Files
mgmt/lang/unification/simplesolver.go
James Shubin 880652f5d4 util: Port all code to new errwrap package
This should keep things more uniform.
2019-03-12 16:49:01 -04:00

572 lines
19 KiB
Go

// Mgmt
// Copyright (C) 2013-2018+ James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
package unification // TODO: can we put this solver in a sub-package?
import (
"fmt"
"github.com/purpleidea/mgmt/lang/interfaces"
"github.com/purpleidea/mgmt/lang/types"
"github.com/purpleidea/mgmt/util/errwrap"
)
const (
// Name is the prefix for our solver log messages.
Name = "solver: simple"
)
// SimpleInvariantSolverLogger is a wrapper which returns a
// SimpleInvariantSolver with the log parameter of your choice specified. The
// result satisfies the correct signature for the solver parameter of the
// Unification function.
func SimpleInvariantSolverLogger(logf func(format string, v ...interface{})) func([]interfaces.Invariant) (*InvariantSolution, error) {
return func(invariants []interfaces.Invariant) (*InvariantSolution, error) {
return SimpleInvariantSolver(invariants, logf)
}
}
// SimpleInvariantSolver is an iterative invariant solver for AST expressions.
// It is intended to be very simple, even if it's computationally inefficient.
func SimpleInvariantSolver(invariants []interfaces.Invariant, logf func(format string, v ...interface{})) (*InvariantSolution, error) {
logf("%s: invariants:", Name)
for i, x := range invariants {
logf("invariant(%d): %T: %s", i, x, x)
}
solved := make(map[interfaces.Expr]*types.Type)
equalities := []interfaces.Invariant{}
exclusives := []*ExclusiveInvariant{}
// iterate through all invariants, flattening and sorting the list...
for _, x := range invariants {
switch invariant := x.(type) {
case *EqualsInvariant:
equalities = append(equalities, invariant)
case *EqualityInvariant:
equalities = append(equalities, invariant)
case *EqualityInvariantList:
// de-construct this list variant into a series
// of equality variants so that our solver can
// be implemented more simply...
if len(invariant.Exprs) < 2 {
return nil, fmt.Errorf("list invariant needs at least two elements")
}
for i := 0; i < len(invariant.Exprs)-1; i++ {
invar := &EqualityInvariant{
Expr1: invariant.Exprs[i],
Expr2: invariant.Exprs[i+1],
}
equalities = append(equalities, invar)
}
case *EqualityWrapListInvariant:
equalities = append(equalities, invariant)
case *EqualityWrapMapInvariant:
equalities = append(equalities, invariant)
case *EqualityWrapStructInvariant:
equalities = append(equalities, invariant)
case *EqualityWrapFuncInvariant:
equalities = append(equalities, invariant)
// contains a list of invariants which this represents
case *ConjunctionInvariant:
for _, invar := range invariant.Invariants {
equalities = append(equalities, invar)
}
case *ExclusiveInvariant:
// these are special, note the different list
if len(invariant.Invariants) > 0 {
exclusives = append(exclusives, invariant)
}
case *AnyInvariant:
equalities = append(equalities, invariant)
default:
return nil, fmt.Errorf("unknown invariant type: %T", x)
}
}
listPartials := make(map[interfaces.Expr]map[interfaces.Expr]*types.Type)
mapPartials := make(map[interfaces.Expr]map[interfaces.Expr]*types.Type)
structPartials := make(map[interfaces.Expr]map[interfaces.Expr]*types.Type)
funcPartials := make(map[interfaces.Expr]map[interfaces.Expr]*types.Type)
logf("%s: starting loop with %d equalities", Name, len(equalities))
// run until we're solved, stop consuming equalities, or type clash
for {
logf("%s: iterate...", Name)
if len(equalities) == 0 && len(exclusives) == 0 {
break // we're done, nothing left
}
used := []int{}
for i, x := range equalities {
logf("%s: match(%T): %+v", Name, x, x)
// TODO: could each of these cases be implemented as a
// method on the Invariant type to simplify this code?
switch eq := x.(type) {
// trivials
case *EqualsInvariant:
typ, exists := solved[eq.Expr]
if !exists {
solved[eq.Expr] = eq.Type // yay, we learned something!
used = append(used, i) // mark equality as used up
logf("%s: solved trivial equality", Name)
continue
}
// we already specified this, so check the repeat is consistent
if err := typ.Cmp(eq.Type); err != nil {
// this error shouldn't happen unless we purposefully
// try to trick the solver, or we're in a recursive try
return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with equals")
}
used = append(used, i) // mark equality as duplicate
logf("%s: duplicate trivial equality", Name)
continue
// partials
case *EqualityWrapListInvariant:
if _, exists := listPartials[eq.Expr1]; !exists {
listPartials[eq.Expr1] = make(map[interfaces.Expr]*types.Type)
}
if typ, exists := solved[eq.Expr1]; exists {
// wow, now known, so tell the partials!
