Files
mgmt/lang/funcs/operator_polyfunc.go
James Shubin d692483bc3 lang: funcs: Add Unify method for operator function
This is an implementation of the Unify approach for the operator
function. It is unique in that it is a wrapper around the simple
operator function API.

To improve the filtering, it would be excellent if we could examine the
return type in `solved` somehow (if it is known) and use that to trim
our list of exclusives down even further! The smaller exclusives are,
the faster everything in the solver can run.
2021-05-23 20:03:10 -04:00

961 lines
28 KiB
Go

// Mgmt
// Copyright (C) 2013-2021+ James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
package funcs // this is here, in case we allow others to register operators...
import (
"fmt"
"math"
"sort"
"github.com/purpleidea/mgmt/lang/interfaces"
"github.com/purpleidea/mgmt/lang/types"
"github.com/purpleidea/mgmt/util"
"github.com/purpleidea/mgmt/util/errwrap"
)
const (
// OperatorFuncName is the name this function is registered as. This
// starts with an underscore so that it cannot be used from the lexer.
OperatorFuncName = "_operator"
// operatorArgName is the edge and arg name used for the function's
// operator.
operatorArgName = "op" // something short and arbitrary
)
func init() {
// concatenation
RegisterOperator("+", &types.FuncValue{
T: types.NewType("func(a str, b str) str"),
V: func(input []types.Value) (types.Value, error) {
return &types.StrValue{
V: input[0].Str() + input[1].Str(),
}, nil
},
})
// addition
RegisterOperator("+", &types.FuncValue{
T: types.NewType("func(a int, b int) int"),
V: func(input []types.Value) (types.Value, error) {
//if l := len(input); l != 2 {
// return nil, fmt.Errorf("expected two inputs, got: %d", l)
//}
// FIXME: check for overflow?
return &types.IntValue{
V: input[0].Int() + input[1].Int(),
}, nil
},
})
// floating-point addition
RegisterOperator("+", &types.FuncValue{
T: types.NewType("func(a float, b float) float"),
V: func(input []types.Value) (types.Value, error) {
return &types.FloatValue{
V: input[0].Float() + input[1].Float(),
}, nil
},
})
// subtraction
RegisterOperator("-", &types.FuncValue{
T: types.NewType("func(a int, b int) int"),
V: func(input []types.Value) (types.Value, error) {
return &types.IntValue{
V: input[0].Int() - input[1].Int(),
}, nil
},
})
// floating-point subtraction
RegisterOperator("-", &types.FuncValue{
T: types.NewType("func(a float, b float) float"),
V: func(input []types.Value) (types.Value, error) {
return &types.FloatValue{
V: input[0].Float() - input[1].Float(),
}, nil
},
})
// multiplication
RegisterOperator("*", &types.FuncValue{
T: types.NewType("func(a int, b int) int"),
V: func(input []types.Value) (types.Value, error) {
// FIXME: check for overflow?
