This adds a giant missing piece of the language: proper function values! It is lovely to now understand why early programming language designers didn't implement these, but a joy to now reap the benefits of them. In adding these, many other changes had to be made to get them to "fit" correctly. This improved the code and fixed a number of bugs. Unfortunately this touched many areas of the code, and since I was learning how to do all of this for the first time, I've squashed most of my work into a single commit. Some more information: * This adds over 70 new tests to verify the new functionality. * Functions, global variables, and classes can all be implemented natively in mcl and built into core packages. * A new compiler step called "Ordering" was added. It is called by the SetScope step, and determines statement ordering and shadowing precedence formally. It helped remove at least one bug and provided the additional analysis required to properly capture variables when implementing function generators and closures. * The type unification code was improved to handle the new cases. * Light copying of Node's allowed our function graphs to be more optimal and share common vertices and edges. For example, if two different closures capture a variable $x, they'll both use the same copy when running the function, since the compiler can prove if they're identical. * Some areas still need improvements, but this is ready for mainstream testing and use!
999 lines
34 KiB
Go
999 lines
34 KiB
Go
// Mgmt
|
|
// Copyright (C) 2013-2019+ James Shubin and the project contributors
|
|
// Written by James Shubin <james@shubin.ca> and the project contributors
|
|
//
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
package unification
|
|
|
|
import (
|
|
"fmt"
|
|
"sort"
|
|
"strings"
|
|
|
|
"github.com/purpleidea/mgmt/lang/interfaces"
|
|
"github.com/purpleidea/mgmt/lang/types"
|
|
"github.com/purpleidea/mgmt/util/errwrap"
|
|
)
|
|
|
|
// Unifier holds all the data that the Unify function will need for it to run.
|
|
type Unifier struct {
|
|
// AST is the input abstract syntax tree to unify.
|
|
AST interfaces.Stmt
|
|
|
|
// Solver is the solver algorithm implementation to use.
|
|
Solver func([]interfaces.Invariant, []interfaces.Expr) (*InvariantSolution, error)
|
|
|
|
Debug bool
|
|
Logf func(format string, v ...interface{})
|
|
}
|
|
|
|
// Unify takes an AST expression tree and attempts to assign types to every node
|
|
// using the specified solver. The expression tree returns a list of invariants
|
|
// (or constraints) which must be met in order to find a unique value for the
|
|
// type of each expression. This list of invariants is passed into the solver,
|
|
// which hopefully finds a solution. If it cannot find a unique solution, then
|
|
// it will return an error. The invariants are available in different flavours
|
|
// which describe different constraint scenarios. The simplest expresses that a
|
|
// a particular node id (it's pointer) must be a certain type. More complicated
|
|
// invariants might express that two different node id's must have the same
|
|
// type. This function and logic was invented after the author could not find
|
|
// any proper literature or examples describing a well-known implementation of
|
|
// this process. Improvements and polite recommendations are welcome.
|
|
func (obj *Unifier) Unify() error {
|
|
if obj.AST == nil {
|
|
return fmt.Errorf("the AST is nil")
|
|
}
|
|
if obj.Solver == nil {
|
|
return fmt.Errorf("the Solver is missing")
|
|
}
|
|
if obj.Logf == nil {
|
|
return fmt.Errorf("the Logf function is missing")
|
|
}
|
|
|
|
if obj.Debug {
|
|
obj.Logf("tree: %+v", obj.AST)
|
|
}
|
|
invariants, err := obj.AST.Unify()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// build a list of what we think we need to solve for to succeed
|
|
exprs := []interfaces.Expr{}
|
|
for _, x := range invariants {
|
|
exprs = append(exprs, x.ExprList()...)
|
|
}
|
|
exprMap := ExprListToExprMap(exprs) // makes searching faster
|
|
exprList := ExprMapToExprList(exprMap) // makes it unique (no duplicates)
|
|
|
|
solved, err := obj.Solver(invariants, exprList)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// determine what expr's we need to solve for
|
|
if obj.Debug {
|
|
obj.Logf("expr count: %d", len(exprList))
|
|
//for _, x := range exprList {
|
|
// obj.Logf("> %p (%+v)", x, x)
|
|
//}
|
|
}
|
|
|
|
// XXX: why doesn't `len(exprList)` always == `len(solved.Solutions)` ?
