Files
mgmt/lang/unification/interfaces.go
James Shubin ecd5a0f304 util, lang, etcd: Move the error type to our util package
We use this error in a lot of places, let's centralize it a bit.
2025-02-07 17:57:36 -05:00

130 lines
4.6 KiB
Go

// Mgmt
// Copyright (C) James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
//
// Additional permission under GNU GPL version 3 section 7
//
// If you modify this program, or any covered work, by linking or combining it
// with embedded mcl code and modules (and that the embedded mcl code and
// modules which link with this program, contain a copy of their source code in
// the authoritative form) containing parts covered by the terms of any other
// license, the licensors of this program grant you additional permission to
// convey the resulting work. Furthermore, the licensors of this program grant
// the original author, James Shubin, additional permission to update this
// additional permission if he deems it necessary to achieve the goals of this
// additional permission.
package unification
import (
"context"
"fmt"
"github.com/purpleidea/mgmt/lang/interfaces"
"github.com/purpleidea/mgmt/lang/types"
"github.com/purpleidea/mgmt/util"
)
const (
// ErrAmbiguous means we couldn't find a solution, but we weren't
// inconsistent.
ErrAmbiguous = util.Error("can't unify, no equalities were consumed, we're ambiguous")
// StrategyNameKey is the string key used when choosing a solver name.
StrategyNameKey = "name"
// StrategyOptimizationsKey is the string key used to tell the solver
// about the specific optimizations you'd like to request. The format
// can be specific to each solver.
StrategyOptimizationsKey = "optimizations"
)
// Init contains some handles that are used to initialize every solver. Each
// individual solver can choose to omit using some of the fields.
type Init struct {
// Strategy is a hack to tune unification performance until we have an
// overall cleaner unification algorithm in place.
Strategy map[string]string
// UnifiedState stores a common representation of our unification vars.
UnifiedState *types.UnifiedState
Debug bool
Logf func(format string, v ...interface{})
}
// Data contains the input data for the solver to process.
type Data struct {
// UnificationInvariants is an alternate data representation for Solve.
UnificationInvariants []*interfaces.UnificationInvariant
}
// Solver is the general interface that any solver needs to implement.
type Solver interface {
// Init initializes the solver struct before first use.
Init(*Init) error
// Solve performs the actual solving. It must return as soon as possible
// if the context is closed.
Solve(context.Context, *Data) (*InvariantSolution, error)
}
// registeredSolvers is a global map of all possible unification solvers which
// can be used. You should never touch this map directly. Use methods like
// Register instead.
var registeredSolvers = make(map[string]func() Solver) // must initialize
// Register takes a solver and its name and makes it available for use. It is
// commonly called in the init() method of the solver at program startup. There
// is no matching Unregister function.
func Register(name string, solver func() Solver) {
if _, exists := registeredSolvers[name]; exists {
panic(fmt.Sprintf("a solver named %s is already registered", name))
}
//gob.Register(solver())
registeredSolvers[name] = solver
}
// Lookup returns a pointer to the solver's struct.
func Lookup(name string) (Solver, error) {
solver, exists := registeredSolvers[name]
if !exists {
return nil, fmt.Errorf("not found")
}
return solver(), nil
}
// LookupDefault attempts to return a "default" solver.
func LookupDefault() (Solver, error) {
if len(registeredSolvers) == 0 {
return nil, fmt.Errorf("no registered solvers")
}
if len(registeredSolvers) == 1 {
for _, solver := range registeredSolvers {
return solver(), nil // return the first and only one
}
}
// TODO: Should we remove this empty string feature?
// If one was registered with no name, then use that as the default.
if solver, exists := registeredSolvers[""]; exists { // empty name
return solver(), nil
}
return nil, fmt.Errorf("no registered default solver")
}