
func NewEdge(name string) *Edge {
return &Edge{
Name: name,
}
}
// Copy makes a copy of the graph struct
func (g *Graph) Copy() *Graph {
newGraph := &Graph{
Name: g.Name,
Adjacency: make(map[*Vertex]map[*Vertex]*Edge, len(g.Adjacency)),
state: g.state,
}
for k, v := range g.Adjacency {
newGraph.Adjacency[k] = v // copy
}
return newGraph
}
// GetName returns the name of the graph.
func (g *Graph) GetName() string {
return g.Name
}
// SetName sets the name of the graph.
func (g *Graph) SetName(name string) {
g.Name = name
}
// getState returns the state of the graph. This state is used for optimizing
// certain algorithms by knowing what part of processing the graph is currently
// undergoing.
func (g *Graph) getState() graphState {
//g.mutex.Lock()
//defer g.mutex.Unlock()
return g.state
}
// setState sets the graph state and returns the previous state.
func (g *Graph) setState(state graphState) graphState {
g.mutex.Lock()
defer g.mutex.Unlock()
prev := g.getState()
g.state = state
return prev
}
// AddVertex uses variadic input to add all listed vertices to the graph
func (g *Graph) AddVertex(xv ...*Vertex) {
for _, v := range xv {
if _, exists := g.Adjacency[v]; !exists {
g.Adjacency[v] = make(map[*Vertex]*Edge)
}
}
}
// DeleteVertex deletes a particular vertex from the graph.
func (g *Graph) DeleteVertex(v *Vertex) {
delete(g.Adjacency, v)
for k := range g.Adjacency {
delete(g.Adjacency[k], v)
}
}
// AddEdge adds a directed edge to the graph from v1 to v2.
func (g *Graph) AddEdge(v1, v2 *Vertex, e *Edge) {
// NOTE: this doesn't allow more than one edge between two vertexes...
g.AddVertex(v1, v2) // supports adding N vertices now
// TODO: check if an edge exists to avoid overwriting it!
// NOTE: VertexMerge() depends on overwriting it at the moment...
g.Adjacency[v1][v2] = e
}
// GetVertexMatch searches for an equivalent resource in the graph and returns
// the vertex it is found in, or nil if not found.
func (g *Graph) GetVertexMatch(obj Res) *Vertex {
for k := range g.Adjacency {
if k.Res.Compare(obj) {
return k
}
}
return nil
}
// HasVertex returns if the input vertex exists in the graph.
func (g *Graph) HasVertex(v *Vertex) bool {
if _, exists := g.Adjacency[v]; exists {
return true
}
return false
}
// NumVertices returns the number of vertices in the graph.
func (g *Graph) NumVertices() int {
return len(g.Adjacency)
}
// NumEdges returns the number of edges in the graph.
func (g *Graph) NumEdges() int {
count := 0
for k := range g.Adjacency {
count += len(g.Adjacency[k])
}
return count
}
// GetVertices returns a randomly sorted slice of all vertices in the graph
// The order is random, because the map implementation is intentionally so!
func (g *Graph) GetVertices() []*Vertex {
var vertices []*Vertex
for k := range g.Adjacency {
vertices = append(vertices, k)
}
return vertices
}
// GetVerticesChan returns a channel of all vertices in the graph.
func (g *Graph) GetVerticesChan() chan *Vertex {
ch := make(chan *Vertex)
go func(ch chan *Vertex) {
for k := range g.Adjacency {
ch <- k
}
close(ch)
}(ch)
return ch
}
// VertexSlice is a linear list of vertices. It can be sorted.
type VertexSlice []*Vertex
func (vs VertexSlice) Len() int { return len(vs) }
func (vs VertexSlice) Swap(i, j int) { vs[i], vs[j] = vs[j], vs[i] }
func (vs VertexSlice) Less(i, j int) bool { return vs[i].String() < vs[j].String() }
// GetVerticesSorted returns a sorted slice of all vertices in the graph
// The order is sorted by String() to avoid the non-determinism in the map type
func (g *Graph) GetVerticesSorted() []*Vertex {
var vertices []*Vertex
for k := range g.Adjacency {
vertices = append(vertices, k)
}
sort.Sort(VertexSlice(vertices)) // add determinism
return vertices
}
// String makes the graph pretty print.
func (g *Graph) String() string {
return fmt.Sprintf("Vertices(%d), Edges(%d)", g.NumVertices(), g.NumEdges())
}
// String returns the canonical form for a vertex
func (v *Vertex) String() string {
return fmt.Sprintf("%s[%s]", v.Res.Kind(), v.Res.GetName())
}
// Graphviz outputs the graph in graphviz format.