return &types.IntValue{
V: input[0].Int() * input[1].Int(),
}, nil
},
})
// floating-point multiplication
RegisterOperator("*", &types.FuncValue{
T: types.NewType("func(a float, b float) float"),
V: func(input []types.Value) (types.Value, error) {
return &types.FloatValue{
V: input[0].Float() * input[1].Float(),
}, nil
},
})
// don't add: `func(int, float) float` or: `func(float, int) float`
// division
RegisterOperator("/", &types.FuncValue{
T: types.NewType("func(a int, b int) float"),
V: func(input []types.Value) (types.Value, error) {
divisor := input[1].Int()
if divisor == 0 {
return nil, fmt.Errorf("can't divide by zero")
}
return &types.FloatValue{
V: float64(input[0].Int()) / float64(divisor),
}, nil
},
})
// floating-point division
RegisterOperator("/", &types.FuncValue{
T: types.NewType("func(a float, b float) float"),
V: func(input []types.Value) (types.Value, error) {
divisor := input[1].Float()
if divisor == 0.0 {
return nil, fmt.Errorf("can't divide by zero")
}
return &types.FloatValue{
V: input[0].Float() / divisor,
}, nil
},
})
// string equality
RegisterOperator("==", &types.FuncValue{
T: types.NewType("func(a str, b str) bool"),
V: func(input []types.Value) (types.Value, error) {
return &types.BoolValue{
V: input[0].Str() == input[1].Str(),
}, nil
},
})
// bool equality
RegisterOperator("==", &types.FuncValue{
T: types.NewType("func(a bool, b bool) bool"),
V: func(input []types.Value) (types.Value, error) {
return &types.BoolValue{
V: input[0].Bool() == input[1].Bool(),
}, nil
},
})
// int equality
RegisterOperator("==", &types.FuncValue{
T: types.NewType("func(a int, b int) bool"),
V: func(input []types.Value) (types.Value, error) {
return &types.BoolValue{
V: input[0].Int() == input[1].Int(),
}, nil
},
})
// floating-point equality
RegisterOperator("==", &types.FuncValue{
T: types.NewType("func(a float, b float) bool"),
V: func(input []types.Value) (types.Value, error) {
// TODO: should we do an epsilon check?
return &types.BoolValue{
V: input[0].Float() == input[1].Float(),
}, nil
},
})
// string in-equality
RegisterOperator("!=", &types.FuncValue{
T: types.NewType("func(a str, b str) bool"),
V: func(input []types.Value) (types.Value, error) {
return &types.BoolValue{
V: input[0].Str() != input[1].Str(),
}, nil
},
})
// bool in-equality
RegisterOperator("!=", &types.FuncValue{
T: types.NewType("func(a bool, b bool) bool"),
V: func(input []types.Value) (types.Value, error) {
return &types.BoolValue{
V: input[0].Bool() != input[1].Bool(),
}, nil
},
})
// int in-equality
RegisterOperator("!=", &types.FuncValue{
T: types.NewType("func(a int, b int) bool"),
V: func(input []types.Value) (types.Value, error) {
return &types.BoolValue{
V: input[0].Int() != input[1].Int(),
}, nil
},
})
// floating-point in-equality
RegisterOperator("!=", &types.FuncValue{
T: types.NewType("func(a float, b float) bool"),
V: func(input []types.Value) (types.Value, error) {
// TODO: should we do an epsilon check?
return &types.BoolValue{
V: input[0].Float() != input[1].Float(),
}, nil
},
})
// less-than
RegisterOperator("<", &types.FuncValue{
T: types.NewType("func(a int, b int) bool"),
V: func(input []types.Value) (types.Value, error) {
return &types.BoolValue{
V: input[0].Int() < input[1].Int(),
}, nil
},
})
// floating-point less-than
RegisterOperator("<", &types.FuncValue{
T: types.NewType("func(a float, b float) bool"),
V: func(input []types.Value) (types.Value, error) {
// TODO: should we do an epsilon check?
return &types.BoolValue{
V: input[0].Float() < input[1].Float(),
}, nil
},
})
// greater-than
RegisterOperator(">", &types.FuncValue{
T: types.NewType("func(a int, b int) bool"),
V: func(input []types.Value) (types.Value, error) {
return &types.BoolValue{
V: input[0].Int() > input[1].Int(),
}, nil
},
})
// floating-point greater-than
RegisterOperator(">", &types.FuncValue{
T: types.NewType("func(a float, b float) bool"),
V: func(input []types.Value) (types.Value, error) {
// TODO: should we do an epsilon check?
return &types.BoolValue{
V: input[0].Float() > input[1].Float(),
}, nil
},
})
// less-than-equal
RegisterOperator("<=", &types.FuncValue{
T: types.NewType("func(a int, b int) bool"),
V: func(input []types.Value) (types.Value, error) {
return &types.BoolValue{
V: input[0].Int() <= input[1].Int(),
}, nil
},
})
// floating-point less-than-equal
RegisterOperator("<=", &types.FuncValue{
T: types.NewType("func(a float, b float) bool"),
V: func(input []types.Value) (types.Value, error) {
// TODO: should we do an epsilon check?