|
|
// XXX: is it due to the extra ExprAny ??? I see an extra function sometimes...
|
|
|
|
if obj.Debug {
|
|
obj.Logf("solutions count: %d", len(solved.Solutions))
|
|
//for _, x := range solved.Solutions {
|
|
// obj.Logf("> %p (%+v) -- %s", x.Expr, x.Type, x.Expr.String())
|
|
//}
|
|
}
|
|
|
|
// Determine that our solver produced a solution for every expr that
|
|
// we're interested in. If it didn't, and it didn't error, then it's a
|
|
// bug. We check for this because we care about safety, this ensures
|
|
// that our AST will get fully populated with the correct types!
|
|
for _, x := range solved.Solutions {
|
|
delete(exprMap, x.Expr) // remove everything we know about
|
|
}
|
|
if c := len(exprMap); c > 0 { // if there's anything left, it's bad...
|
|
ptrs := []string{}
|
|
disp := make(map[string]string) // display hack
|
|
for i := range exprMap {
|
|
s := fmt.Sprintf("%p", i) // pointer
|
|
ptrs = append(ptrs, s)
|
|
disp[s] = i.String()
|
|
}
|
|
sort.Strings(ptrs)
|
|
// programming error!
|
|
s := strings.Join(ptrs, ", ")
|
|
|
|
obj.Logf("got %d unbound expr's: %s", c, s)
|
|
for i, s := range ptrs {
|
|
obj.Logf("(%d) %s => %s", i, s, disp[s])
|
|
}
|
|
return fmt.Errorf("got %d unbound expr's: %s", c, s)
|
|
}
|
|
|
|
if obj.Debug {
|
|
obj.Logf("found a solution!")
|
|
}
|
|
// solver has found a solution, apply it...
|
|
// we're modifying the AST, so code can't error now...
|
|
for _, x := range solved.Solutions {
|
|
if obj.Debug {
|
|
obj.Logf("solution: %p => %+v\t(%+v)", x.Expr, x.Type, x.Expr.String())
|
|
}
|
|
// apply this to each AST node
|
|
if err := x.Expr.SetType(x.Type); err != nil {
|
|
// programming error!
|
|
panic(fmt.Sprintf("error setting type: %+v, error: %+v", x.Expr, err))
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// EqualsInvariant is an invariant that symbolizes that the expression has a
|
|
// known type.
|
|
// TODO: is there a better name than EqualsInvariant
|
|
type EqualsInvariant struct {
|
|
Expr interfaces.Expr
|
|
Type *types.Type
|
|
}
|
|
|
|
// String returns a representation of this invariant.
|
|
func (obj *EqualsInvariant) String() string {
|
|
return fmt.Sprintf("%p == %s", obj.Expr, obj.Type)
|
|
}
|
|
|
|
// ExprList returns the list of valid expressions in this invariant.
|
|
func (obj *EqualsInvariant) ExprList() []interfaces.Expr {
|
|
return []interfaces.Expr{obj.Expr}
|
|
}
|
|
|
|
// Matches returns whether an invariant matches the existing solution. If it is
|
|
// inconsistent, then it errors.
|
|
func (obj *EqualsInvariant) Matches(solved map[interfaces.Expr]*types.Type) (bool, error) {
|
|
typ, exists := solved[obj.Expr]
|
|
if !exists {
|
|
return false, nil
|
|
}
|
|
if err := typ.Cmp(obj.Type); err != nil {
|
|
return false, err
|
|
}
|
|
return true, nil
|
|
}
|
|
|
|
// Possible returns an error if it is certain that it is NOT possible to get a
|
|
// solution with this invariant and the set of partials. In certain cases, it
|
|
// might not be able to determine that it's not possible, while simultaneously
|
|
// not being able to guarantee a possible solution either. In this situation, it
|
|
// should return nil, since this is used as a filtering mechanism, and the nil
|
|
// result of possible is preferred over eliminating a tricky, but possible one.
|
|
func (obj *EqualsInvariant) Possible(partials []interfaces.Invariant) error {
|
|
// TODO: we could pass in a solver here
|
|
//set := []interfaces.Invariant{}
|
|
//set = append(set, obj)
|
|
//set = append(set, partials...)