// https://en.wikipedia.org/wiki/DOT_%28graph_description_language%29
func (g *Graph) Graphviz() (out string) {
//digraph g {
// label="hello world";
// node [shape=box];
// A [label="A"];
// B [label="B"];
// C [label="C"];
// D [label="D"];
// E [label="E"];
// A -> B [label=f];
// B -> C [label=g];
// D -> E [label=h];
//}
out += fmt.Sprintf("digraph %v {\n", g.GetName())
out += fmt.Sprintf("\tlabel=\"%v\";\n", g.GetName())
//out += "\tnode [shape=box];\n"
str := ""
for i := range g.Adjacency { // reverse paths
out += fmt.Sprintf("\t%v [label=\"%v[%v]\"];\n", i.GetName(), i.Kind(), i.GetName())
for j := range g.Adjacency[i] {
k := g.Adjacency[i][j]
// use str for clearer output ordering
str += fmt.Sprintf("\t%v -> %v [label=%v];\n", i.GetName(), j.GetName(), k.Name)
}
}
out += str
out += "}\n"
return
}
// ExecGraphviz writes out the graphviz data and runs the correct graphviz
// filter command.
func (g *Graph) ExecGraphviz(program, filename string) error {
switch program {
case "dot", "neato", "twopi", "circo", "fdp":
default:
return errors.New("Invalid graphviz program selected!")
}
if filename == "" {
return errors.New("No filename given!")
}
// run as a normal user if possible when run with sudo
uid, err1 := strconv.Atoi(os.Getenv("SUDO_UID"))
gid, err2 := strconv.Atoi(os.Getenv("SUDO_GID"))
err := ioutil.WriteFile(filename, []byte(g.Graphviz()), 0644)
if err != nil {
return errors.New("Error writing to filename!")
}
if err1 == nil && err2 == nil {
if err := os.Chown(filename, uid, gid); err != nil {
return errors.New("Error changing file owner!")
}
}
path, err := exec.LookPath(program)
if err != nil {
return errors.New("Graphviz is missing!")
}
out := fmt.Sprintf("%v.png", filename)
cmd := exec.Command(path, "-Tpng", fmt.Sprintf("-o%v", out), filename)
if err1 == nil && err2 == nil {
cmd.SysProcAttr = &syscall.SysProcAttr{}
cmd.SysProcAttr.Credential = &syscall.Credential{
Uid: uint32(uid),
Gid: uint32(gid),
}
}
_, err = cmd.Output()
if err != nil {
return errors.New("Error writing to image!")
}
return nil
}
// IncomingGraphEdges returns an array (slice) of all directed vertices to
// vertex v (??? -> v). OKTimestamp should probably use this.
func (g *Graph) IncomingGraphEdges(v *Vertex) []*Vertex {
// TODO: we might be able to implement this differently by reversing
// the Adjacency graph and then looping through it again...
var s []*Vertex
for k := range g.Adjacency { // reverse paths
for w := range g.Adjacency[k] {
if w == v {
s = append(s, k)
}
}
}
return s
}
// OutgoingGraphEdges returns an array (slice) of all vertices that vertex v
// points to (v -> ???). Poke should probably use this.
func (g *Graph) OutgoingGraphEdges(v *Vertex) []*Vertex {
var s []*Vertex
for k := range g.Adjacency[v] { // forward paths
s = append(s, k)
}
return s
}
// GraphEdges returns an array (slice) of all vertices that connect to vertex v.
