Files
mgmt/resources/autogroup_test.go
James Shubin 0545c4167b pgraph: Remove NewVertex and NewEdge methods and fix examples
Since the pgraph graph can store arbitrary pointers, we don't need a
special method to create the vertices or edges as long as they implement
the String() string method. This cleans up the library and some of the
examples which I let rot previously.
2017-05-31 18:04:58 -04:00

733 lines
19 KiB
Go

// Mgmt
// Copyright (C) 2013-2017+ James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
package resources
import (
"fmt"
"reflect"
"sort"
"strings"
"testing"
"time"
"github.com/purpleidea/mgmt/pgraph"
"github.com/purpleidea/mgmt/util"
)
// NE is a helper function to make testing easier. It creates a new noop edge.
func NE(s string) pgraph.Edge {
obj := &Edge{Name: s}
return obj
}
type testGrouper struct {
// TODO: this algorithm may not be correct in all cases. replace if needed!
NonReachabilityGrouper // "inherit" what we want, and reimplement the rest
}
func (ag *testGrouper) name() string {
return "testGrouper"
}
func (ag *testGrouper) vertexMerge(v1, v2 pgraph.Vertex) (v pgraph.Vertex, err error) {
if err := VtoR(v1).GroupRes(VtoR(v2)); err != nil { // group them first
return nil, err
}
// HACK: update the name so it matches full list of self+grouped
obj := VtoR(v1)
names := strings.Split(obj.GetName(), ",") // load in stored names
for _, n := range obj.GetGroup() {
names = append(names, n.GetName()) // add my contents
}
names = util.StrRemoveDuplicatesInList(names) // remove duplicates
sort.Strings(names)
obj.SetName(strings.Join(names, ","))
return // success or fail, and no need to merge the actual vertices!
}
func (ag *testGrouper) edgeMerge(e1, e2 pgraph.Edge) pgraph.Edge {
edge1 := e1.(*Edge) // panic if wrong
edge2 := e2.(*Edge) // panic if wrong
// HACK: update the name so it makes a union of both names
n1 := strings.Split(edge1.Name, ",") // load
n2 := strings.Split(edge2.Name, ",") // load
names := append(n1, n2...)
names = util.StrRemoveDuplicatesInList(names) // remove duplicates
sort.Strings(names)
return &Edge{Name: strings.Join(names, ",")}
}
// helper function
func runGraphCmp(t *testing.T, g1, g2 *pgraph.Graph) {
AutoGroup(g1, &testGrouper{}) // edits the graph
err := GraphCmp(g1, g2)
if err != nil {
t.Logf(" actual (g1): %v%v", g1, fullPrint(g1))
t.Logf("expected (g2): %v%v", g2, fullPrint(g2))
t.Logf("Cmp error:")
t.Errorf("%v", err)
}
}
type NoopResTest struct {
NoopRes
}
func (obj *NoopResTest) GroupCmp(r Res) bool {
res, ok := r.(*NoopResTest)
if !ok {
return false
}
// TODO: implement this in vertexCmp for *testGrouper instead?
if strings.Contains(res.Name, ",") { // HACK
return false // element to be grouped is already grouped!
}
// group if they start with the same letter! (helpful hack for testing)
return obj.Name[0] == res.Name[0]
}
func NewNoopResTest(name string) *NoopResTest {
obj := &NoopResTest{
NoopRes: NoopRes{
BaseRes: BaseRes{
Name: name,
MetaParams: MetaParams{
AutoGroup: true, // always autogroup
},
},
},
}
return obj
}
// GraphCmp compares the topology of two graphs and returns nil if they're
// equal. It also compares if grouped element groups are identical.