return &types.BoolValue{
V: input[0].Float() <= input[1].Float(),
}, nil
},
})
// greater-than-equal
RegisterOperator(">=", &types.FuncValue{
T: types.NewType("func(a int, b int) bool"),
V: func(input []types.Value) (types.Value, error) {
return &types.BoolValue{
V: input[0].Int() >= input[1].Int(),
}, nil
},
})
// floating-point greater-than-equal
RegisterOperator(">=", &types.FuncValue{
T: types.NewType("func(a float, b float) bool"),
V: func(input []types.Value) (types.Value, error) {
// TODO: should we do an epsilon check?
return &types.BoolValue{
V: input[0].Float() >= input[1].Float(),
}, nil
},
})
// logical and
// TODO: is there a way for the engine to have
// short-circuit operators, and does it matter?
RegisterOperator("&&", &types.FuncValue{
T: types.NewType("func(a bool, b bool) bool"),
V: func(input []types.Value) (types.Value, error) {
return &types.BoolValue{
V: input[0].Bool() && input[1].Bool(),
}, nil
},
})
// logical or
RegisterOperator("||", &types.FuncValue{
T: types.NewType("func(a bool, b bool) bool"),
V: func(input []types.Value) (types.Value, error) {
return &types.BoolValue{
V: input[0].Bool() || input[1].Bool(),
}, nil
},
})
// logical not (unary operator)
RegisterOperator("!", &types.FuncValue{
T: types.NewType("func(a bool) bool"),
V: func(input []types.Value) (types.Value, error) {
return &types.BoolValue{
V: !input[0].Bool(),
}, nil
},
})
// pi operator (this is an easter egg to demo a zero arg operator)
RegisterOperator("π", &types.FuncValue{
T: types.NewType("func() float"),
V: func(input []types.Value) (types.Value, error) {
return &types.FloatValue{
V: math.Pi,
}, nil
},
})
Register(OperatorFuncName, func() interfaces.Func { return &OperatorPolyFunc{} }) // must register the func and name
}
// OperatorFuncs maps an operator to a list of callable function values.
var OperatorFuncs = make(map[string][]*types.FuncValue) // must initialize
// RegisterOperator registers the given string operator and function value
// implementation with the mini-database for this generalized, static,
// polymorphic operator implementation.
func RegisterOperator(operator string, fn *types.FuncValue) {
if _, exists := OperatorFuncs[operator]; !exists {
OperatorFuncs[operator] = []*types.FuncValue{} // init
}
for _, f := range OperatorFuncs[operator] {
if err := f.T.Cmp(fn.T); err == nil {
panic(fmt.Sprintf("operator %s already has an implementation for %+v", operator, f.T))
}
}
for i, x := range fn.T.Ord {
if x == operatorArgName {
panic(fmt.Sprintf("can't use `%s` as an argName for operator `%s` with type `%+v`", x, operator, fn.T))
}
// yes this limits the arg max to 24 (`x`) including operator
// if the operator is `x`...
if s := util.NumToAlpha(i); x != s {
panic(fmt.Sprintf("arg for operator `%s` (index `%d`) should be named `%s`, not `%s`", operator, i, s, x))
}
}
OperatorFuncs[operator] = append(OperatorFuncs[operator], fn)
}
// LookupOperator returns a list of type strings for each operator. An empty
// operator string means return everything. If you specify a size that is less
// than zero, we don't filter by arg length, otherwise we only return signatures
// which have an arg length equal to size.
func LookupOperator(operator string, size int) ([]*types.Type, error) {
fns, exists := OperatorFuncs[operator]
if !exists && operator != "" {
return nil, fmt.Errorf("operator not found")
}
results := []*types.Type{}
if operator == "" {
var keys []string
for k := range OperatorFuncs {
keys = append(keys, k)
}
sort.Strings(keys)
for _, a := range keys {
fns = append(fns, OperatorFuncs[a]...)