// This is the union of IncomingGraphEdges and OutgoingGraphEdges.
func (g *Graph) GraphEdges(v *Vertex) []*Vertex {
var s []*Vertex
s = append(s, g.IncomingGraphEdges(v)...)
s = append(s, g.OutgoingGraphEdges(v)...)
return s
}
// DFS returns a depth first search for the graph, starting at the input vertex.
func (g *Graph) DFS(start *Vertex) []*Vertex {
var d []*Vertex // discovered
var s []*Vertex // stack
if _, exists := g.Adjacency[start]; !exists {
return nil // TODO: error
}
v := start
s = append(s, v)
for len(s) > 0 {
v, s = s[len(s)-1], s[:len(s)-1] // s.pop()
if !VertexContains(v, d) { // if not discovered
d = append(d, v) // label as discovered
for _, w := range g.GraphEdges(v) {
s = append(s, w)
}
}
}
return d
}
// FilterGraph builds a new graph containing only vertices from the list.
func (g *Graph) FilterGraph(name string, vertices []*Vertex) *Graph {
newgraph := NewGraph(name)
for k1, x := range g.Adjacency {
for k2, e := range x {
//log.Printf("Filter: %v -> %v # %v", k1.Name, k2.Name, e.Name)
if VertexContains(k1, vertices) || VertexContains(k2, vertices) {
newgraph.AddEdge(k1, k2, e)
}
}
}
return newgraph
}
// GetDisconnectedGraphs returns a channel containing the N disconnected graphs
// in our main graph. We can then process each of these in parallel.
func (g *Graph) GetDisconnectedGraphs() chan *Graph {
ch := make(chan *Graph)
go func() {
var start *Vertex
var d []*Vertex // discovered
c := g.NumVertices()
for len(d) < c {
// get an undiscovered vertex to start from
for _, s := range g.GetVertices() {
if !VertexContains(s, d) {
start = s
}
}
// dfs through the graph
dfs := g.DFS(start)
// filter all the collected elements into a new graph
newgraph := g.FilterGraph(g.Name, dfs)
// add number of elements found to found variable
d = append(d, dfs...) // extend
// return this new graph to the channel
ch <- newgraph
// if we've found all the elements, then we're done
// otherwise loop through to continue...
}
close(ch)
}()
return ch
}
// InDegree returns the count of vertices that point to me in one big lookup map.
func (g *Graph) InDegree() map[*Vertex]int {
result := make(map[*Vertex]int)
for k := range g.Adjacency {
result[k] = 0 // initialize
}
for k := range g.Adjacency {
for z := range g.Adjacency[k] {
result[z]++
}
}
return result
}
// OutDegree returns the count of vertices that point away in one big lookup map.
func (g *Graph) OutDegree() map[*Vertex]int {
result := make(map[*Vertex]int)
for k := range g.Adjacency {
result[k] = 0 // initialize
for range g.Adjacency[k] {
result[k]++
}
}
return result
}
// TopologicalSort returns the sort of graph vertices in that order.
// based on descriptions and code from wikipedia and rosetta code
// TODO: add memoization, and cache invalidation to speed this up :)
func (g *Graph) TopologicalSort() (result []*Vertex, ok bool) { // kahn's algorithm
var L []*Vertex // empty list that will contain the sorted elements
var S []*Vertex // set of all nodes with no incoming edges
remaining := make(map[*Vertex]int) // amount of edges remaining
for v, d := range g.InDegree() {
if d == 0 {
// accumulate set of all nodes with no incoming edges
S = append(S, v)
} else {
// initialize remaining edge count from indegree
remaining[v] = d
}
}
for len(S) > 0 {
last := len(S) - 1 // remove a node v from S
v := S[last]
S = S[:last]
L = append(L, v) // add v to tail of L
for n := range g.Adjacency[v] {
// for each node n remaining in the graph, consume from
// remaining, so for remaining[n] > 0
if remaining[n] > 0 {
remaining[n]-- // remove edge from the graph
if remaining[n] == 0 { // if n has no other incoming edges
S = append(S, n) // insert n into S
}
}
}
}
// if graph has edges, eg if any value in rem is > 0
for c, in := range remaining {
if in > 0 {
for n := range g.Adjacency[c] {
if remaining[n] > 0 {
return nil, false // not a dag!