// TODO: port this to use the pgraph.GraphCmp function instead.
func GraphCmp(g1, g2 *pgraph.Graph) error {
if n1, n2 := g1.NumVertices(), g2.NumVertices(); n1 != n2 {
return fmt.Errorf("graph g1 has %d vertices, while g2 has %d", n1, n2)
}
if e1, e2 := g1.NumEdges(), g2.NumEdges(); e1 != e2 {
return fmt.Errorf("graph g1 has %d edges, while g2 has %d", e1, e2)
}
var m = make(map[pgraph.Vertex]pgraph.Vertex) // g1 to g2 vertex correspondence
Loop:
// check vertices
for v1 := range g1.Adjacency() { // for each vertex in g1
l1 := strings.Split(VtoR(v1).GetName(), ",") // make list of everyone's names...
for _, x1 := range VtoR(v1).GetGroup() {
l1 = append(l1, x1.GetName()) // add my contents
}
l1 = util.StrRemoveDuplicatesInList(l1) // remove duplicates
sort.Strings(l1)
// inner loop
for v2 := range g2.Adjacency() { // does it match in g2 ?
l2 := strings.Split(VtoR(v2).GetName(), ",")
for _, x2 := range VtoR(v2).GetGroup() {
l2 = append(l2, x2.GetName())
}
l2 = util.StrRemoveDuplicatesInList(l2) // remove duplicates
sort.Strings(l2)
// does l1 match l2 ?
if ListStrCmp(l1, l2) { // cmp!
m[v1] = v2
continue Loop
}
}
return fmt.Errorf("graph g1, has no match in g2 for: %v", VtoR(v1).GetName())
}
// vertices (and groups) match :)
// check edges
for v1 := range g1.Adjacency() { // for each vertex in g1
v2 := m[v1] // lookup in map to get correspondance
// g1.Adjacency()[v1] corresponds to g2.Adjacency()[v2]
if e1, e2 := len(g1.Adjacency()[v1]), len(g2.Adjacency()[v2]); e1 != e2 {
return fmt.Errorf("graph g1, vertex(%v) has %d edges, while g2, vertex(%v) has %d", VtoR(v1).GetName(), e1, VtoR(v2).GetName(), e2)
}
for vv1, ee1 := range g1.Adjacency()[v1] {
vv2 := m[vv1]
ee1 := ee1.(*Edge)
ee2 := g2.Adjacency()[v2][vv2].(*Edge)
// these are edges from v1 -> vv1 via ee1 (graph 1)
// to cmp to edges from v2 -> vv2 via ee2 (graph 2)
// check: (1) vv1 == vv2 ? (we've already checked this!)
l1 := strings.Split(VtoR(vv1).GetName(), ",") // make list of everyone's names...
for _, x1 := range VtoR(vv1).GetGroup() {
l1 = append(l1, x1.GetName()) // add my contents
}
l1 = util.StrRemoveDuplicatesInList(l1) // remove duplicates
sort.Strings(l1)
l2 := strings.Split(VtoR(vv2).GetName(), ",")
for _, x2 := range VtoR(vv2).GetGroup() {
l2 = append(l2, x2.GetName())
}
l2 = util.StrRemoveDuplicatesInList(l2) // remove duplicates
sort.Strings(l2)
// does l1 match l2 ?
if !ListStrCmp(l1, l2) { // cmp!
return fmt.Errorf("graph g1 and g2 don't agree on: %v and %v", VtoR(vv1).GetName(), VtoR(vv2).GetName())
}
// check: (2) ee1 == ee2
if ee1.Name != ee2.Name {
return fmt.Errorf("graph g1 edge(%v) doesn't match g2 edge(%v)", ee1.Name, ee2.Name)
}
}
}
// check meta parameters
for v1 := range g1.Adjacency() { // for each vertex in g1
for v2 := range g2.Adjacency() { // does it match in g2 ?
s1, s2 := VtoR(v1).Meta().Sema, VtoR(v2).Meta().Sema
sort.Strings(s1)
sort.Strings(s2)
if !reflect.DeepEqual(s1, s2) {
return fmt.Errorf("vertex %s and vertex %s have different semaphores", VtoR(v1).GetName(), VtoR(v2).GetName())
}
}
}
return nil // success!
