Files
mgmt/lang/interpret_test.go
James Shubin 96dccca475 lang: Add module imports and more
This enables imports in mcl code, and is one of last remaining blockers
to using mgmt. Now we can start writing standalone modules, and adding
standard library functions as needed. There's still lots to do, but this
was a big missing piece. It was much harder to get right than I had
expected, but I think it's solid!

This unfortunately large commit is the result of some wild hacking I've
been doing for the past little while. It's the result of a rebase that
broke many "wip" commits that tracked my private progress, into
something that's not gratuitously messy for our git logs. Since this was
a learning and discovery process for me, I've "erased" the confusing git
history that wouldn't have helped. I'm happy to discuss the dead-ends,
and a small portion of that code was even left in for possible future
use.

This patch includes:

* A change to the cli interface:
You now specify the front-end explicitly, instead of leaving it up to
the front-end to decide when to "activate". For example, instead of:

mgmt run --lang code.mcl

we now do:

mgmt run lang --lang code.mcl

We might rename the --lang flag in the future to avoid the awkward word
repetition. Suggestions welcome, but I'm considering "input". One
side-effect of this change, is that flags which are "engine" specific
now must be specified with "run" before the front-end name. Eg:

mgmt run --tmp-prefix lang --lang code.mcl

instead of putting --tmp-prefix at the end. We also changed the GAPI
slightly, but I've patched all code that used it. This also makes things
consistent with the "deploy" command.

* The deploys are more robust and let you deploy after a run
This has been vastly improved and let's mgmt really run as a smart
engine that can handle different workloads. If you don't want to deploy
when you've started with `run` or if one comes in, you can use the
--no-watch-deploy option to block new deploys.

* The import statement exists and works!
We now have a working `import` statement. Read the docs, and try it out.
I think it's quite elegant how it fits in with `SetScope`. Have a look.
As a result, we now have some built-in functions available in modules.
This also adds the metadata.yaml entry-point for all modules. Have a
look at the examples or the tests. The bulk of the patch is to support
this.

* Improved lang input parsing code:
I re-wrote the parsing that determined what ran when we passed different
things to --lang. Deciding between running an mcl file or raw code is
now handled in a more intelligent, and re-usable way. See the inputs.go
file if you want to have a look. One casualty is that you can't stream
code from stdin *directly* to the front-end, it's encapsulated into a
deploy first. You can still use stdin though! I doubt anyone will notice
this change.

* The scope was extended to include functions and classes:
Go forth and import lovely code. All these exist in scopes now, and can
be re-used!

* Function calls actually use the scope now. Glad I got this sorted out.

* There is import cycle detection for modules!
Yes, this is another dag. I think that's #4. I guess they're useful.

* A ton of tests and new test infra was added!
This should make it much easier to add new tests that run mcl code. Have
a look at TestAstFunc1 to see how to add more of these.

As usual, I'll try to keep these commits smaller in the future!
2018-12-21 06:22:12 -05:00

