Files
mgmt/lang/interfaces/func.go
James Shubin 9dc24860f3 lang: interfaces: Add a new poly func interface
This new interface is subject to change and will probably be renamed if
we decide to keep it.
2021-05-11 00:45:25 -04:00

189 lines
9.3 KiB
Go

// Mgmt
// Copyright (C) 2013-2021+ James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
package interfaces
import (
"github.com/purpleidea/mgmt/engine"
"github.com/purpleidea/mgmt/lang/types"
)
// Info is a static representation of some information about the function. It is
// used for static analysis and type checking. If you break this contract, you
// might cause a panic.
type Info struct {
Pure bool // is the function pure? (can it be memoized?)
Memo bool // should the function be memoized? (false if too much output)
Slow bool // is the function slow? (avoid speculative execution)
Sig *types.Type // the signature of the function, must be KindFunc
Err error // is this a valid function, or was it created improperly?
}
// Init is the structure of values and references which is passed into all
// functions on initialization.
type Init struct {
Hostname string // uuid for the host
//Noop bool
Input chan types.Value // Engine will close `input` chan
Output chan types.Value // Stream must close `output` chan
// TODO: should we pass in a *Scope here for functions like template() ?
World engine.World
Debug bool
Logf func(format string, v ...interface{})
}
// Func is the interface that any valid func must fulfill. It is very simple,
// but still event driven. Funcs should attempt to only send values when they
// have changed.
// TODO: should we support a static version of this interface for funcs that
// never change to avoid the overhead of the goroutine and channel listener?
type Func interface {
Validate() error // FIXME: this is only needed for PolyFunc. Get it moved and used!
// Info returns some information about the function in question, which
// includes the function signature. For a polymorphic function, this
// might not be known until after Build was called. As a result, the
// sig should be allowed to return a partial or variant type if it is
// not known yet. This is because the Info method might be called
// speculatively to aid in type unification.
Info() *Info
Init(*Init) error
Stream() error
Close() error
}
// UnifiedPolyFunc is an interface for functions which are statically
// polymorphic. In other words, they are functions which before compile time are
// polymorphic, but after a successful compilation have a fixed static
// signature. This makes implementing what would appear to be generic or
// polymorphic instead something that is actually static and that still has the
// language safety properties. Our engine requires that by the end of
// compilation, everything is static. This is needed so that values can flow
// safely along the DAG that represents their execution. If the types could
// change, then we wouldn't be able to safely pass values around.
//
// XXX: This interface is similar to PolyFunc, except that it uses a Unify
// method that works differently than the original Polymorphisms method. This
// allows us to build invariants that are used directly by the type unification
// solver. If this new approach is more successful, then we will rename the
// UnifiedPolyFunc to PolyFunc. This interface is subject to change because this
// is currently not properly tested.
type UnifiedPolyFunc interface { // XXX: name this "PolyFunc" and remove or wrap the old interface?
Func // implement everything in Func but add the additional requirements
// Unify returns the list of invariants that this func produces. It is a
// way for a polymorphic function to describe its type requirements. It
// would be expected for this function to return at least one
// ExclusiveInvariant or GeneratorInvariant, since these are two common
// mechanisms for polymorphic functions to describe their constraints.
// The important realization behind this method is that the collecting
// of possible invariants, must happen *before* the solver runs so that
// the solver can look at all the available logic *simultaneously* to
// find a solution if we want to be able to reliably solve for things.
// The input argument that it receives is the expression pointer that it
// is unifying against-- in other words, the pointer is its own handle.
// This is different than the `obj` reference of this function
// implementation because _that_ handle is not the object/pointer in the
// AST that we're discussing when performing type unification. Put
// another way: the Expr input is the ExprFunc, not the ExprCall.
Unify(Expr) ([]Invariant, error)
// Build takes the known type signature for this function and finalizes
// this structure so that it is now determined, and ready to function as
// a normal function would. (The normal methods in the Func interface
// are all that should be needed or used after this point.)
Build(*types.Type) error // then, you can get argNames from Info()
}
// PolyFunc is an interface for functions which are statically polymorphic. In
// other words, they are functions which before compile time are polymorphic,
// but after a successful compilation have a fixed static signature. This makes
// implementing what would appear to be generic or polymorphic instead something
// that is actually static and that still has the language safety properties.
type PolyFunc interface {
Func // implement everything in Func but add the additional requirements
// Polymorphisms returns a list of possible function type signatures. It
// takes as input a list of partial "hints" as to limit the number of
// possible results it returns. These partial hints take the form of a
// function type signature (with as many types in it specified and the
// rest set to nil) and any known static values for the input args. If
// the partial type is not nil, then the Ord parameter must be of the
// correct arg length. If any types are specified, then the array must
// be of that length as well, with the known ones filled in. Some
// static polymorphic functions require a minimal amount of hinting or
// they will be unable to return any possible result that is not
// infinite in length. If you expect to need to return an infinite (or
// very large) amount of results, then you should return an error
// instead. The arg names in your returned func type signatures should
// be in the standardized "a..b..c" format. Use util.NumToAlpha if you
// want to convert easily.
Polymorphisms(*types.Type, []types.Value) ([]*types.Type, error)
// Build takes the known type signature for this function and finalizes
// this structure so that it is now determined, and ready to function as
// a normal function would. (The normal methods in the Func interface
// are all that should be needed or used after this point.)
Build(*types.Type) error // then, you can get argNames from Info()
}
// NamedArgsFunc is a function that uses non-standard function arg names. If you
// don't implement this, then the argnames (if specified) must correspond to the
// a, b, c...z, aa, ab...az, ba...bz, and so on sequence.
type NamedArgsFunc interface {
Func // implement everything in Func but add the additional requirements
// ArgGen implements the arg name generator function. By default, we use
// the util.NumToAlpha function when this interface isn't implemented...
ArgGen(int) (string, error)
}
// FuncData is some data that is passed into the function during compilation. It
// helps provide some context about the AST and the deploy for functions that
// might need it.
// TODO: Consider combining this with the existing Data struct or more of it...
// TODO: Do we want to add line/col/file values here, and generalize this?
type FuncData struct {
// Fs represents a handle to the filesystem that we're running on. This
// is necessary for opening files if needed by import statements. The
// file() paths used to get templates or other files from our deploys
// come from here, this is *not* used to interact with the host file
// system to manage file resources or other aspects.
Fs engine.Fs
// FsURI is the fs URI of the active filesystem. This is useful to pass
// to the engine.World API for further consumption.
FsURI string
// Base directory (absolute path) that the running code is in. This is a
// copy of the value from the Expr and Stmt Data struct for Init.
Base string
}
// DataFunc is a function that accepts some context from the AST and deploy
// before Init and runtime. If you don't wish to accept this data, then don't
// implement this method and you won't get any. This is mostly useful for
// special functions that are useful in core.
// TODO: This could be replaced if a func ever needs a SetScope method...
type DataFunc interface {
Func // implement everything in Func but add the additional requirements
// SetData is used by the language to pass our function some code-level
// context.
SetData(*FuncData)
}