}
// ListStrCmp compares two lists of strings
func ListStrCmp(a, b []string) bool {
//fmt.Printf("CMP: %v with %v\n", a, b) // debugging
if a == nil && b == nil {
return true
}
if a == nil || b == nil {
return false
}
if len(a) != len(b) {
return false
}
for i := range a {
if a[i] != b[i] {
return false
}
}
return true
}
func fullPrint(g *pgraph.Graph) (str string) {
str += "\n"
for v := range g.Adjacency() {
if semas := VtoR(v).Meta().Sema; len(semas) > 0 {
str += fmt.Sprintf("* v: %v; sema: %v\n", VtoR(v).GetName(), semas)
} else {
str += fmt.Sprintf("* v: %v\n", VtoR(v).GetName())
}
// TODO: add explicit grouping data?
}
for v1 := range g.Adjacency() {
for v2, e := range g.Adjacency()[v1] {
edge := e.(*Edge)
str += fmt.Sprintf("* e: %v -> %v # %v\n", VtoR(v1).GetName(), VtoR(v2).GetName(), edge.Name)
}
}
return
}
func TestDurationAssumptions(t *testing.T) {
var d time.Duration
if (d == 0) != true {
t.Errorf("empty time.Duration is no longer equal to zero")
}
if (d > 0) != false {
t.Errorf("empty time.Duration is now greater than zero")
}
}
// all of the following test cases are laid out with the following semantics:
// * vertices which start with the same single letter are considered "like"
// * "like" elements should be merged
// * vertices can have any integer after their single letter "family" type
// * grouped vertices should have a name with a comma separated list of names
// * edges follow the same conventions about grouping
// empty graph
func TestPgraphGrouping1(t *testing.T) {
g1, _ := pgraph.NewGraph("g1") // original graph
g2, _ := pgraph.NewGraph("g2") // expected result
runGraphCmp(t, g1, g2)
}
// single vertex
func TestPgraphGrouping2(t *testing.T) {
g1, _ := pgraph.NewGraph("g1") // original graph
{ // grouping to limit variable scope
a1 := NewNoopResTest("a1")
g1.AddVertex(a1)
}
g2, _ := pgraph.NewGraph("g2") // expected result
{
a1 := NewNoopResTest("a1")
g2.AddVertex(a1)
}
runGraphCmp(t, g1, g2)
}
// two vertices
func TestPgraphGrouping3(t *testing.T) {
g1, _ := pgraph.NewGraph("g1") // original graph
{
a1 := NewNoopResTest("a1")
b1 := NewNoopResTest("b1")
g1.AddVertex(a1, b1)
}
g2, _ := pgraph.NewGraph("g2") // expected result
{
a1 := NewNoopResTest("a1")
b1 := NewNoopResTest("b1")
g2.AddVertex(a1, b1)
}
runGraphCmp(t, g1, g2)
}
// two vertices merge
func TestPgraphGrouping4(t *testing.T) {
g1, _ := pgraph.NewGraph("g1") // original graph
{
a1 := NewNoopResTest("a1")
a2 := NewNoopResTest("a2")
g1.AddVertex(a1, a2)
}
g2, _ := pgraph.NewGraph("g2") // expected result
{
a := NewNoopResTest("a1,a2")
g2.AddVertex(a)
}
runGraphCmp(t, g1, g2)
}
// three vertices merge
func TestPgraphGrouping5(t *testing.T) {
g1, _ := pgraph.NewGraph("g1") // original graph
{
a1 := NewNoopResTest("a1")
a2 := NewNoopResTest("a2")
a3 := NewNoopResTest("a3")
g1.AddVertex(a1, a2, a3)
}
g2, _ := pgraph.NewGraph("g2") // expected result