1020 lines
27 KiB
Go

// Mgmt
// Copyright (C) 2013-2018+ James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
// +build !root
package lang
import (
"bytes"
"fmt"
"io/ioutil"
"os"
"sort"
"strings"
"testing"
"github.com/purpleidea/mgmt/engine"
"github.com/purpleidea/mgmt/engine/resources"
"github.com/purpleidea/mgmt/lang/funcs"
"github.com/purpleidea/mgmt/lang/interfaces"
"github.com/purpleidea/mgmt/lang/unification"
"github.com/purpleidea/mgmt/pgraph"
"github.com/purpleidea/mgmt/util"
"github.com/kylelemons/godebug/pretty"
"github.com/spf13/afero"
)
func vertexAstCmpFn(v1, v2 pgraph.Vertex) (bool, error) {
//fmt.Printf("V1: %T %+v\n", v1, v1)
//node := v1.(*funcs.Node)
//fmt.Printf("node: %T %+v\n", node, node)
//fmt.Printf("V2: %T %+v\n", v2, v2)
if v1.String() == "" || v2.String() == "" {
return false, fmt.Errorf("oops, empty vertex")
}
return v1.String() == v2.String(), nil
}
func edgeAstCmpFn(e1, e2 pgraph.Edge) (bool, error) {
if e1.String() == "" || e2.String() == "" {
return false, fmt.Errorf("oops, empty edge")
}
return e1.String() == e2.String(), nil
}
type vtex string
func (obj *vtex) String() string {
return string(*obj)
}
type edge string
func (obj *edge) String() string {
return string(*obj)
}
func TestAstFunc0(t *testing.T) {
scope := &interfaces.Scope{ // global scope
Variables: map[string]interfaces.Expr{
"hello": &ExprStr{V: "world"},
"answer": &ExprInt{V: 42},
},
// all the built-in top-level, core functions enter here...
Functions: funcs.LookupPrefix(""),
}
type test struct { // an individual test
name string
code string
fail bool
scope *interfaces.Scope
graph *pgraph.Graph
}
testCases := []test{}
{
graph, _ := pgraph.NewGraph("g")
testCases = append(testCases, test{ // 0
"nil",
``,
false,
nil,
graph,
})
}
{
graph, _ := pgraph.NewGraph("g")
testCases = append(testCases, test{
name: "scope only",
code: ``,
fail: false,
scope: scope, // use the scope defined above
graph: graph,
})
}
{
graph, _ := pgraph.NewGraph("g")
v1, v2 := vtex("int(42)"), vtex("var(x)")
e1 := edge("x")
graph.AddVertex(&v1, &v2)
graph.AddEdge(&v1, &v2, &e1)
testCases = append(testCases, test{
name: "two vars",
code: `
$x = 42
$y = $x
`,
// TODO: this should fail with an unused variable error!
fail: false,
graph: graph,
})
}
{
graph, _ := pgraph.NewGraph("g")
testCases = append(testCases, test{
name: "self-referential vars",
code: `
$x = $y
$y = $x
`,
fail: true,
graph: graph,
})
}
{
graph, _ := pgraph.NewGraph("g")
v1, v2, v3, v4, v5 := vtex("int(42)"), vtex("var(a)"), vtex("var(b)"), vtex("var(c)"), vtex("str(t)")
e1, e2, e3 := edge("a"), edge("b"), edge("c")
graph.AddVertex(&v1, &v2, &v3, &v4, &v5)
graph.AddEdge(&v1, &v2, &e1)
graph.AddEdge(&v2, &v3, &e2)
graph.AddEdge(&v3, &v4, &e3)
testCases = append(testCases, test{
name: "chained vars",
code: `
test "t" {
int64ptr => $c,
}
$c = $b
$b = $a
$a = 42
`,
fail: false,
graph: graph,
})
}
{
graph, _ := pgraph.NewGraph("g")
v1, v2 := vtex("bool(true)"), vtex("var(b)")
graph.AddVertex(&v1, &v2)
e1 := edge("b")
graph.AddEdge(&v1, &v2, &e1)
testCases = append(testCases, test{
name: "simple bool",
code: `
if $b {
}
$b = true
`,
fail: false,
graph: graph,
})
}
{
graph, _ := pgraph.NewGraph("g")
v1, v2, v3, v4, v5 := vtex("str(t)"), vtex("str(+)"), vtex("int(42)"), vtex("int(13)"), vtex(fmt.Sprintf("call:%s(str(+), int(42), int(13))", operatorFuncName))
graph.AddVertex(&v1, &v2, &v3, &v4, &v5)
e1, e2, e3 := edge("x"), edge("a"), edge("b")