// TODO: this assumes typ is a list, is that guaranteed?
listPartials[eq.Expr1][eq.Expr2Val] = typ.Val
}
// can we add to partials ?
for _, y := range []interfaces.Expr{eq.Expr2Val} {
typ, exists := solved[y]
if !exists {
continue
}
t, exists := listPartials[eq.Expr1][y]
if !exists {
listPartials[eq.Expr1][y] = typ // learn!
continue
}
if err := t.Cmp(typ); err != nil {
return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with partial list val")
}
}
// can we solve anything?
var ready = true // assume ready
typ := &types.Type{
Kind: types.KindList,
}
valTyp, exists := listPartials[eq.Expr1][eq.Expr2Val]
if !exists {
ready = false // nope!
} else {
typ.Val = valTyp // build up typ
}
if ready {
if t, exists := solved[eq.Expr1]; exists {
if err := t.Cmp(typ); err != nil {
return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with list")
}
}
// sub checks
if t, exists := solved[eq.Expr2Val]; exists {
if err := t.Cmp(typ.Val); err != nil {
return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with list val")
}
}
solved[eq.Expr1] = typ // yay, we learned something!
solved[eq.Expr2Val] = typ.Val // yay, we learned something!
used = append(used, i) // mark equality as used up
logf("%s: solved list wrap partial", Name)
continue
}
case *EqualityWrapMapInvariant:
if _, exists := mapPartials[eq.Expr1]; !exists {
mapPartials[eq.Expr1] = make(map[interfaces.Expr]*types.Type)
}
if typ, exists := solved[eq.Expr1]; exists {
// wow, now known, so tell the partials!
// TODO: this assumes typ is a map, is that guaranteed?
mapPartials[eq.Expr1][eq.Expr2Key] = typ.Key
mapPartials[eq.Expr1][eq.Expr2Val] = typ.Val
}
// can we add to partials ?
for _, y := range []interfaces.Expr{eq.Expr2Key, eq.Expr2Val} {
typ, exists := solved[y]
if !exists {
continue
}
t, exists := mapPartials[eq.Expr1][y]
if !exists {
mapPartials[eq.Expr1][y] = typ // learn!
continue
}
if err := t.Cmp(typ); err != nil {
return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with partial map key/val")
}
}
// can we solve anything?
var ready = true // assume ready
typ := &types.Type{
Kind: types.KindMap,
}
keyTyp, exists := mapPartials[eq.Expr1][eq.Expr2Key]
if !exists {
ready = false // nope!
} else {
typ.Key = keyTyp // build up typ
}
valTyp, exists := mapPartials[eq.Expr1][eq.Expr2Val]
if !exists {
ready = false // nope!
} else {
typ.Val = valTyp // build up typ
}
if ready {
if t, exists := solved[eq.Expr1]; exists {
if err := t.Cmp(typ); err != nil {
return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with map")
}
}
// sub checks
if t, exists := solved[eq.Expr2Key]; exists {
if err := t.Cmp(typ.Key); err != nil {
return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with map key")
}
}
if t, exists := solved[eq.Expr2Val]; exists {
if err := t.Cmp(typ.Val); err != nil {
return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with map val")
}
}
solved[eq.Expr1] = typ // yay, we learned something!
solved[eq.Expr2Key] = typ.Key // yay, we learned something!
solved[eq.Expr2Val] = typ.Val // yay, we learned something!
used = append(used, i) // mark equality as used up
logf("%s: solved map wrap partial", Name)
continue
}
case *EqualityWrapStructInvariant:
if _, exists := structPartials[eq.Expr1]; !exists {
structPartials[eq.Expr1] = make(map[interfaces.Expr]*types.Type)
}
if typ, exists := solved[eq.Expr1]; exists {
// wow, now known, so tell the partials!