{
a := NewNoopResTest("a1,a2,a3")
g2.AddVertex(a)
}
runGraphCmp(t, g1, g2)
}
// three vertices, two merge
func TestPgraphGrouping6(t *testing.T) {
g1, _ := pgraph.NewGraph("g1") // original graph
{
a1 := NewNoopResTest("a1")
a2 := NewNoopResTest("a2")
b1 := NewNoopResTest("b1")
g1.AddVertex(a1, a2, b1)
}
g2, _ := pgraph.NewGraph("g2") // expected result
{
a := NewNoopResTest("a1,a2")
b1 := NewNoopResTest("b1")
g2.AddVertex(a, b1)
}
runGraphCmp(t, g1, g2)
}
// four vertices, three merge
func TestPgraphGrouping7(t *testing.T) {
g1, _ := pgraph.NewGraph("g1") // original graph
{
a1 := NewNoopResTest("a1")
a2 := NewNoopResTest("a2")
a3 := NewNoopResTest("a3")
b1 := NewNoopResTest("b1")
g1.AddVertex(a1, a2, a3, b1)
}
g2, _ := pgraph.NewGraph("g2") // expected result
{
a := NewNoopResTest("a1,a2,a3")
b1 := NewNoopResTest("b1")
g2.AddVertex(a, b1)
}
runGraphCmp(t, g1, g2)
}
// four vertices, two&two merge
func TestPgraphGrouping8(t *testing.T) {
g1, _ := pgraph.NewGraph("g1") // original graph
{
a1 := NewNoopResTest("a1")
a2 := NewNoopResTest("a2")
b1 := NewNoopResTest("b1")
b2 := NewNoopResTest("b2")
g1.AddVertex(a1, a2, b1, b2)
}
g2, _ := pgraph.NewGraph("g2") // expected result
{
a := NewNoopResTest("a1,a2")
b := NewNoopResTest("b1,b2")
g2.AddVertex(a, b)
}
runGraphCmp(t, g1, g2)
}
// five vertices, two&three merge
func TestPgraphGrouping9(t *testing.T) {
g1, _ := pgraph.NewGraph("g1") // original graph
{
a1 := NewNoopResTest("a1")
a2 := NewNoopResTest("a2")
b1 := NewNoopResTest("b1")
b2 := NewNoopResTest("b2")
b3 := NewNoopResTest("b3")
g1.AddVertex(a1, a2, b1, b2, b3)
}
g2, _ := pgraph.NewGraph("g2") // expected result
{
a := NewNoopResTest("a1,a2")
b := NewNoopResTest("b1,b2,b3")
g2.AddVertex(a, b)
}
runGraphCmp(t, g1, g2)
}
// three unique vertices
func TestPgraphGrouping10(t *testing.T) {
g1, _ := pgraph.NewGraph("g1") // original graph
{
a1 := NewNoopResTest("a1")
b1 := NewNoopResTest("b1")
c1 := NewNoopResTest("c1")
g1.AddVertex(a1, b1, c1)
}
g2, _ := pgraph.NewGraph("g2") // expected result
{
a1 := NewNoopResTest("a1")
b1 := NewNoopResTest("b1")
c1 := NewNoopResTest("c1")
g2.AddVertex(a1, b1, c1)
}
runGraphCmp(t, g1, g2)
}
// three unique vertices, two merge
func TestPgraphGrouping11(t *testing.T) {
g1, _ := pgraph.NewGraph("g1") // original graph
{
a1 := NewNoopResTest("a1")
b1 := NewNoopResTest("b1")
b2 := NewNoopResTest("b2")
c1 := NewNoopResTest("c1")
g1.AddVertex(a1, b1, b2, c1)
}
g2, _ := pgraph.NewGraph("g2") // expected result
{
a1 := NewNoopResTest("a1")
b := NewNoopResTest("b1,b2")
c1 := NewNoopResTest("c1")
g2.AddVertex(a1, b, c1)
}
runGraphCmp(t, g1, g2)
}
// simple merge 1
// a1 a2 a1,a2
// \ / >>> | (arrows point downwards)
// b b
func TestPgraphGrouping12(t *testing.T) {
g1, _ := pgraph.NewGraph("g1") // original graph
{
a1 := NewNoopResTest("a1")
a2 := NewNoopResTest("a2")