graph.AddEdge(&v2, &v5, &e1)
graph.AddEdge(&v3, &v5, &e2)
graph.AddEdge(&v4, &v5, &e3)
testCases = append(testCases, test{
name: "simple operator",
code: `
test "t" {
int64ptr => 42 + 13,
}
`,
fail: false,
scope: scope,
graph: graph,
})
}
{
graph, _ := pgraph.NewGraph("g")
v1, v2, v3 := vtex("str(t)"), vtex("str(-)"), vtex("str(+)")
v4, v5, v6 := vtex("int(42)"), vtex("int(13)"), vtex("int(99)")
v7 := vtex(fmt.Sprintf("call:%s(str(+), int(42), int(13))", operatorFuncName))
v8 := vtex(fmt.Sprintf("call:%s(str(-), call:%s(str(+), int(42), int(13)), int(99))", operatorFuncName, operatorFuncName))
graph.AddVertex(&v1, &v2, &v3, &v4, &v5, &v6, &v7, &v8)
e1, e2, e3 := edge("x"), edge("a"), edge("b")
graph.AddEdge(&v3, &v7, &e1)
graph.AddEdge(&v4, &v7, &e2)
graph.AddEdge(&v5, &v7, &e3)
e4, e5, e6 := edge("x"), edge("a"), edge("b")
graph.AddEdge(&v2, &v8, &e4)
graph.AddEdge(&v7, &v8, &e5)
graph.AddEdge(&v6, &v8, &e6)
testCases = append(testCases, test{
name: "simple operators",
code: `
test "t" {
int64ptr => 42 + 13 - 99,
}
`,
fail: false,
scope: scope,
graph: graph,
})
}
{
graph, _ := pgraph.NewGraph("g")
v1, v2 := vtex("bool(true)"), vtex("str(t)")
v3, v4 := vtex("int(13)"), vtex("int(42)")
v5, v6 := vtex("var(i)"), vtex("var(x)")
v7, v8 := vtex("str(+)"), vtex(fmt.Sprintf("call:%s(str(+), int(42), var(i))", operatorFuncName))
e1, e2, e3, e4, e5 := edge("x"), edge("a"), edge("b"), edge("i"), edge("x")
graph.AddVertex(&v1, &v2, &v3, &v4, &v5, &v6, &v7, &v8)
graph.AddEdge(&v3, &v5, &e4)
graph.AddEdge(&v7, &v8, &e1)
graph.AddEdge(&v4, &v8, &e2)
graph.AddEdge(&v5, &v8, &e3)
graph.AddEdge(&v8, &v6, &e5)
testCases = append(testCases, test{
name: "nested resource and scoped var",
code: `
if true {
test "t" {
int64ptr => $x,
}
$x = 42 + $i
}
$i = 13
`,
fail: false,
scope: scope,
graph: graph,
})
}
{
testCases = append(testCases, test{
name: "out of scope error",
code: `
# should be out of scope, and a compile error!
if $b {
}
if true {
$b = true
}
`,
fail: true,
})
}
{
testCases = append(testCases, test{
name: "variable re-declaration error",
code: `
# this should fail b/c of variable re-declaration
$x = "hello"
$x = "world" # woops
`,
fail: true,
})
}
{
graph, _ := pgraph.NewGraph("g")
v1, v2, v3 := vtex("str(hello)"), vtex("str(world)"), vtex("bool(true)")
v4, v5 := vtex("var(x)"), vtex("str(t)")
graph.AddVertex(&v1, &v2, &v3, &v4, &v5)
e1 := edge("x")
// only one edge! (cool)
graph.AddEdge(&v1, &v4, &e1)
testCases = append(testCases, test{
name: "variable shadowing",
code: `
# this should be okay, because var is shadowed
$x = "hello"
if true {
$x = "world" # shadowed
}
test "t" {
stringptr => $x,
}
`,
fail: false,
graph: graph,
})
}
{
graph, _ := pgraph.NewGraph("g")
v1, v2, v3 := vtex("str(hello)"), vtex("str(world)"), vtex("bool(true)")
v4, v5 := vtex("var(x)"), vtex("str(t)")
graph.AddVertex(&v1, &v2, &v3, &v4, &v5)
e1 := edge("x")
// only one edge! (cool)
graph.AddEdge(&v2, &v4, &e1)
testCases = append(testCases, test{
name: "variable shadowing inner",
code: `
# this should be okay, because var is shadowed
$x = "hello"
if true {
$x = "world" # shadowed
test "t" {
stringptr => $x,
}
}
`,
fail: false,
graph: graph,
})
}
// // FIXME: blocked by: https://github.com/purpleidea/mgmt/issues/199
//{
// graph, _ := pgraph.NewGraph("g")
// v0 := vtex("bool(true)")
// v1, v2 := vtex("str(hello)"), vtex("str(world)")
// v3, v4 := vtex("var(x)"), vtex("var(x)") // different vertices!