}
}
for _, fn := range fns {
typ := addOperatorArg(fn.T) // add in the `operatorArgName` arg
if size >= 0 && len(typ.Ord) != size {
continue
}
results = append(results, typ)
}
return results, nil
}
// LookupOperatorShort is similar to LookupOperator except that it returns the
// "short" (standalone) types of the direct functions that are attached to each
// operator. IOW, if you specify "+" and 2, you'll get the sigs for "a" + "b"
// and 1 + 2, without the third "op" as the first argument.
func LookupOperatorShort(operator string, size int) ([]*types.Type, error) {
fns, exists := OperatorFuncs[operator]
if !exists && operator != "" {
return nil, fmt.Errorf("operator not found")
}
results := []*types.Type{}
for _, fn := range fns {
typ := fn.T
if len(typ.Ord) != size {
continue
}
results = append(results, typ)
}
return results, nil
}
// OperatorPolyFunc is an operator function that performs an operation on N
// values.
type OperatorPolyFunc struct {
Type *types.Type // Kind == Function, including operator arg
init *interfaces.Init
last types.Value // last value received to use for diff
result types.Value // last calculated output
closeChan chan struct{}
}
// argNames returns the maximum list of possible argNames. This can be truncated
// if needed. The first arg name is the operator.
func (obj *OperatorPolyFunc) argNames() ([]string, error) {
// we could just do this statically, but i did it dynamically so that I
// wouldn't ever have to remember to update this list...
max := 0
for _, fns := range OperatorFuncs {
for _, fn := range fns {
l := len(fn.T.Ord)
if l > max {
max = l
}
}
}
//if length >= 0 && length < max {
// max = length
//}
args := []string{operatorArgName}
for i := 0; i < max; i++ {
s := util.NumToAlpha(i)
if s == operatorArgName {
return nil, fmt.Errorf("can't use `%s` as arg name", operatorArgName)
}
args = append(args, s)
}
return args, nil
}
// findFunc tries to find the first available registered operator function that
// matches the Operator/Type pattern requested. If none is found it returns nil.
func (obj *OperatorPolyFunc) findFunc(operator string) *types.FuncValue {
fns, exists := OperatorFuncs[operator]
if !exists {
return nil
}
typ := removeOperatorArg(obj.Type) // remove operator so we can match...
for _, fn := range fns {
if err := fn.Type().Cmp(typ); err == nil { // found one!
return fn
}
}
return nil
}
// ArgGen returns the Nth arg name for this function.
func (obj *OperatorPolyFunc) ArgGen(index int) (string, error) {
seq, err := obj.argNames()
if err != nil {
return "", err
}
if l := len(seq); index >= l {
return "", fmt.Errorf("index %d exceeds arg length of %d", index, l)
}
return seq[index], nil
}
// Unify returns the list of invariants that this func produces.
func (obj *OperatorPolyFunc) Unify(expr interfaces.Expr) ([]interfaces.Invariant, error) {
var invariants []interfaces.Invariant
var invar interfaces.Invariant
// func(operator string, args... variant) string
operatorName, err := obj.ArgGen(0)
if err != nil {
return nil, err
}
dummyOperator := &interfaces.ExprAny{} // corresponds to the format type
dummyOut := &interfaces.ExprAny{} // corresponds to the out type
// operator arg type of string
invar = &interfaces.EqualsInvariant{
Expr: dummyOperator,
Type: types.TypeStr,
}
invariants = append(invariants, invar)
// return type is currently unknown
invar = &interfaces.AnyInvariant{
Expr: dummyOut, // make sure to include it so we know it solves
}
invariants = append(invariants, invar)
// generator function
fn := func(fnInvariants []interfaces.Invariant, solved map[interfaces.Expr]*types.Type) ([]interfaces.Invariant, error) {
for _, invariant := range fnInvariants {
// search for this special type of invariant
cfavInvar, ok := invariant.(*interfaces.CallFuncArgsValueInvariant)
if !ok {
continue
}
// did we find the mapping from us to ExprCall ?