b1 := NewNoopResTest("b1")
e1 := NE("e1")
e2 := NE("e2")
g1.AddEdge(a1, b1, e1)
g1.AddEdge(a2, b1, e2)
}
g2, _ := pgraph.NewGraph("g2") // expected result
{
a := NewNoopResTest("a1,a2")
b1 := NewNoopResTest("b1")
e := NE("e1,e2")
g2.AddEdge(a, b1, e)
}
runGraphCmp(t, g1, g2)
}
// simple merge 2
// b b
// / \ >>> | (arrows point downwards)
// a1 a2 a1,a2
func TestPgraphGrouping13(t *testing.T) {
g1, _ := pgraph.NewGraph("g1") // original graph
{
a1 := NewNoopResTest("a1")
a2 := NewNoopResTest("a2")
b1 := NewNoopResTest("b1")
e1 := NE("e1")
e2 := NE("e2")
g1.AddEdge(b1, a1, e1)
g1.AddEdge(b1, a2, e2)
}
g2, _ := pgraph.NewGraph("g2") // expected result
{
a := NewNoopResTest("a1,a2")
b1 := NewNoopResTest("b1")
e := NE("e1,e2")
g2.AddEdge(b1, a, e)
}
runGraphCmp(t, g1, g2)
}
// triple merge
// a1 a2 a3 a1,a2,a3
// \ | / >>> | (arrows point downwards)
// b b
func TestPgraphGrouping14(t *testing.T) {
g1, _ := pgraph.NewGraph("g1") // original graph
{
a1 := NewNoopResTest("a1")
a2 := NewNoopResTest("a2")
a3 := NewNoopResTest("a3")
b1 := NewNoopResTest("b1")
e1 := NE("e1")
e2 := NE("e2")
e3 := NE("e3")
g1.AddEdge(a1, b1, e1)
g1.AddEdge(a2, b1, e2)
g1.AddEdge(a3, b1, e3)
}
g2, _ := pgraph.NewGraph("g2") // expected result
{
a := NewNoopResTest("a1,a2,a3")
b1 := NewNoopResTest("b1")
e := NE("e1,e2,e3")
g2.AddEdge(a, b1, e)
}
runGraphCmp(t, g1, g2)
}
// chain merge
// a1 a1
// / \ |
// b1 b2 >>> b1,b2 (arrows point downwards)
// \ / |
// c1 c1
func TestPgraphGrouping15(t *testing.T) {
g1, _ := pgraph.NewGraph("g1") // original graph
{
a1 := NewNoopResTest("a1")
b1 := NewNoopResTest("b1")
b2 := NewNoopResTest("b2")
c1 := NewNoopResTest("c1")
e1 := NE("e1")
e2 := NE("e2")
e3 := NE("e3")
e4 := NE("e4")
g1.AddEdge(a1, b1, e1)
g1.AddEdge(a1, b2, e2)
g1.AddEdge(b1, c1, e3)
g1.AddEdge(b2, c1, e4)
}
g2, _ := pgraph.NewGraph("g2") // expected result
{
a1 := NewNoopResTest("a1")
b := NewNoopResTest("b1,b2")
c1 := NewNoopResTest("c1")
e1 := NE("e1,e2")
e2 := NE("e3,e4")
g2.AddEdge(a1, b, e1)
g2.AddEdge(b, c1, e2)
}
runGraphCmp(t, g1, g2)
}
// re-attach 1 (outer)
// technically the second possibility is valid too, depending on which order we
// merge edges in, and if we don't filter out any unnecessary edges afterwards!
// a1 a2 a1,a2 a1,a2
// | / | | \
// b1 / >>> b1 OR b1 / (arrows point downwards)
// | / | | /
// c1 c1 c1
func TestPgraphGrouping16(t *testing.T) {
g1, _ := pgraph.NewGraph("g1") // original graph
{
a1 := NewNoopResTest("a1")
a2 := NewNoopResTest("a2")
b1 := NewNoopResTest("b1")
c1 := NewNoopResTest("c1")
e1 := NE("e1")
e2 := NE("e2")
e3 := NE("e3")
g1.AddEdge(a1, b1, e1)
g1.AddEdge(b1, c1, e2)
g1.AddEdge(a2, c1, e3)
}
g2, _ := pgraph.NewGraph("g2") // expected result
{
a := NewNoopResTest("a1,a2")
b1 := NewNoopResTest("b1")
c1 := NewNoopResTest("c1")
e1 := NE("e1,e3")
e2 := NE("e2,e3") // e3 gets "merged through" to BOTH edges!