// v5, v6 := vtex("str(t1)"), vtex("str(t2)")
//
// graph.AddVertex(&v0, &v1, &v2, &v3, &v4, &v5, &v6)
// e1, e2 := edge("x"), edge("x")
// graph.AddEdge(&v1, &v3, &e1)
// graph.AddEdge(&v2, &v4, &e2)
//
// testCases = append(testCases, test{
// name: "variable shadowing both",
// code: `
// # this should be okay, because var is shadowed
// $x = "hello"
// if true {
// $x = "world" # shadowed
// test "t2" {
// stringptr => $x,
// }
// }
// test "t1" {
// stringptr => $x,
// }
// `,
// fail: false,
// graph: graph,
// })
//}
{
testCases = append(testCases, test{
name: "variable re-declaration and type change error",
code: `
# this should fail b/c of variable re-declaration
$x = "wow"
$x = 99 # woops, but also a change of type :P
`,
fail: true,
})
}
names := []string{}
for index, tc := range testCases { // run all the tests
if tc.name == "" {
t.Errorf("test #%d: not named", index)
continue
}
if util.StrInList(tc.name, names) {
t.Errorf("test #%d: duplicate sub test name of: %s", index, tc.name)
continue
}
names = append(names, tc.name)
//if index != 3 { // hack to run a subset (useful for debugging)
//if tc.name != "simple operators" {
// continue
//}
t.Run(fmt.Sprintf("test #%d (%s)", index, tc.name), func(t *testing.T) {
name, code, fail, scope, exp := tc.name, tc.code, tc.fail, tc.scope, tc.graph
t.Logf("\n\ntest #%d (%s) ----------------\n\n", index, name)
str := strings.NewReader(code)
ast, err := LexParse(str)
if err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: lex/parse failed with: %+v", index, err)
return
}
t.Logf("test #%d: AST: %+v", index, ast)
data := &interfaces.Data{
Debug: true,
Logf: func(format string, v ...interface{}) {
t.Logf("ast: "+format, v...)
},
}
// some of this might happen *after* interpolate in SetScope or Unify...
if err := ast.Init(data); err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: could not init and validate AST: %+v", index, err)
return
}
iast, err := ast.Interpolate()
if err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: interpolate failed with: %+v", index, err)
return
}
// propagate the scope down through the AST...
err = iast.SetScope(scope)
if !fail && err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: could not set scope: %+v", index, err)
return
}
if fail && err != nil {
return // fail happened during set scope, don't run unification!
}
// apply type unification
logf := func(format string, v ...interface{}) {
t.Logf(fmt.Sprintf("test #%d", index)+": unification: "+format, v...)
}
err = unification.Unify(iast, unification.SimpleInvariantSolverLogger(logf))
if !fail && err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: could not unify types: %+v", index, err)
return
}
// maybe it will fail during graph below instead?
//if fail && err == nil {
// t.Errorf("test #%d: FAIL", index)
// t.Errorf("test #%d: unification passed, expected fail", index)
// continue
//}
if fail && err != nil {
return // fail happened during unification, don't run Graph!
}
// build the function graph
graph, err := iast.Graph()
if !fail && err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: functions failed with: %+v", index, err)
return
}
if fail && err == nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: functions passed, expected fail", index)
return
}
if fail { // can't process graph if it's nil
// TODO: match against expected error
t.Logf("test #%d: error: %+v", index, err)
return
}