|
|
//_, err := SimpleInvariantSolver(set, ...)
|
|
//if err != nil {
|
|
// // being ambiguous doesn't guarantee that we're possible
|
|
// if err == ErrAmbiguous {
|
|
// return nil // might be possible, might not be...
|
|
// }
|
|
// return err
|
|
//}
|
|
|
|
// FIXME: This is not right because we want to know if the whole thing
|
|
// works together, and as a result, the above solver is better, however,
|
|
// the goal is to eliminate easy impossible solutions, so allow this!
|
|
// XXX: Double check this is logical.
|
|
solved := map[interfaces.Expr]*types.Type{
|
|
obj.Expr: obj.Type,
|
|
}
|
|
for _, invar := range partials { // check each one
|
|
_, err := invar.Matches(solved)
|
|
if err != nil { // inconsistent, so it's not possible
|
|
return errwrap.Wrapf(err, "not possible")
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// EqualityInvariant is an invariant that symbolizes that the two expressions
|
|
// must have equivalent types.
|
|
// TODO: is there a better name than EqualityInvariant
|
|
type EqualityInvariant struct {
|
|
Expr1 interfaces.Expr
|
|
Expr2 interfaces.Expr
|
|
}
|
|
|
|
// String returns a representation of this invariant.
|
|
func (obj *EqualityInvariant) String() string {
|
|
return fmt.Sprintf("%p == %p", obj.Expr1, obj.Expr2)
|
|
}
|
|
|
|
// ExprList returns the list of valid expressions in this invariant.
|
|
func (obj *EqualityInvariant) ExprList() []interfaces.Expr {
|
|
return []interfaces.Expr{obj.Expr1, obj.Expr2}
|
|
}
|
|
|
|
// Matches returns whether an invariant matches the existing solution. If it is
|
|
// inconsistent, then it errors.
|
|
func (obj *EqualityInvariant) Matches(solved map[interfaces.Expr]*types.Type) (bool, error) {
|
|
t1, exists1 := solved[obj.Expr1]
|
|
t2, exists2 := solved[obj.Expr2]
|
|
if !exists1 || !exists2 {
|
|
return false, nil // not matched yet
|
|
}
|
|
if err := t1.Cmp(t2); err != nil {
|
|
return false, err
|
|
}
|
|
|
|
return true, nil // matched!
|
|
}
|
|
|
|
// Possible returns an error if it is certain that it is NOT possible to get a
|
|
// solution with this invariant and the set of partials. In certain cases, it
|
|
// might not be able to determine that it's not possible, while simultaneously
|
|
// not being able to guarantee a possible solution either. In this situation, it
|
|
// should return nil, since this is used as a filtering mechanism, and the nil
|
|
// result of possible is preferred over eliminating a tricky, but possible one.
|
|
func (obj *EqualityInvariant) Possible(partials []interfaces.Invariant) error {
|
|
// The idea here is that we look for the expression pointers in the list
|
|
// of partial invariants. It's only impossible if we (1) find both of
|
|
// them, and (2) that they relate to each other. The second part is
|
|
// harder.
|
|
var one, two bool
|
|
exprs := []interfaces.Invariant{}
|
|
for _, x := range partials {
|
|
for _, y := range x.ExprList() { // []interfaces.Expr
|
|
if y == obj.Expr1 {
|
|
one = true
|
|
exprs = append(exprs, x)
|
|
}
|
|
if y == obj.Expr2 {
|
|
two = true
|
|
exprs = append(exprs, x)
|
|
}
|
|
}
|
|
}
|
|
|
|
if !one || !two {
|
|
return nil // we're unconnected to anything, this is possible!
|
|
}
|
|
|
|
// we only need to check the connections in this case...
|
|
// let's keep this simple, and less perfect for now...
|
|
var typ *types.Type
|
|
for _, x := range exprs {
|
|
eq, ok := x.(*EqualsInvariant)
|
|
if !ok {
|
|
// XXX: add support for other kinds in the future...
|
|
continue
|
|
}
|
|
|
|
if typ != nil {
|
|
if err := typ.Cmp(eq.Type); err != nil {
|
|
// we found proof it's not possible
|
|
return errwrap.Wrapf(err, "not possible")
|
|
}
|
|
}
|
|
|
|
typ = eq.Type // store for next type
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// EqualityInvariantList is an invariant that symbolizes that all the
|
|
// expressions listed must have equivalent types.