}
}
}
}
return L, true
}
// Reachability finds the shortest path in a DAG from a to b, and returns the
// slice of vertices that matched this particular path including both a and b.
// It returns nil if a or b is nil, and returns empty list if no path is found.
// Since there could be more than one possible result for this operation, we
// arbitrarily choose one of the shortest possible. As a result, this should
// actually return a tree if we cared about correctness.
// This operates by a recursive algorithm; a more efficient version is likely.
// If you don't give this function a DAG, you might cause infinite recursion!
func (g *Graph) Reachability(a, b *Vertex) []*Vertex {
if a == nil || b == nil {
return nil
}
vertices := g.OutgoingGraphEdges(a) // what points away from a ?
if len(vertices) == 0 {
return []*Vertex{} // nope
}
if VertexContains(b, vertices) {
return []*Vertex{a, b} // found
}
// TODO: parallelize this with go routines?
var collected = make([][]*Vertex, len(vertices))
pick := -1
for i, v := range vertices {
collected[i] = g.Reachability(v, b) // find b by recursion
if l := len(collected[i]); l > 0 {
// pick shortest path
// TODO: technically i should return a tree
if pick < 0 || l < len(collected[pick]) {
pick = i
}
}
}
if pick < 0 {
return []*Vertex{} // nope
}
result := []*Vertex{a} // tack on a
result = append(result, collected[pick]...)
return result
}
// VertexMerge merges v2 into v1 by reattaching the edges where appropriate,
// and then by deleting v2 from the graph. Since more than one edge between two
// vertices is not allowed, duplicate edges are merged as well. an edge merge
// function can be provided if you'd like to control how you merge the edges!
func (g *Graph) VertexMerge(v1, v2 *Vertex, vertexMergeFn func(*Vertex, *Vertex) (*Vertex, error), edgeMergeFn func(*Edge, *Edge) *Edge) error {
// methodology
// 1) edges between v1 and v2 are removed
//Loop:
for k1 := range g.Adjacency {
for k2 := range g.Adjacency[k1] {
// v1 -> v2 || v2 -> v1
if (k1 == v1 && k2 == v2) || (k1 == v2 && k2 == v1) {
delete(g.Adjacency[k1], k2) // delete map & edge
// NOTE: if we assume this is a DAG, then we can
// assume only v1 -> v2 OR v2 -> v1 exists, and
// we can break out of these loops immediately!
//break Loop
break
}
}
}
// 2) edges that point towards v2 from X now point to v1 from X (no dupes)
for _, x := range g.IncomingGraphEdges(v2) { // all to vertex v (??? -> v)
e := g.Adjacency[x][v2] // previous edge
r := g.Reachability(x, v1)
// merge e with ex := g.Adjacency[x][v1] if it exists!
if ex, exists := g.Adjacency[x][v1]; exists && edgeMergeFn != nil && len(r) == 0 {
e = edgeMergeFn(e, ex)
}
if len(r) == 0 { // if not reachable, add it
g.AddEdge(x, v1, e) // overwrite edge
} else if edgeMergeFn != nil { // reachable, merge e through...
prev := x // initial condition
for i, next := range r {
if i == 0 {
// next == prev, therefore skip
continue
}
// this edge is from: prev, to: next
ex, _ := g.Adjacency[prev][next] // get
ex = edgeMergeFn(ex, e)
g.Adjacency[prev][next] = ex // set
prev = next
}
}
delete(g.Adjacency[x], v2) // delete old edge
}
// 3) edges that point from v2 to X now point from v1 to X (no dupes)
for _, x := range g.OutgoingGraphEdges(v2) { // all from vertex v (v -> ???)
e := g.Adjacency[v2][x] // previous edge
r := g.Reachability(v1, x)
// merge e with ex := g.Adjacency[v1][x] if it exists!