t.Logf("test #%d: graph: %+v", index, graph)
// TODO: improve: https://github.com/purpleidea/mgmt/issues/199
if err := graph.GraphCmp(exp, vertexAstCmpFn, edgeAstCmpFn); err != nil {
t.Errorf("test #%d: FAIL\n\n", index)
t.Logf("test #%d: actual (g1): %v%s\n\n", index, graph, fullPrint(graph))
t.Logf("test #%d: expected (g2): %v%s\n\n", index, exp, fullPrint(exp))
t.Errorf("test #%d: cmp error:\n%v", index, err)
return
}
for i, v := range graph.Vertices() {
t.Logf("test #%d: vertex(%d): %+v", index, i, v)
}
for v1 := range graph.Adjacency() {
for v2, e := range graph.Adjacency()[v1] {
t.Logf("test #%d: edge(%+v): %+v -> %+v", index, e, v1, v2)
}
}
})
}
}
// TestAstFunc1 is a more advanced version which pulls code from physical dirs.
func TestAstFunc1(t *testing.T) {
const magicError = "# err: "
const magicEmpty = "# empty!"
dir, err := util.TestDirFull()
if err != nil {
t.Errorf("FAIL: could not get tests directory: %+v", err)
return
}
t.Logf("tests directory is: %s", dir)
scope := &interfaces.Scope{ // global scope
Variables: map[string]interfaces.Expr{
"purpleidea": &ExprStr{V: "hello world!"}, // james says hi
// TODO: change to a func when we can change hostname dynamically!
"hostname": &ExprStr{V: ""}, // NOTE: empty b/c not used
},
// all the built-in top-level, core functions enter here...
Functions: funcs.LookupPrefix(""),
}
type test struct { // an individual test
name string
path string // relative sub directory path inside tests dir
fail bool
//graph *pgraph.Graph
expstr string // expected graph in string format
}
testCases := []test{}
//{
// graph, _ := pgraph.NewGraph("g")
// testCases = append(testCases, test{
// name: "simple hello world",
// path: "hello0/",
// fail: false,
// expstr: graph.Sprint(),
// })
//}
// build test array automatically from reading the dir
files, err := ioutil.ReadDir(dir)
if err != nil {
t.Errorf("FAIL: could not read through tests directory: %+v", err)
return
}
for _, f := range files {
if !f.IsDir() {
continue
}
graphFile := f.Name() + ".graph" // expected graph file
graphFileFull := dir + graphFile
info, err := os.Stat(graphFileFull)
if err != nil || info.IsDir() {
t.Errorf("FAIL: missing: %s", graphFile)
t.Errorf("(err: %+v)", err)
continue
}
content, err := ioutil.ReadFile(graphFileFull)
if err != nil {
t.Errorf("FAIL: could not read graph file: %+v", err)
return
}
str := string(content) // expected graph
// if the graph file has a magic error string, it's a failure
errStr := ""
if strings.HasPrefix(str, magicError) {
errStr = strings.TrimPrefix(str, magicError)
str = errStr
}
// add automatic test case
testCases = append(testCases, test{
name: fmt.Sprintf("dir: %s", f.Name()),
path: f.Name() + "/",
fail: errStr != "",
expstr: str,
})
//t.Logf("adding: %s", f.Name() + "/")
}
names := []string{}
for index, tc := range testCases { // run all the tests
if tc.name == "" {
t.Errorf("test #%d: not named", index)
continue
}
if util.StrInList(tc.name, names) {
t.Errorf("test #%d: duplicate sub test name of: %s", index, tc.name)
continue
}
names = append(names, tc.name)
//if index != 3 { // hack to run a subset (useful for debugging)
//if tc.name != "simple operators" {
// continue
//}
t.Run(fmt.Sprintf("test #%d (%s)", index, tc.name), func(t *testing.T) {
name, path, fail, expstr := tc.name, tc.path, tc.fail, strings.Trim(tc.expstr, "\n")
src := dir + path // location of the test
t.Logf("\n\ntest #%d (%s) ----------------\npath: %s\n\n", index, name, src)