if cfavInvar.Func != expr {
continue
}
// cfavInvar.Expr is the ExprCall! (the return pointer)
// cfavInvar.Args are the args that ExprCall uses!
if len(cfavInvar.Args) == 0 {
return nil, fmt.Errorf("unable to build function with no args")
}
// our operator is the 0th arg, but that's the minimum!
var invariants []interfaces.Invariant
var invar interfaces.Invariant
// add the relationship to the returned value
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Expr,
Expr2: dummyOut,
}
invariants = append(invariants, invar)
// add the relationships to the called args
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Args[0],
Expr2: dummyOperator,
}
invariants = append(invariants, invar)
// first arg must be a string
invar = &interfaces.EqualsInvariant{
Expr: cfavInvar.Args[0],
Type: types.TypeStr,
}
invariants = append(invariants, invar)
value, err := cfavInvar.Args[0].Value() // is it known?
if err != nil {
return nil, fmt.Errorf("operator string is not known statically")
}
if k := value.Type().Kind; k != types.KindStr {
return nil, fmt.Errorf("unable to build function with 0th arg of kind: %s", k)
}
op := value.Str() // must not panic
if op == "" {
return nil, fmt.Errorf("unable to build function with empty op")
}
size := len(cfavInvar.Args) - 1 // -1 to remove the op
// since built-in functions have their signatures
// explicitly defined, we can add easy invariants
// between in/out args and their expected types.
results, err := LookupOperatorShort(op, size)
if err != nil {
return nil, errwrap.Wrapf(err, "error finding signatures for operator `%s`", op)
}
if len(results) == 0 {
return nil, fmt.Errorf("no matching signatures for operator `%s` could be found", op)
}
// helper function to build our complex func invariants
buildInvar := func(typ *types.Type) ([]interfaces.Invariant, error) {
var invariants []interfaces.Invariant
var invar interfaces.Invariant
// full function
mapped := make(map[string]interfaces.Expr)
ordered := []string{operatorName}
mapped[operatorName] = dummyOperator
// assume this is a types.KindFunc
for i, x := range typ.Ord {
t := typ.Map[x]
if t == nil {
// programming error
return nil, fmt.Errorf("unexpected func nil arg (%d) type", i)
}
argName, err := obj.ArgGen(i + 1) // skip 0th
if err != nil {
return nil, err
}
if argName == operatorArgName {
return nil, fmt.Errorf("could not build function with %d args", i+1) // +1 for op arg
}
dummyArg := &interfaces.ExprAny{}
invar = &interfaces.EqualsInvariant{
Expr: dummyArg,
Type: t,
}
invariants = append(invariants, invar)
invar = &interfaces.EqualityInvariant{
Expr1: dummyArg,
Expr2: cfavInvar.Args[i+1],
}
invariants = append(invariants, invar)
mapped[argName] = dummyArg
ordered = append(ordered, argName)
}
invar = &interfaces.EqualityWrapFuncInvariant{
Expr1: expr, // maps directly to us!
Expr2Map: mapped,
Expr2Ord: ordered,
Expr2Out: dummyOut,
}
invariants = append(invariants, invar)
if typ.Out == nil {
// programming error
return nil, fmt.Errorf("unexpected func nil return type")
}
// remember to add the relationship to the
// return type of the functions as well...
invar = &interfaces.EqualsInvariant{
Expr: dummyOut,
Type: typ.Out,
}
invariants = append(invariants, invar)
return invariants, nil
}
// argCmp trims down the list of possible types...
// this makes our exclusive invariants smaller, and
// easier to solve without combinatorial slow recursion
argCmp := func(typ *types.Type) bool {
if len(cfavInvar.Args)-1 != len(typ.Ord) {
return false // arg length differs
}
for i, x := range cfavInvar.Args[1:] {
if t, err := x.Type(); err == nil {
if t.Cmp(typ.Map[typ.Ord[i]]) != nil {
return false // impossible!