if ex, exists := g.Adjacency[v1][x]; exists && edgeMergeFn != nil && len(r) == 0 {
e = edgeMergeFn(e, ex)
}
if len(r) == 0 {
g.AddEdge(v1, x, e) // overwrite edge
} else if edgeMergeFn != nil { // reachable, merge e through...
prev := v1 // initial condition
for i, next := range r {
if i == 0 {
// next == prev, therefore skip
continue
}
// this edge is from: prev, to: next
ex, _ := g.Adjacency[prev][next]
ex = edgeMergeFn(ex, e)
g.Adjacency[prev][next] = ex
prev = next
}
}
delete(g.Adjacency[v2], x)
}
// 4) merge and then remove the (now merged/grouped) vertex
if vertexMergeFn != nil { // run vertex merge function
if v, err := vertexMergeFn(v1, v2); err != nil {
return err
} else if v != nil { // replace v1 with the "merged" version...
v1 = v // XXX: will this replace v1 the way we want?
}
}
g.DeleteVertex(v2) // remove grouped vertex
// 5) creation of a cyclic graph should throw an error
if _, dag := g.TopologicalSort(); !dag { // am i a dag or not?
return fmt.Errorf("Graph is not a dag!")
}
return nil // success
}
// GetTimestamp returns the timestamp of a vertex
func (v *Vertex) GetTimestamp() int64 {
return v.timestamp
}
// UpdateTimestamp updates the timestamp on a vertex and returns the new value
func (v *Vertex) UpdateTimestamp() int64 {
v.timestamp = time.Now().UnixNano() // update
return v.timestamp
}
// OKTimestamp returns true if this element can run right now?
func (g *Graph) OKTimestamp(v *Vertex) bool {
// these are all the vertices pointing TO v, eg: ??? -> v
for _, n := range g.IncomingGraphEdges(v) {
// if the vertex has a greater timestamp than any pre-req (n)
// then we can't run right now...
// if they're equal (eg: on init of 0) then we also can't run
// b/c we should let our pre-req's go first...
x, y := v.GetTimestamp(), n.GetTimestamp()
if DEBUG {
log.Printf("%v[%v]: OKTimestamp: (%v) >= %v[%v](%v): !%v", v.Kind(), v.GetName(), x, n.Kind(), n.GetName(), y, x >= y)
}
if x >= y {
return false
}
}
return true
}
// Poke notifies nodes after me in the dependency graph that they need refreshing...
// NOTE: this assumes that this can never fail or need to be rescheduled
func (g *Graph) Poke(v *Vertex, activity bool) {
// these are all the vertices pointing AWAY FROM v, eg: v -> ???
for _, n := range g.OutgoingGraphEdges(v) {
// XXX: if we're in state event and haven't been cancelled by
// apply, then we can cancel a poke to a child, right? XXX
// XXX: if n.Res.getState() != resStateEvent { // is this correct?
if true { // XXX
if DEBUG {
log.Printf("%v[%v]: Poke: %v[%v]", v.Kind(), v.GetName(), n.Kind(), n.GetName())
}
n.SendEvent(eventPoke, false, activity) // XXX: can this be switched to sync?
} else {
if DEBUG {
log.Printf("%v[%v]: Poke: %v[%v]: Skipped!", v.Kind(), v.GetName(), n.Kind(), n.GetName())
}
}
}
}
// BackPoke pokes the pre-requisites that are stale and need to run before I can run.
func (g *Graph) BackPoke(v *Vertex) {
// these are all the vertices pointing TO v, eg: ??? -> v
for _, n := range g.IncomingGraphEdges(v) {
x, y, s := v.GetTimestamp(), n.GetTimestamp(), n.Res.GetState()
// if the parent timestamp needs poking AND it's not in state
// resStateEvent, then poke it. If the parent is in resStateEvent it
// means that an event is pending, so we'll be expecting a poke
// back soon, so we can safely discard the extra parent poke...
// TODO: implement a stateLT (less than) to tell if something
// happens earlier in the state cycle and that doesn't wrap nil
if x >= y && (s != resStateEvent && s != resStateCheckApply) {
if DEBUG {
log.Printf("%v[%v]: BackPoke: %v[%v]", v.Kind(), v.GetName(), n.Kind(), n.GetName())
}
n.SendEvent(eventBackPoke, false, false) // XXX: can this be switched to sync?
