Files
mgmt/lang/funcs/structs/composite.go
James Shubin 790b7199ca lang: New function engine
This mega patch primarily introduces a new function engine. The main
reasons for this new engine are:

1) Massively improved performance with lock-contended graphs.

Certain large function graphs could have very high lock-contention which
turned out to be much slower than I would have liked. This new algorithm
happens to be basically lock-free, so that's another helpful
improvement.

2) Glitch-free function graphs.

The function graphs could "glitch" (an FRP term) which could be
undesirable in theory. In practice this was never really an issue, and
I've not explicitly guaranteed that the new graphs are provably
glitch-free, but in practice things are a lot more consistent.

3) Simpler graph shape.

The new graphs don't require the private channels. This makes
understanding the graphs a lot easier.

4) Branched graphs only run half.

Previously we would run two pure side of an if statement, and while this
was mostly meant as an early experiment, it stayed in for far too long
and now was the right time to remove this. This also means our graphs
are much smaller and more efficient too.

Note that this changed the function API slightly. Everything has been
ported. It's possible that we introduce a new API in the future, but it
is unexpected to cause removal of the two current APIs.

In addition, we finally split out the "schedule" aspect from
world.schedule(). The "pick me" aspects now happen in a separate
resource, rather than as a yucky side-effect in the function. This also
lets us more precisely choose when we're scheduled, and we can observe
without being chosen too.

As usual many thanks to Sam for helping through some of the algorithmic
graph shape issues!
2025-09-11 23:19:45 -04:00