}
}
// is the type already known as solved?
if t, exists := solved[x]; exists { // alternate way to lookup type
if t.Cmp(typ.Map[typ.Ord[i]]) != nil {
return false // impossible!
}
}
}
return true // possible
}
// TODO: do we return this relationship with ExprCall?
invar = &interfaces.EqualityWrapCallInvariant{
// TODO: should Expr1 and Expr2 be reversed???
Expr1: cfavInvar.Expr,
//Expr2Func: cfavInvar.Func, // same as below
Expr2Func: expr,
}
invariants = append(invariants, invar)
ors := []interfaces.Invariant{} // solve only one from this list
for _, typ := range results { // operator func types
if typ.Kind != types.KindFunc {
// programming error
return nil, fmt.Errorf("type must be a kind of func")
}
if !argCmp(typ) { // filter out impossible types
continue // not a possible match
}
invars, err := buildInvar(typ)
if err != nil {
return nil, err
}
// all of these need to be true together
and := &interfaces.ConjunctionInvariant{
Invariants: invars,
}
ors = append(ors, and) // one solution added!
}
if len(ors) == 0 {
return nil, fmt.Errorf("no matching signatures for operator `%s` could be found", op)
}
invar = &interfaces.ExclusiveInvariant{
Invariants: ors, // one and only one of these should be true
}
if len(ors) == 1 {
invar = ors[0] // there should only be one
}
invariants = append(invariants, invar)
// TODO: are there any other invariants we should build?
return invariants, nil // generator return
}
// We couldn't tell the solver anything it didn't already know!
return nil, fmt.Errorf("couldn't generate new invariants")
}
invar = &interfaces.GeneratorInvariant{
Func: fn,
}
invariants = append(invariants, invar)
return invariants, nil
}
// Polymorphisms returns the list of possible function signatures available for
// this static polymorphic function. It relies on type and value hints to limit
// the number of returned possibilities.
func (obj *OperatorPolyFunc) Polymorphisms(partialType *types.Type, partialValues []types.Value) ([]*types.Type, error) {
var op string
var size = -1
// optimization: if operator happens to already be known statically,
// then we can return a much smaller subset of possible signatures...
if partialType != nil && partialType.Ord != nil {
ord := partialType.Ord
if len(ord) == 0 {
return nil, fmt.Errorf("must have at least one arg in operator func")
}
// optimization: since we know arg length, we can limit the
// signatures that we return...
size = len(ord) // we know size!
if partialType.Map != nil {
if t, exists := partialType.Map[ord[0]]; exists && t != nil {
if t.Cmp(types.TypeStr) != nil {
return nil, fmt.Errorf("first arg for operator func must be an str")
}
if len(partialValues) > 0 && partialValues[0] != nil {
op = partialValues[0].Str() // known str
}
}
}
}
// since built-in functions have their signatures explicitly defined, we
// can add easy invariants between in/out args and their expected types.
results, err := LookupOperator(op, size)
if err != nil {
return nil, errwrap.Wrapf(err, "error finding signatures for operator `%s`", op)
}
// TODO: we can add additional results filtering here if we'd like...
if len(results) == 0 {
return nil, fmt.Errorf("no matching signatures for operator `%s` could be found", op)
}
return results, nil
}
// Build is run to turn the polymorphic, undetermined function, into the
// specific statically typed version. It is usually run after Unify completes,
// and must be run before Info() and any of the other Func interface methods are
// used. This function is idempotent, as long as the arg isn't changed between
// runs.
func (obj *OperatorPolyFunc) Build(typ *types.Type) error {
// typ is the KindFunc signature we're trying to build...
if len(typ.Ord) < 1 {
return fmt.Errorf("the operator function needs at least 1 arg")
}
if typ.Out == nil {
return fmt.Errorf("return type of function must be specified")
}
obj.Type = typ // func type
return nil
}
// Validate tells us if the input struct takes a valid form.