} else {
if DEBUG {
log.Printf("%v[%v]: BackPoke: %v[%v]: Skipped!", v.Kind(), v.GetName(), n.Kind(), n.GetName())
}
}
}
}
// Process is the primary function to execute for a particular vertex in the graph.
// XXX: rename this function
func (g *Graph) Process(v *Vertex) error {
obj := v.Res
if DEBUG {
log.Printf("%v[%v]: Process()", obj.Kind(), obj.GetName())
}
obj.SetState(resStateEvent)
var ok = true
var apply = false // did we run an apply?
// is it okay to run dependency wise right now?
// if not, that's okay because when the dependency runs, it will poke
// us back and we will run if needed then!
if g.OKTimestamp(v) {
if DEBUG {
log.Printf("%v[%v]: OKTimestamp(%v)", obj.Kind(), obj.GetName(), v.GetTimestamp())
}
obj.SetState(resStateCheckApply)
// if this fails, don't UpdateTimestamp()
checkok, err := obj.CheckApply(!obj.Meta().Noop)
if checkok && err != nil { // should never return this way
log.Fatalf("%v[%v]: CheckApply(): %t, %+v", obj.Kind(), obj.GetName(), checkok, err)
}
if DEBUG {
log.Printf("%v[%v]: CheckApply(): %t, %v", obj.Kind(), obj.GetName(), checkok, err)
}
if !checkok { // if state *was* not ok, we had to have apply'ed
if err != nil { // error during check or apply
ok = false
} else {
apply = true
}
}
// when noop is true we always want to update timestamp
if obj.Meta().Noop && err == nil {
ok = true
}
if ok {
// update this timestamp *before* we poke or the poked
// nodes might fail due to having a too old timestamp!
v.UpdateTimestamp() // this was touched...
obj.SetState(resStatePoking) // can't cancel parent poke
g.Poke(v, apply)
}
// poke at our pre-req's instead since they need to refresh/run...
return err
} else {
// only poke at the pre-req's that need to run
go g.BackPoke(v)
}
return nil
}
// SentinelErr is a sentinal as an error type that wraps an arbitrary error.
type SentinelErr struct {
err error
}
// Error is the required method to fulfill the error type.
func (obj *SentinelErr) Error() string {
return obj.err.Error()
}
// Worker is the common run frontend of the vertex. It handles all of the retry
// and retry delay common code, and ultimately returns the final status of this
// vertex execution.
func (g *Graph) Worker(v *Vertex) error {
// listen for chan events from Watch() and run
// the Process() function when they're received
// this avoids us having to pass the data into
// the Watch() function about which graph it is
// running on, which isolates things nicely...
obj := v.Res
chanProcess := make(chan Event)
go func() {
running := false
var timer = time.NewTimer(time.Duration(math.MaxInt64)) // longest duration
if !timer.Stop() {
<-timer.C // unnecessary, shouldn't happen
}
var delay = time.Duration(v.Meta().Delay) * time.Millisecond
var retry int16 = v.Meta().Retry // number of tries left, -1 for infinite
var saved Event
Loop:
for {
// this has to be synchronous, because otherwise the Res
// event loop will keep running and change state,
// causing the converged timeout to fire!
select {
case event, ok := <-chanProcess: // must use like this
if running && ok {
// we got an event that wasn't a close,
// while we were waiting for the timer!
// if this happens, it might be a bug:(
log.Fatalf("%v[%v]: Worker: Unexpected event: %+v", v.Kind(), v.GetName(), event)
}
if !ok { // chanProcess closed, let's exit
break Loop // no event, so no ack!