// TODO: this assumes typ is a struct, is that guaranteed?
if len(typ.Ord) != len(eq.Expr2Ord) {
return nil, fmt.Errorf("struct field count differs")
}
for i, name := range eq.Expr2Ord {
expr := eq.Expr2Map[name] // assume key exists
structPartials[eq.Expr1][expr] = typ.Map[typ.Ord[i]] // assume key exists
}
}
// can we add to partials ?
for name, y := range eq.Expr2Map {
typ, exists := solved[y]
if !exists {
continue
}
t, exists := structPartials[eq.Expr1][y]
if !exists {
structPartials[eq.Expr1][y] = typ // learn!
continue
}
if err := t.Cmp(typ); err != nil {
return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with partial struct field: %s", name)
}
}
// can we solve anything?
var ready = true // assume ready
typ := &types.Type{
Kind: types.KindStruct,
}
typ.Map = make(map[string]*types.Type)
for name, y := range eq.Expr2Map {
t, exists := structPartials[eq.Expr1][y]
if !exists {
ready = false // nope!
break
}
typ.Map[name] = t // build up typ
}
if ready {
typ.Ord = eq.Expr2Ord // known order
if t, exists := solved[eq.Expr1]; exists {
if err := t.Cmp(typ); err != nil {
return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with struct")
}
}
// sub checks
for name, y := range eq.Expr2Map {
if t, exists := solved[y]; exists {
if err := t.Cmp(typ.Map[name]); err != nil {
return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with struct field: %s", name)
}
}
}
solved[eq.Expr1] = typ // yay, we learned something!
// we should add the other expr's in too...
for name, y := range eq.Expr2Map {
solved[y] = typ.Map[name] // yay, we learned something!
}
used = append(used, i) // mark equality as used up
logf("%s: solved struct wrap partial", Name)
continue
}
case *EqualityWrapFuncInvariant:
if _, exists := funcPartials[eq.Expr1]; !exists {
funcPartials[eq.Expr1] = make(map[interfaces.Expr]*types.Type)
}
if typ, exists := solved[eq.Expr1]; exists {
// wow, now known, so tell the partials!
// TODO: this assumes typ is a func, is that guaranteed?
if len(typ.Ord) != len(eq.Expr2Ord) {
return nil, fmt.Errorf("func arg count differs")
}
for i, name := range eq.Expr2Ord {
expr := eq.Expr2Map[name] // assume key exists
funcPartials[eq.Expr1][expr] = typ.Map[typ.Ord[i]] // assume key exists
}
funcPartials[eq.Expr1][eq.Expr2Out] = typ.Out
}
// can we add to partials ?
for name, y := range eq.Expr2Map {
typ, exists := solved[y]
if !exists {
continue
}
t, exists := funcPartials[eq.Expr1][y]
if !exists {
funcPartials[eq.Expr1][y] = typ // learn!
continue
}
if err := t.Cmp(typ); err != nil {
return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with partial func arg: %s", name)
}
}
for _, y := range []interfaces.Expr{eq.Expr2Out} {
typ, exists := solved[y]
if !exists {
continue
}
t, exists := funcPartials[eq.Expr1][y]
if !exists {
funcPartials[eq.Expr1][y] = typ // learn!
continue
}
if err := t.Cmp(typ); err != nil {
return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with partial func arg")
}
}
// can we solve anything?
var ready = true // assume ready
typ := &types.Type{
Kind: types.KindFunc,
}
typ.Map = make(map[string]*types.Type)
for name, y := range eq.Expr2Map {
t, exists := funcPartials[eq.Expr1][y]
if !exists {
ready = false // nope!
break
}
typ.Map[name] = t // build up typ
}
outTyp, exists := funcPartials[eq.Expr1][eq.Expr2Out]
if !exists {
ready = false // nope!
} else {
typ.Out = outTyp // build up typ
}
if ready {
typ.Ord = eq.Expr2Ord // known order
if t, exists := solved[eq.Expr1]; exists {
if err := t.Cmp(typ); err != nil {
return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with func")
}
}
// sub checks
for name, y := range eq.Expr2Map {
if t, exists := solved[y]; exists {
if err := t.Cmp(typ.Map[name]); err != nil {
return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with func arg: %s", name)
}
}
}
if t, exists := solved[eq.Expr2Out]; exists {
if err := t.Cmp(typ.Out); err != nil {
return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with func out")
}
}
solved[eq.Expr1] = typ // yay, we learned something!