|
|
type EqualityInvariantList struct {
|
|
Exprs []interfaces.Expr
|
|
}
|
|
|
|
// String returns a representation of this invariant.
|
|
func (obj *EqualityInvariantList) String() string {
|
|
var a []string
|
|
for _, x := range obj.Exprs {
|
|
a = append(a, fmt.Sprintf("%p", x))
|
|
}
|
|
return fmt.Sprintf("[%s]", strings.Join(a, ", "))
|
|
}
|
|
|
|
// ExprList returns the list of valid expressions in this invariant.
|
|
func (obj *EqualityInvariantList) ExprList() []interfaces.Expr {
|
|
return obj.Exprs
|
|
}
|
|
|
|
// Matches returns whether an invariant matches the existing solution. If it is
|
|
// inconsistent, then it errors.
|
|
func (obj *EqualityInvariantList) Matches(solved map[interfaces.Expr]*types.Type) (bool, error) {
|
|
found := true // assume true
|
|
var typ *types.Type
|
|
for _, x := range obj.Exprs {
|
|
t, exists := solved[x]
|
|
if !exists {
|
|
found = false
|
|
continue
|
|
}
|
|
if typ == nil { // set the first time
|
|
typ = t
|
|
}
|
|
if err := typ.Cmp(t); err != nil {
|
|
return false, err
|
|
}
|
|
}
|
|
return found, nil
|
|
}
|
|
|
|
// Possible returns an error if it is certain that it is NOT possible to get a
|
|
// solution with this invariant and the set of partials. In certain cases, it
|
|
// might not be able to determine that it's not possible, while simultaneously
|
|
// not being able to guarantee a possible solution either. In this situation, it
|
|
// should return nil, since this is used as a filtering mechanism, and the nil
|
|
// result of possible is preferred over eliminating a tricky, but possible one.
|
|
func (obj *EqualityInvariantList) Possible(partials []interfaces.Invariant) error {
|
|
// The idea here is that we look for the expression pointers in the list
|
|
// of partial invariants. It's only impossible if we (1) find two or
|
|
// more, and (2) that any of them relate to each other. The second part
|
|
// is harder.
|
|
inList := func(needle interfaces.Expr, haystack []interfaces.Expr) bool {
|
|
for _, x := range haystack {
|
|
if x == needle {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
exprs := []interfaces.Invariant{}
|
|
for _, x := range partials {
|
|
for _, y := range x.ExprList() { // []interfaces.Expr
|
|
if inList(y, obj.Exprs) {
|
|
exprs = append(exprs, x)
|
|
}
|
|
}
|
|
}
|
|
|
|
if len(exprs) <= 1 {
|
|
return nil // we're unconnected to anything, this is possible!
|
|
}
|
|
|
|
// we only need to check the connections in this case...
|
|
// let's keep this simple, and less perfect for now...
|
|
var typ *types.Type
|
|
for _, x := range exprs {
|
|
eq, ok := x.(*EqualsInvariant)
|
|
if !ok {
|
|
// XXX: add support for other kinds in the future...
|
|
continue
|
|
}
|
|
|
|
if typ != nil {
|
|
if err := typ.Cmp(eq.Type); err != nil {
|
|
// we found proof it's not possible
|
|
return errwrap.Wrapf(err, "not possible")
|
|
}
|
|
}
|
|
|
|
typ = eq.Type // store for next type
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// EqualityWrapListInvariant expresses that a list in Expr1 must have elements
|
|
// that have the same type as the expression in Expr2Val.
|
|
type EqualityWrapListInvariant struct {
|
|
Expr1 interfaces.Expr
|
|
Expr2Val interfaces.Expr
|
|
}
|
|
|
|
// String returns a representation of this invariant.
|
|
func (obj *EqualityWrapListInvariant) String() string {
|
|
return fmt.Sprintf("%p == [%p]", obj.Expr1, obj.Expr2Val)
|
|
}
|
|
|
|
// ExprList returns the list of valid expressions in this invariant.