g2.AddEdge(a, b1, e1)
g2.AddEdge(b1, c1, e2)
}
runGraphCmp(t, g1, g2)
}
// re-attach 2 (inner)
// a1 b2 a1
// | / |
// b1 / >>> b1,b2 (arrows point downwards)
// | / |
// c1 c1
func TestPgraphGrouping17(t *testing.T) {
g1, _ := pgraph.NewGraph("g1") // original graph
{
a1 := NewNoopResTest("a1")
b1 := NewNoopResTest("b1")
b2 := NewNoopResTest("b2")
c1 := NewNoopResTest("c1")
e1 := NE("e1")
e2 := NE("e2")
e3 := NE("e3")
g1.AddEdge(a1, b1, e1)
g1.AddEdge(b1, c1, e2)
g1.AddEdge(b2, c1, e3)
}
g2, _ := pgraph.NewGraph("g2") // expected result
{
a1 := NewNoopResTest("a1")
b := NewNoopResTest("b1,b2")
c1 := NewNoopResTest("c1")
e1 := NE("e1")
e2 := NE("e2,e3")
g2.AddEdge(a1, b, e1)
g2.AddEdge(b, c1, e2)
}
runGraphCmp(t, g1, g2)
}
// re-attach 3 (double)
// similar to "re-attach 1", technically there is a second possibility for this
// a2 a1 b2 a1,a2
// \ | / |
// \ b1 / >>> b1,b2 (arrows point downwards)
// \ | / |
// c1 c1
func TestPgraphGrouping18(t *testing.T) {
g1, _ := pgraph.NewGraph("g1") // original graph
{
a1 := NewNoopResTest("a1")
a2 := NewNoopResTest("a2")
b1 := NewNoopResTest("b1")
b2 := NewNoopResTest("b2")
c1 := NewNoopResTest("c1")
e1 := NE("e1")
e2 := NE("e2")
e3 := NE("e3")
e4 := NE("e4")
g1.AddEdge(a1, b1, e1)
g1.AddEdge(b1, c1, e2)
g1.AddEdge(a2, c1, e3)
g1.AddEdge(b2, c1, e4)
}
g2, _ := pgraph.NewGraph("g2") // expected result
{
a := NewNoopResTest("a1,a2")
b := NewNoopResTest("b1,b2")
c1 := NewNoopResTest("c1")
e1 := NE("e1,e3")
e2 := NE("e2,e3,e4") // e3 gets "merged through" to BOTH edges!
g2.AddEdge(a, b, e1)
g2.AddEdge(b, c1, e2)
}
runGraphCmp(t, g1, g2)
}
// connected merge 0, (no change!)
// a1 a1
// \ >>> \ (arrows point downwards)
// a2 a2
func TestPgraphGroupingConnected0(t *testing.T) {
g1, _ := pgraph.NewGraph("g1") // original graph
{
a1 := NewNoopResTest("a1")
a2 := NewNoopResTest("a2")
e1 := NE("e1")
g1.AddEdge(a1, a2, e1)
}
g2, _ := pgraph.NewGraph("g2") // expected result ?
{
a1 := NewNoopResTest("a1")
a2 := NewNoopResTest("a2")
e1 := NE("e1")
g2.AddEdge(a1, a2, e1)
}
runGraphCmp(t, g1, g2)
}
// connected merge 1, (no change!)
// a1 a1
// \ \
// b >>> b (arrows point downwards)
// \ \
// a2 a2
func TestPgraphGroupingConnected1(t *testing.T) {
g1, _ := pgraph.NewGraph("g1") // original graph
{
a1 := NewNoopResTest("a1")
b := NewNoopResTest("b")
a2 := NewNoopResTest("a2")
e1 := NE("e1")
e2 := NE("e2")
g1.AddEdge(a1, b, e1)
g1.AddEdge(b, a2, e2)
}
g2, _ := pgraph.NewGraph("g2") // expected result ?
{
a1 := NewNoopResTest("a1")
b := NewNoopResTest("b")
a2 := NewNoopResTest("a2")
e1 := NE("e1")
e2 := NE("e2")
g2.AddEdge(a1, b, e1)
g2.AddEdge(b, a2, e2)
}
runGraphCmp(t, g1, g2)
}