logf := func(format string, v ...interface{}) {
t.Logf(fmt.Sprintf("test #%d", index)+": "+format, v...)
}
mmFs := afero.NewMemMapFs()
afs := &afero.Afero{Fs: mmFs} // wrap so that we're implementing ioutil
fs := &util.Fs{Afero: afs}
// use this variant, so that we don't copy the dir name
// this is the equivalent to running `rsync -a src/ /`
if err := util.CopyDiskContentsToFs(fs, src, "/", false); err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: CopyDiskContentsToFs failed: %+v", index, err)
return
}
// this shows us what we pulled in from the test dir:
tree0, err := util.FsTree(fs, "/")
if err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: FsTree failed: %+v", index, err)
return
}
logf("tree:\n%s", tree0)
input := "/"
logf("input: %s", input)
output, err := parseInput(input, fs) // raw code can be passed in
if err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: parseInput failed: %+v", index, err)
return
}
for _, fn := range output.Workers {
if err := fn(fs); err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: worker execution failed: %+v", index, err)
return
}
}
tree, err := util.FsTree(fs, "/")
if err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: FsTree failed: %+v", index, err)
return
}
logf("tree:\n%s", tree)
logf("main:\n%s", output.Main) // debug
reader := bytes.NewReader(output.Main)
ast, err := LexParse(reader)
if !fail && err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: lex/parse failed with: %+v", index, err)
return
}
if fail && err != nil {
// TODO: %+v instead?
s := fmt.Sprintf("%s", err) // convert to string
if s != expstr {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: expected different error", index)
t.Logf("test #%d: err: %s", index, s)
t.Logf("test #%d: exp: %s", index, expstr)
}
return // fail happened during set scope, don't run unification!
}
t.Logf("test #%d: AST: %+v", index, ast)
importGraph, err := pgraph.NewGraph("importGraph")
if err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: could not create graph: %+v", index, err)
return
}
importVertex := &pgraph.SelfVertex{
Name: "", // first node is the empty string
Graph: importGraph, // store a reference to ourself
}
importGraph.AddVertex(importVertex)
data := &interfaces.Data{
Fs: fs,
Base: output.Base, // base dir (absolute path) the metadata file is in
Files: output.Files, // no really needed here afaict
Imports: importVertex,
Metadata: output.Metadata,
Modules: "/" + interfaces.ModuleDirectory, // not really needed here afaict
Debug: true,
Logf: func(format string, v ...interface{}) {
logf("ast: "+format, v...)
},
}
// some of this might happen *after* interpolate in SetScope or Unify...
if err := ast.Init(data); err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: could not init and validate AST: %+v", index, err)
return
}
iast, err := ast.Interpolate()
if err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: interpolate failed with: %+v", index, err)
return
}
// propagate the scope down through the AST...
err = iast.SetScope(scope)
if !fail && err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: could not set scope: %+v", index, err)
return
}
if fail && err != nil {
// TODO: %+v instead?
s := fmt.Sprintf("%s", err) // convert to string
if s != expstr {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: expected different error", index)
t.Logf("test #%d: err: %s", index, s)