func (obj *OperatorPolyFunc) Validate() error {
if obj.Type == nil { // build must be run first
return fmt.Errorf("type is still unspecified")
}
if obj.Type.Kind != types.KindFunc {
return fmt.Errorf("type must be a kind of func")
}
return nil
}
// Info returns some static info about itself. Build must be called before this
// will return correct data.
func (obj *OperatorPolyFunc) Info() *interfaces.Info {
return &interfaces.Info{
Pure: true,
Memo: false,
Sig: obj.Type, // func kind, which includes operator arg as input
Err: obj.Validate(),
}
}
// Init runs some startup code for this function.
func (obj *OperatorPolyFunc) Init(init *interfaces.Init) error {
obj.init = init
obj.closeChan = make(chan struct{})
return nil
}
// Stream returns the changing values that this func has over time.
func (obj *OperatorPolyFunc) Stream() error {
var op, lastOp string
var fn *types.FuncValue
defer close(obj.init.Output) // the sender closes
for {
select {
case input, ok := <-obj.init.Input:
if !ok {
return nil // can't output any more
}
//if err := input.Type().Cmp(obj.Info().Sig.Input); err != nil {
// return errwrap.Wrapf(err, "wrong function input")
//}
if obj.last != nil && input.Cmp(obj.last) == nil {
continue // value didn't change, skip it
}
obj.last = input // store for next
// build up arg list
args := []types.Value{}
for _, name := range obj.Type.Ord {
v := input.Struct()[name]
if name == operatorArgName {
op = v.Str()
continue // skip over the operator arg
}
args = append(args, v)
}
if op == "" {
return fmt.Errorf("operator cannot be empty")
}
// operator selection is dynamic now, although mostly it
// should not change... to do so is probably uncommon...
if fn == nil || op != lastOp {
fn = obj.findFunc(op)
}
if fn == nil {
return fmt.Errorf("func not found for operator `%s` with sig: `%+v`", op, obj.Type)
}
lastOp = op
var result types.Value
result, err := fn.Call(args) // run the function
if err != nil {
return errwrap.Wrapf(err, "problem running function")
}
if result == nil {
return fmt.Errorf("computed function output was nil")
}
// if previous input was `2 + 4`, but now it
// changed to `1 + 5`, the result is still the
// same, so we can skip sending an update...
if obj.result != nil && result.Cmp(obj.result) == nil {
continue // result didn't change
}
obj.result = result // store new result
case <-obj.closeChan:
return nil
}
select {
case obj.init.Output <- obj.result: // send
case <-obj.closeChan:
return nil
}
}
}
// Close runs some shutdown code for this function and turns off the stream.
func (obj *OperatorPolyFunc) Close() error {
close(obj.closeChan)
return nil
}
// removeOperatorArg returns a copy of the input KindFunc type, without the
// operator arg which specifies which operator we're using. It *is* idempotent.
func removeOperatorArg(typ *types.Type) *types.Type {
if typ == nil {
return nil
}
if _, exists := typ.Map[operatorArgName]; !exists {
return typ // pass through
}
m := make(map[string]*types.Type)
ord := []string{}
for _, s := range typ.Ord {
if s == operatorArgName {
continue // remove the operator
}
m[s] = typ.Map[s]
ord = append(ord, s)
}
return &types.Type{
Kind: types.KindFunc,
Map: m,
Ord: ord,
Out: typ.Out,
}
}
// addOperatorArg returns a copy of the input KindFunc type, with the operator
// arg which specifies which operator we're using added. This is idempotent.
func addOperatorArg(typ *types.Type) *types.Type {
if typ == nil {
return nil
}
if _, exists := typ.Map[operatorArgName]; exists {
return typ // pass through
}
m := make(map[string]*types.Type)
m[operatorArgName] = types.TypeStr // add the operator
ord := []string{operatorArgName} // add the operator
for _, s := range typ.Ord {
m[s] = typ.Map[s]
ord = append(ord, s)
}
return &types.Type{
Kind: types.KindFunc,
Map: m,
Ord: ord,
Out: typ.Out,
}
}