|
|
func (obj *EqualityWrapListInvariant) ExprList() []interfaces.Expr {
|
|
return []interfaces.Expr{obj.Expr1, obj.Expr2Val}
|
|
}
|
|
|
|
// Matches returns whether an invariant matches the existing solution. If it is
|
|
// inconsistent, then it errors.
|
|
func (obj *EqualityWrapListInvariant) Matches(solved map[interfaces.Expr]*types.Type) (bool, error) {
|
|
t1, exists1 := solved[obj.Expr1] // list type
|
|
t2, exists2 := solved[obj.Expr2Val]
|
|
if !exists1 || !exists2 {
|
|
return false, nil // not matched yet
|
|
}
|
|
if t1.Kind != types.KindList {
|
|
return false, fmt.Errorf("expected list kind")
|
|
}
|
|
if err := t1.Val.Cmp(t2); err != nil {
|
|
return false, err // inconsistent!
|
|
}
|
|
return true, nil // matched!
|
|
}
|
|
|
|
// Possible returns an error if it is certain that it is NOT possible to get a
|
|
// solution with this invariant and the set of partials. In certain cases, it
|
|
// might not be able to determine that it's not possible, while simultaneously
|
|
// not being able to guarantee a possible solution either. In this situation, it
|
|
// should return nil, since this is used as a filtering mechanism, and the nil
|
|
// result of possible is preferred over eliminating a tricky, but possible one.
|
|
// This particular implementation is currently not implemented!
|
|
func (obj *EqualityWrapListInvariant) Possible(partials []interfaces.Invariant) error {
|
|
// XXX: not implemented
|
|
return nil // safer to return nil than error
|
|
}
|
|
|
|
// EqualityWrapMapInvariant expresses that a map in Expr1 must have keys that
|
|
// match the type of the expression in Expr2Key and values that match the type
|
|
// of the expression in Expr2Val.
|
|
type EqualityWrapMapInvariant struct {
|
|
Expr1 interfaces.Expr
|
|
Expr2Key interfaces.Expr
|
|
Expr2Val interfaces.Expr
|
|
}
|
|
|
|
// String returns a representation of this invariant.
|
|
func (obj *EqualityWrapMapInvariant) String() string {
|
|
return fmt.Sprintf("%p == {%p: %p}", obj.Expr1, obj.Expr2Key, obj.Expr2Val)
|
|
}
|
|
|
|
// ExprList returns the list of valid expressions in this invariant.
|
|
func (obj *EqualityWrapMapInvariant) ExprList() []interfaces.Expr {
|
|
return []interfaces.Expr{obj.Expr1, obj.Expr2Key, obj.Expr2Val}
|
|
}
|
|
|
|
// Matches returns whether an invariant matches the existing solution. If it is
|
|
// inconsistent, then it errors.
|
|
func (obj *EqualityWrapMapInvariant) Matches(solved map[interfaces.Expr]*types.Type) (bool, error) {
|
|
t1, exists1 := solved[obj.Expr1] // map type
|
|
t2, exists2 := solved[obj.Expr2Key]
|
|
t3, exists3 := solved[obj.Expr2Val]
|
|
if !exists1 || !exists2 || !exists3 {
|
|
return false, nil // not matched yet
|
|
}
|
|
if t1.Kind != types.KindMap {
|
|
return false, fmt.Errorf("expected map kind")
|
|
}
|
|
if err := t1.Key.Cmp(t2); err != nil {
|
|
return false, err // inconsistent!
|
|
}
|
|
if err := t1.Val.Cmp(t3); err != nil {
|
|
return false, err // inconsistent!
|
|
}
|
|
return true, nil // matched!
|
|
}
|
|
|
|
// Possible returns an error if it is certain that it is NOT possible to get a
|
|
// solution with this invariant and the set of partials. In certain cases, it
|
|
// might not be able to determine that it's not possible, while simultaneously
|
|
// not being able to guarantee a possible solution either. In this situation, it
|
|
// should return nil, since this is used as a filtering mechanism, and the nil
|
|
// result of possible is preferred over eliminating a tricky, but possible one.
|
|
// This particular implementation is currently not implemented!
|
|
func (obj *EqualityWrapMapInvariant) Possible(partials []interfaces.Invariant) error {
|
|
// XXX: not implemented
|
|
return nil // safer to return nil than error
|
|
}
|
|
|
|
// EqualityWrapStructInvariant expresses that a struct in Expr1 must have fields
|
|
// that match the type of the expressions listed in Expr2Map.