t.Logf("test #%d: exp: %s", index, expstr)
}
return // fail happened during set scope, don't run unification!
}
// apply type unification
xlogf := func(format string, v ...interface{}) {
logf("unification: "+format, v...)
}
err = unification.Unify(iast, unification.SimpleInvariantSolverLogger(xlogf))
if !fail && err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: could not unify types: %+v", index, err)
return
}
// maybe it will fail during graph below instead?
//if fail && err == nil {
// t.Errorf("test #%d: FAIL", index)
// t.Errorf("test #%d: unification passed, expected fail", index)
// continue
//}
if fail && err != nil {
// TODO: %+v instead?
s := fmt.Sprintf("%s", err) // convert to string
if s != expstr {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: expected different error", index)
t.Logf("test #%d: err: %s", index, s)
t.Logf("test #%d: exp: %s", index, expstr)
}
return // fail happened during unification, don't run Graph!
}
// build the function graph
graph, err := iast.Graph()
if !fail && err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: functions failed with: %+v", index, err)
return
}
if fail && err == nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: functions passed, expected fail", index)
return
}
if fail { // can't process graph if it's nil
// TODO: %+v instead?
s := fmt.Sprintf("%s", err) // convert to string
if s != expstr {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: expected different error", index)
t.Logf("test #%d: err: %s", index, s)
t.Logf("test #%d: exp: %s", index, expstr)
}
return
}
t.Logf("test #%d: graph: %+v", index, graph)
str := strings.Trim(graph.Sprint(), "\n") // text format of graph
if expstr == magicEmpty {
expstr = ""
}
// XXX: something isn't consistent, and I can't figure
// out what, so workaround this by sorting these :(
sortHack := func(x string) string {
l := strings.Split(x, "\n")
sort.Strings(l)
return strings.Join(l, "\n")
}
str = sortHack(str)
expstr = sortHack(expstr)
if expstr != str {
t.Errorf("test #%d: FAIL\n\n", index)
t.Logf("test #%d: actual (g1):\n%s\n\n", index, str)
t.Logf("test #%d: expected (g2):\n%s\n\n", index, expstr)
diff := pretty.Compare(str, expstr)
if diff != "" { // bonus
t.Logf("test #%d: diff:\n%s", index, diff)
}
return
}
for i, v := range graph.Vertices() {
t.Logf("test #%d: vertex(%d): %+v", index, i, v)
}
for v1 := range graph.Adjacency() {
for v2, e := range graph.Adjacency()[v1] {
t.Logf("test #%d: edge(%+v): %+v -> %+v", index, e, v1, v2)
}
}
})
}
}
// TestAstInterpret0 should only be run in limited circumstances. Read the code
// comments below to see how it is run.
func TestAstInterpret0(t *testing.T) {
type test struct { // an individual test
name string
code string
fail bool
graph *pgraph.Graph
}
testCases := []test{}
{
graph, _ := pgraph.NewGraph("g")
testCases = append(testCases, test{ // 0
"nil",
``,
false,
graph,
})
}
{
testCases = append(testCases, test{
name: "wrong res field type",
code: `
test "t1" {
stringptr => 42, # int, not str
}
`,
fail: true,
})
}
{
graph, _ := pgraph.NewGraph("g")
t1, _ := engine.NewNamedResource("test", "t1")
x := t1.(*resources.TestRes)
int64ptr := int64(42)
x.Int64Ptr = &int64ptr
str := "okay cool"
x.StringPtr = &str
int8ptr := int8(127)
int8ptrptr := &int8ptr
int8ptrptrptr := &int8ptrptr
x.Int8PtrPtrPtr = &int8ptrptrptr
graph.AddVertex(t1)
testCases = append(testCases, test{
name: "resource with three pointer fields",