// we should add the other expr's in too...
for name, y := range eq.Expr2Map {
solved[y] = typ.Map[name] // yay, we learned something!
}
solved[eq.Expr2Out] = typ.Out // yay, we learned something!
used = append(used, i) // mark equality as used up
logf("%s: solved func wrap partial", Name)
continue
}
// regular matching
case *EqualityInvariant:
typ1, exists1 := solved[eq.Expr1]
typ2, exists2 := solved[eq.Expr2]
if !exists1 && !exists2 { // neither equality connects
// can't learn more from this equality yet
// nothing is known about either side of it
continue
}
if exists1 && exists2 { // both equalities already connect
// both sides are already known-- are they the same?
if err := typ1.Cmp(typ2); err != nil {
return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with equality")
}
used = append(used, i) // mark equality as used up
logf("%s: duplicate regular equality", Name)
continue
}
if exists1 && !exists2 { // first equality already connects
solved[eq.Expr2] = typ1 // yay, we learned something!
used = append(used, i) // mark equality as used up
logf("%s: solved regular equality", Name)
continue
}
if exists2 && !exists1 { // second equality already connects
solved[eq.Expr1] = typ2 // yay, we learned something!
used = append(used, i) // mark equality as used up
logf("%s: solved regular equality", Name)
continue
}
panic("reached unexpected code")
// wtf matching
case *AnyInvariant:
// this basically ensures that the expr gets solved
if _, exists := solved[eq.Expr]; exists {
used = append(used, i) // mark equality as used up
logf("%s: solved `any` equality", Name)
}
continue
default:
return nil, fmt.Errorf("unknown invariant type: %T", x)
}
} // end inner for loop
if len(used) == 0 {
// looks like we're now ambiguous, but if we have any
// exclusives, recurse into each possibility to see if
// one of them can help solve this! first one wins. add
// in the exclusive to the current set of equalities!
// what have we learned for sure so far?
partialSolutions := []interfaces.Invariant{}
logf("%s: %d solved, %d unsolved, and %d exclusives left", Name, len(solved), len(equalities), len(exclusives))
if len(exclusives) > 0 {
// FIXME: can we do this loop in a deterministic, sorted way?
for expr, typ := range solved {
invar := &EqualsInvariant{
Expr: expr,
Type: typ,
}
partialSolutions = append(partialSolutions, invar)
logf("%s: solved: %+v", Name, invar)
}
// also include anything that hasn't been solved yet
for _, x := range equalities {
partialSolutions = append(partialSolutions, x)
logf("%s: unsolved: %+v", Name, x)
}
}
// let's try each combination, one at a time...
for i, ex := range exclusivesProduct(exclusives) { // [][]interfaces.Invariant
logf("%s: exclusive(%d):\n%+v", Name, i, ex)
// we could waste a lot of cpu, and start from
// the beginning, but instead we could use the
// list of known solutions found and continue!
// TODO: make sure none of these edit partialSolutions
recursiveInvariants := []interfaces.Invariant{}
recursiveInvariants = append(recursiveInvariants, partialSolutions...)
recursiveInvariants = append(recursiveInvariants, ex...)
logf("%s: recursing...", Name)
solution, err := SimpleInvariantSolver(recursiveInvariants, logf)
if err != nil {
logf("%s: recursive solution failed: %+v", Name, err)
continue // no solution found here...
}
// solution found!
logf("%s: recursive solution found!", Name)
return solution, nil
}
// TODO: print ambiguity
return nil, fmt.Errorf("can't unify, no equalities were consumed, we're ambiguous")
}
// delete used equalities, in reverse order to preserve indexing!
for i := len(used) - 1; i >= 0; i-- {
ix := used[i] // delete index that was marked as used!
equalities = append(equalities[:ix], equalities[ix+1:]...)
}
} // end giant for loop
// build final solution
solutions := []*EqualsInvariant{}
// FIXME: can we do this loop in a deterministic, sorted way?
for expr, typ := range solved {
invar := &EqualsInvariant{
Expr: expr,
Type: typ,
}
solutions = append(solutions, invar)
}
return &InvariantSolution{
Solutions: solutions,
}, nil
}