|
|
type EqualityWrapStructInvariant struct {
|
|
Expr1 interfaces.Expr
|
|
Expr2Map map[string]interfaces.Expr
|
|
Expr2Ord []string
|
|
}
|
|
|
|
// String returns a representation of this invariant.
|
|
func (obj *EqualityWrapStructInvariant) String() string {
|
|
var s = make([]string, len(obj.Expr2Ord))
|
|
for i, k := range obj.Expr2Ord {
|
|
t, ok := obj.Expr2Map[k]
|
|
if !ok {
|
|
panic("malformed struct order")
|
|
}
|
|
if t == nil {
|
|
panic("malformed struct field")
|
|
}
|
|
s[i] = fmt.Sprintf("%s %p", k, t)
|
|
}
|
|
return fmt.Sprintf("%p == struct{%s}", obj.Expr1, strings.Join(s, "; "))
|
|
}
|
|
|
|
// ExprList returns the list of valid expressions in this invariant.
|
|
func (obj *EqualityWrapStructInvariant) ExprList() []interfaces.Expr {
|
|
exprs := []interfaces.Expr{obj.Expr1}
|
|
for _, x := range obj.Expr2Map {
|
|
exprs = append(exprs, x)
|
|
}
|
|
return exprs
|
|
}
|
|
|
|
// Matches returns whether an invariant matches the existing solution. If it is
|
|
// inconsistent, then it errors.
|
|
func (obj *EqualityWrapStructInvariant) Matches(solved map[interfaces.Expr]*types.Type) (bool, error) {
|
|
t1, exists1 := solved[obj.Expr1] // struct type
|
|
if !exists1 {
|
|
return false, nil // not matched yet
|
|
}
|
|
if t1.Kind != types.KindStruct {
|
|
return false, fmt.Errorf("expected struct kind")
|
|
}
|
|
|
|
found := true // assume true
|
|
for _, key := range obj.Expr2Ord {
|
|
_, exists := t1.Map[key]
|
|
if !exists {
|
|
return false, fmt.Errorf("missing invariant struct key of: `%s`", key)
|
|
}
|
|
e, exists := obj.Expr2Map[key]
|
|
if !exists {
|
|
return false, fmt.Errorf("missing matched struct key of: `%s`", key)
|
|
}
|
|
t, exists := solved[e]
|
|
if !exists {
|
|
found = false
|
|
continue
|
|
}
|
|
if err := t1.Map[key].Cmp(t); err != nil {
|
|
return false, err // inconsistent!
|
|
}
|
|
}
|
|
|
|
return found, nil // matched!
|
|
}
|
|
|
|
// Possible returns an error if it is certain that it is NOT possible to get a
|
|
// solution with this invariant and the set of partials. In certain cases, it
|
|
// might not be able to determine that it's not possible, while simultaneously
|
|
// not being able to guarantee a possible solution either. In this situation, it
|
|
// should return nil, since this is used as a filtering mechanism, and the nil
|
|
// result of possible is preferred over eliminating a tricky, but possible one.
|
|
// This particular implementation is currently not implemented!
|
|
func (obj *EqualityWrapStructInvariant) Possible(partials []interfaces.Invariant) error {
|
|
// XXX: not implemented
|
|
return nil // safer to return nil than error
|
|
}
|
|
|
|
// EqualityWrapFuncInvariant expresses that a func in Expr1 must have args that
|
|
// match the type of the expressions listed in Expr2Map and a return value that
|
|
// matches the type of the expression in Expr2Out.
|
|
// TODO: should this be named EqualityWrapCallInvariant or not?
|
|
type EqualityWrapFuncInvariant struct {
|
|
Expr1 interfaces.Expr
|
|
Expr2Map map[string]interfaces.Expr
|
|
Expr2Ord []string
|
|
Expr2Out interfaces.Expr
|
|
}
|
|
|
|
// String returns a representation of this invariant.