code: `
test "t1" {
int64ptr => 42,
stringptr => "okay cool",
int8ptrptrptr => 127, # super nested
}
`,
fail: false,
graph: graph,
})
}
{
graph, _ := pgraph.NewGraph("g")
t1, _ := engine.NewNamedResource("test", "t1")
x := t1.(*resources.TestRes)
stringptr := "wow"
x.StringPtr = &stringptr
graph.AddVertex(t1)
testCases = append(testCases, test{
name: "resource with simple string pointer field",
code: `
test "t1" {
stringptr => "wow",
}
`,
graph: graph,
})
}
{
// FIXME: add a better vertexCmpFn so we can compare send/recv!
graph, _ := pgraph.NewGraph("g")
t1, _ := engine.NewNamedResource("test", "t1")
{
x := t1.(*resources.TestRes)
int64Ptr := int64(42)
x.Int64Ptr = &int64Ptr
graph.AddVertex(t1)
}
t2, _ := engine.NewNamedResource("test", "t2")
{
x := t2.(*resources.TestRes)
int64Ptr := int64(13)
x.Int64Ptr = &int64Ptr
graph.AddVertex(t2)
}
edge := &engine.Edge{
Name: fmt.Sprintf("%s -> %s", t1, t2),
Notify: false,
}
graph.AddEdge(t1, t2, edge)
testCases = append(testCases, test{
name: "two resources and send/recv edge",
code: `
test "t1" {
int64ptr => 42,
}
test "t2" {
int64ptr => 13,
}
Test["t1"].foosend -> Test["t2"].barrecv # send/recv
`,
graph: graph,
})
}
names := []string{}
for index, tc := range testCases { // run all the tests
name, code, fail, exp := tc.name, tc.code, tc.fail, tc.graph
if name == "" {
name = "<sub test not named>"
}
if util.StrInList(name, names) {
t.Errorf("test #%d: duplicate sub test name of: %s", index, name)
continue
}
names = append(names, name)
//if index != 3 { // hack to run a subset (useful for debugging)
//if tc.name != "nil" {
// continue
//}
t.Logf("\n\ntest #%d (%s) ----------------\n\n", index, name)
str := strings.NewReader(code)
ast, err := LexParse(str)
if err != nil {
t.Errorf("test #%d: lex/parse failed with: %+v", index, err)
continue
}
t.Logf("test #%d: AST: %+v", index, ast)
data := &interfaces.Data{
Debug: true,
Logf: func(format string, v ...interface{}) {
t.Logf("ast: "+format, v...)
},
}
// some of this might happen *after* interpolate in SetScope or Unify...
if err := ast.Init(data); err != nil {
t.Errorf("test #%d: FAIL", index)
t.Errorf("test #%d: could not init and validate AST: %+v", index, err)
return
}
// these tests only work in certain cases, since this does not
// perform type unification, run the function graph engine, and
// only gives you limited results... don't expect normal code to
// run and produce meaningful things in this test...
graph, err := interpret(ast)
if !fail && err != nil {
t.Errorf("test #%d: interpret failed with: %+v", index, err)
continue
}
if fail && err == nil {
t.Errorf("test #%d: interpret passed, expected fail", index)
continue
}
if fail { // can't process graph if it's nil
// TODO: match against expected error
t.Logf("test #%d: expected fail, error: %+v", index, err)
continue
}
t.Logf("test #%d: graph: %+v", index, graph)
// TODO: improve: https://github.com/purpleidea/mgmt/issues/199
if err := graph.GraphCmp(exp, vertexCmpFn, edgeCmpFn); err != nil {
t.Logf("test #%d: actual (g1): %v%s", index, graph, fullPrint(graph))
t.Logf("test #%d: expected (g2): %v%s", index, exp, fullPrint(exp))
t.Errorf("test #%d: cmp error:\n%v", index, err)
continue
}
for i, v := range graph.Vertices() {
t.Logf("test #%d: vertex(%d): %+v", index, i, v)
}
for v1 := range graph.Adjacency() {
for v2, e := range graph.Adjacency()[v1] {
t.Logf("test #%d: edge(%+v): %+v -> %+v", index, e, v1, v2)
}
}
}
}