248 lines
7.6 KiB
Go

// Mgmt
// Copyright (C) James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
//
// Additional permission under GNU GPL version 3 section 7
//
// If you modify this program, or any covered work, by linking or combining it
// with embedded mcl code and modules (and that the embedded mcl code and
// modules which link with this program, contain a copy of their source code in
// the authoritative form) containing parts covered by the terms of any other
// license, the licensors of this program grant you additional permission to
// convey the resulting work. Furthermore, the licensors of this program grant
// the original author, James Shubin, additional permission to update this
// additional permission if he deems it necessary to achieve the goals of this
// additional permission.
package structs
import (
"context"
"fmt"
"github.com/purpleidea/mgmt/lang/interfaces"
"github.com/purpleidea/mgmt/lang/types"
"github.com/purpleidea/mgmt/util/errwrap"
)
const (
// CompositeFuncName is the unique name identifier for this function.
CompositeFuncName = "composite"
)
// CompositeFunc is a function that passes through the value it receives. It is
// used to take a series of inputs to a list, map or struct, and return that
// value as a stream that depends on those inputs. It helps the list, map, and
// struct's that fulfill the Expr interface but expressing a Func method.
type CompositeFunc struct {
interfaces.Textarea
Type *types.Type // this is the type of the composite value we hold
Len int // length of list or map (if used)
init *interfaces.Init
last types.Value // last value received to use for diff
result types.Value // last calculated output
}
// String returns a simple name for this function. This is needed so this struct
// can satisfy the pgraph.Vertex interface.
func (obj *CompositeFunc) String() string {
if obj.Type != nil {
return fmt.Sprintf("%s: %s", CompositeFuncName, obj.Type.String())
}
return CompositeFuncName
}
// Validate makes sure we've built our struct properly.
func (obj *CompositeFunc) Validate() error {
if obj.Type == nil {
return fmt.Errorf("must specify a type")
}
switch obj.Type.Kind {
case types.KindList:
fallthrough
case types.KindMap:
fallthrough
case types.KindStruct:
return nil
}
return fmt.Errorf("can't compose type `%s`", obj.Type.String())
}
// Info returns some static info about itself.
func (obj *CompositeFunc) Info() *interfaces.Info {
typ := &types.Type{
Kind: types.KindFunc, // function type
Map: make(map[string]*types.Type),
Ord: []string{},
Out: obj.Type, // this is the output type for the expression
}
// This populates the .Map and .Ord fields of the above type.
obj.makeStructType(typ) // hack =D
return &interfaces.Info{
Pure: true,
Memo: false, // TODO: ???
Sig: typ,
Err: obj.Validate(),
}
}
// makeStructType is a helper that adds the map/ord properties onto a type. This
// should match the type we expect for this composite struct.
func (obj *CompositeFunc) makeStructType(typ *types.Type) {
switch obj.Type.Kind {
case types.KindList: // wrapped in a struct with `length` many keys
for i := 0; i < obj.Len; i++ {
// FIXME: should we .Title the fields or add a prefix?
key := fmt.Sprintf("%d", i)
typ.Map[key] = obj.Type.Val // type of each list element
typ.Ord = append(typ.Ord, key)
}
case types.KindMap: // wrapped in a struct with named keys
for i := 0; i < obj.Len; i++ {
// each key and val has a value to pass in, and we have
// a known number of kv pairs, so we pass each in with
// the index of the kv pair as found in the parse order
key1 := fmt.Sprintf("key:%d", i)
typ.Map[key1] = obj.Type.Key // type of each map key
typ.Ord = append(typ.Ord, key1)
key2 := fmt.Sprintf("val:%d", i)
typ.Map[key2] = obj.Type.Val // type of each map val
typ.Ord = append(typ.Ord, key2)
}
case types.KindStruct:
// map it directly, each key is the right input!
typ.Map = obj.Type.Map
typ.Ord = obj.Type.Ord
}
}
// Init runs some startup code for this composite function.
func (obj *CompositeFunc) Init(init *interfaces.Init) error {
obj.init = init
return nil
}
// StructCall is a different Call API which is sometimes easier to implement.
func (obj *CompositeFunc) StructCall(ctx context.Context, st types.Value) (types.Value, error) {
if st == nil {
// FIXME: can we get an empty struct?
result := obj.Type.New() // new list or map
return result, nil
}
var result types.Value
switch obj.Type.Kind {
case types.KindList:
// XXX: this duplicates the same logic that exists in Value() as implemented on *ExprList
// XXX: have this call that function to get the result?
result = obj.Type.New() // new list
input := st.(*types.StructValue) // must be!
for i := 0; i < obj.Len; i++ { // build it
value, exists := input.Lookup(fmt.Sprintf("%d", i)) // argNames as integers!
if !exists {
return nil, fmt.Errorf("missing input index `%d`", i)
}
if err := result.(*types.ListValue).Add(value); err != nil {
return nil, errwrap.Wrapf(err, "can't build list index `%d`", i)
}
}
case types.KindMap:
result = obj.Type.New() // new map
input := (st.(*types.StructValue)).Struct() // must be!
l := len(input)
if l%2 != 0 {
return nil, fmt.Errorf("expected even number of inputs for a map, got: %d", l)
}
// each key should be named `key:0`, `val:0`, `key:1`, `val:1`,
// and so on for as many key pairs as we have... remember that
// the number of keys pairs is known statically in this case!
for i := 0; i < l/2; i++ { // build it
key, exists := input[fmt.Sprintf("key:%d", i)]
if !exists {
return nil, fmt.Errorf("missing input key `key:%d`", i)
}
val, exists := input[fmt.Sprintf("val:%d", i)]
if !exists {
return nil, fmt.Errorf("missing input val `val:%d`", i)
}
if err := result.(*types.MapValue).Add(key, val); err != nil {
return nil, errwrap.Wrapf(err, "can't build map key with index `%d`", i)
}
}
case types.KindStruct:
result = st
}
return result, nil
}
// Call this function with the input args and return the value if it is possible
// to do so at this time.
func (obj *CompositeFunc) Call(ctx context.Context, args []types.Value) (types.Value, error) {
typ := &types.Type{
Kind: types.KindStruct,
Map: make(map[string]*types.Type),
Ord: []string{},
}
obj.makeStructType(typ) // hack =D
st := (typ.New().(*types.StructValue)) // new struct
switch obj.Type.Kind {
case types.KindList:
for i, arg := range args {
key := fmt.Sprintf("%d", i)
st.V[key] = arg
}
case types.KindMap:
count := 0
for i, arg := range args {
if i%2 == 0 {
key1 := fmt.Sprintf("key:%d", count)
st.V[key1] = arg
} else {
key2 := fmt.Sprintf("val:%d", count)
st.V[key2] = arg
count++ // increment for next even number
}
}
case types.KindStruct:
for i, arg := range args {
key := obj.Type.Ord[i]
st.V[key] = arg
}
}
return obj.StructCall(ctx, st)
}