}
// the above mentioned synchronous part, is the
// running of this function, paired with an ack.
if e := g.Process(v); e != nil {
saved = event
log.Printf("%v[%v]: CheckApply errored: %v", v.Kind(), v.GetName(), e)
if retry == 0 {
// wrap the error in the sentinel
event.ACKNACK(&SentinelErr{e}) // fail the Watch()
break Loop
}
if retry > 0 { // don't decrement the -1
retry--
}
log.Printf("%v[%v]: CheckApply: Retrying after %.4f seconds (%d left)", v.Kind(), v.GetName(), delay.Seconds(), retry)
// start the timer...
timer.Reset(delay)
running = true
continue
}
retry = v.Meta().Retry // reset on success
event.ACK() // sync
case <-timer.C:
if !timer.Stop() {
//<-timer.C // blocks, docs are wrong!
}
running = false
log.Printf("%s[%s]: CheckApply delay expired!", v.Kind(), v.GetName())
// re-send this failed event, to trigger a CheckApply()
go func() { chanProcess <- saved }()
// TODO: should we send a fake event instead?
//saved = nil
}
}
}()
var err error // propagate the error up (this is a permanent BAD error!)
// the watch delay runs inside of the Watch resource loop, so that it
// can still process signals and exit if needed. It shouldn't run any
// resource specific code since this is supposed to be a retry delay.
// NOTE: we're using the same retry and delay metaparams that CheckApply
// uses. This is for practicality. We can separate them later if needed!
var watchDelay time.Duration
var watchRetry int16 = v.Meta().Retry // number of tries left, -1 for infinite
// watch blocks until it ends, & errors to retry
for {
// TODO: do we have to stop the converged-timeout when in this block (perhaps we're in the delay block!)
// TODO: should we setup/manage some of the converged timeout stuff in here anyways?
// if a retry-delay was requested, wait, but don't block our events!
if watchDelay > 0 {
//var pendingSendEvent bool
timer := time.NewTimer(watchDelay)
Loop:
for {
select {
case <-timer.C: // the wait is over
break Loop // critical
// TODO: resources could have a separate exit channel to avoid this complexity!?
case event := <-obj.Events():
// NOTE: this code should match the similar Res code!
//cuuid.SetConverged(false) // TODO ?
if exit, send := obj.ReadEvent(&event); exit {
return nil // exit
} else if send {
// if we dive down this rabbit hole, our
// timer.C won't get seen until we get out!
// in this situation, the Watch() is blocked
// from performing until CheckApply returns
// successfully, or errors out. This isn't
// so bad, but we should document it. Is it
// possible that some resource *needs* Watch
// to run to be able to execute a CheckApply?
// That situation shouldn't be common, and
// should probably not be allowed. Can we
// avoid it though?
//if exit, err := doSend(); exit || err != nil {
// return err // we exit or bubble up a NACK...
//}
// Instead of doing the above, we can
// add events to a pending list, and
// when we finish the delay, we can run
// them.
//pendingSendEvent = true // all events are identical for now...
}
}
}
timer.Stop() // it's nice to cleanup
log.Printf("%s[%s]: Watch delay expired!", v.Kind(), v.GetName())
// NOTE: we can avoid the send if running Watch guarantees
// one CheckApply event on startup!
//if pendingSendEvent { // TODO: should this become a list in the future?
// if exit, err := obj.DoSend(chanProcess, ""); exit || err != nil {
// return err // we exit or bubble up a NACK...
// }
//}
}
// TODO: reset the watch retry count after some amount of success
e := v.Res.Watch(chanProcess)
if e == nil { // exit signal
err = nil // clean exit
break
}
if sentinelErr, ok := e.(*SentinelErr); ok { // unwrap the sentinel
err = sentinelErr.err
break // sentinel means, perma-exit
}
log.Printf("%v[%v]: Watch errored: %v", v.Kind(), v.GetName(), e)
if watchRetry == 0 {
err = fmt.Errorf("Permanent watch error: %v", e)
break
}
if watchRetry > 0 { // don't decrement the -1
watchRetry--
}
watchDelay = time.Duration(v.Meta().Delay) * time.Millisecond
log.Printf("%v[%v]: Watch: Retrying after %.4f seconds (%d left)", v.Kind(), v.GetName(), watchDelay.Seconds(), watchRetry)
// We need to trigger a CheckApply after Watch restarts, so that
// we catch any lost events that happened while down. We do this
// by getting the Watch resource to send one event once it's up!
//v.SendEvent(eventPoke, false, false)
}
close(chanProcess)
return err
}
// Start is a main kick to start the graph. It goes through in reverse topological
// sort order so that events can't hit un-started vertices.
func (g *Graph) Start(wg *sync.WaitGroup, first bool) { // start or continue
log.Printf("State: %v -> %v", g.setState(graphStateStarting), g.getState())
defer log.Printf("State: %v -> %v", g.setState(graphStateStarted), g.getState())
t, _ := g.TopologicalSort()
// TODO: only calculate indegree if `first` is true to save resources
indegree := g.InDegree() // compute all of the indegree's
for _, v := range Reverse(t) {
if !v.Res.IsWatching() { // if Watch() is not running...
wg.Add(1)
// must pass in value to avoid races...
// see: https://ttboj.wordpress.com/2015/07/27/golang-parallelism-issues-causing-too-many-open-files-error/
go func(vv *Vertex) {
defer wg.Done()
// TODO: if a sufficient number of workers error,
// should something be done? Will these restart
// after perma-failure if we have a graph change?
if err := g.Worker(vv); err != nil { // contains the Watch and CheckApply loops
log.Printf("%s[%s]: Exited with failure: %v", vv.Kind(), vv.GetName(), err)
return
}
log.Printf("%v[%v]: Exited", vv.Kind(), vv.GetName())
}(v)
}
// selective poke: here we reduce the number of initial pokes
// to the minimum required to activate every vertex in the
// graph, either by direct action, or by getting poked by a
// vertex that was previously activated. if we poke each vertex
// that has no incoming edges, then we can be sure to reach the
// whole graph. Please note: this may mask certain optimization
// failures, such as any poke limiting code in Poke() or
// BackPoke(). You might want to disable this selective start
// when experimenting with and testing those elements.
// if we are unpausing (since it's not the first run of this
// function) we need to poke to *unpause* every graph vertex,
// and not just selectively the subset with no indegree.
if (!first) || indegree[v] == 0 {
// ensure state is started before continuing on to next vertex
for !v.SendEvent(eventStart, true, false) {
if DEBUG {
// if SendEvent fails, we aren't up yet
log.Printf("%v[%v]: Retrying SendEvent(Start)", v.Kind(), v.GetName())
// sleep here briefly or otherwise cause
// a different goroutine to be scheduled
time.Sleep(1 * time.Millisecond)
}
}
}
}
}
// Pause sends pause events to the graph in a topological sort order.
func (g *Graph) Pause() {
log.Printf("State: %v -> %v", g.setState(graphStatePausing), g.getState())
defer log.Printf("State: %v -> %v", g.setState(graphStatePaused), g.getState())
t, _ := g.TopologicalSort()
for _, v := range t { // squeeze out the events...
v.SendEvent(eventPause, true, false)
}
}
// Exit sends exit events to the graph in a topological sort order.
func (g *Graph) Exit() {
if g == nil {
return
} // empty graph that wasn't populated yet
t, _ := g.TopologicalSort()
for _, v := range t { // squeeze out the events...
// turn off the taps...
// XXX: consider instead doing this by closing the Res.events channel instead?
// XXX: do this by sending an exit signal, and then returning
// when we hit the 'default' in the select statement!
// XXX: we can do this to quiesce, but it's not necessary now
v.SendEvent(eventExit, true, false)
}
}
// AssociateData associates some data with the object in the graph in question
func (g *Graph) AssociateData(converger Converger) {
for v := range g.GetVerticesChan() {
v.Res.AssociateData(converger)
}
}
// VertexContains is an "in array" function to test for a vertex in a slice of vertices.
func VertexContains(needle *Vertex, haystack []*Vertex) bool {
for _, v := range haystack {
if needle == v {
return true
}
}
return false
}
// Reverse reverses a list of vertices.
func Reverse(vs []*Vertex) []*Vertex {
//var out []*Vertex // XXX: golint suggests, but it fails testing
out := make([]*Vertex, 0) // empty list
l := len(vs)
for i := range vs {
out = append(out, vs[l-i-1])
}
return out
}