|
|
func (obj *EqualityWrapFuncInvariant) String() string {
|
|
var s = make([]string, len(obj.Expr2Ord))
|
|
for i, k := range obj.Expr2Ord {
|
|
t, ok := obj.Expr2Map[k]
|
|
if !ok {
|
|
panic("malformed func order")
|
|
}
|
|
if t == nil {
|
|
panic("malformed func field")
|
|
}
|
|
s[i] = fmt.Sprintf("%s %p", k, t)
|
|
}
|
|
return fmt.Sprintf("%p == func(%s) %p", obj.Expr1, strings.Join(s, "; "), obj.Expr2Out)
|
|
}
|
|
|
|
// ExprList returns the list of valid expressions in this invariant.
|
|
func (obj *EqualityWrapFuncInvariant) ExprList() []interfaces.Expr {
|
|
exprs := []interfaces.Expr{obj.Expr1}
|
|
for _, x := range obj.Expr2Map {
|
|
exprs = append(exprs, x)
|
|
}
|
|
exprs = append(exprs, obj.Expr2Out)
|
|
return exprs
|
|
}
|
|
|
|
// Matches returns whether an invariant matches the existing solution. If it is
|
|
// inconsistent, then it errors.
|
|
func (obj *EqualityWrapFuncInvariant) Matches(solved map[interfaces.Expr]*types.Type) (bool, error) {
|
|
t1, exists1 := solved[obj.Expr1] // func type
|
|
if !exists1 {
|
|
return false, nil // not matched yet
|
|
}
|
|
if t1.Kind != types.KindFunc {
|
|
return false, fmt.Errorf("expected func kind")
|
|
}
|
|
|
|
found := true // assume true
|
|
for _, key := range obj.Expr2Ord {
|
|
_, exists := t1.Map[key]
|
|
if !exists {
|
|
return false, fmt.Errorf("missing invariant struct key of: `%s`", key)
|
|
}
|
|
e, exists := obj.Expr2Map[key]
|
|
if !exists {
|
|
return false, fmt.Errorf("missing matched struct key of: `%s`", key)
|
|
}
|
|
t, exists := solved[e]
|
|
if !exists {
|
|
found = false
|
|
continue
|
|
}
|
|
if err := t1.Map[key].Cmp(t); err != nil {
|
|
return false, err // inconsistent!
|
|
}
|
|
}
|
|
|
|
t, exists := solved[obj.Expr2Out]
|
|
if !exists {
|
|
return false, nil
|
|
}
|
|
if err := t1.Out.Cmp(t); err != nil {
|
|
return false, err // inconsistent!
|
|
}
|
|
|
|
return found, nil // matched!
|
|
}
|
|
|
|
// Possible returns an error if it is certain that it is NOT possible to get a
|
|
// solution with this invariant and the set of partials. In certain cases, it
|
|
// might not be able to determine that it's not possible, while simultaneously
|
|
// not being able to guarantee a possible solution either. In this situation, it
|
|
// should return nil, since this is used as a filtering mechanism, and the nil
|
|
// result of possible is preferred over eliminating a tricky, but possible one.
|
|
// This particular implementation is currently not implemented!
|
|
func (obj *EqualityWrapFuncInvariant) Possible(partials []interfaces.Invariant) error {
|
|
// XXX: not implemented
|
|
return nil // safer to return nil than error
|
|
}
|
|
|
|
// EqualityWrapCallInvariant expresses that a call result that happened in Expr1
|
|
// must match the type of the function result listed in Expr2. In this case,
|
|
// Expr2 will be a function expression, and the returned expression should match
|
|
// with the Expr1 expression, when comparing types.
|
|
// TODO: should this be named EqualityWrapFuncInvariant or not?
|
|
// TODO: should Expr1 and Expr2 be reversed???
|
|
type EqualityWrapCallInvariant struct {
|
|
Expr1 interfaces.Expr
|
|
Expr2Func interfaces.Expr
|
|
}
|
|
|
|
// String returns a representation of this invariant.
|
|
func (obj *EqualityWrapCallInvariant) String() string {
|
|
return fmt.Sprintf("%p == call(%p)", obj.Expr1, obj.Expr2Func)
|
|
}
|
|
|
|
// ExprList returns the list of valid expressions in this invariant.
|
|
func (obj *EqualityWrapCallInvariant) ExprList() []interfaces.Expr {
|
|
return []interfaces.Expr{obj.Expr1, obj.Expr2Func}
|
|
}
|
|
|
|
// Matches returns whether an invariant matches the existing solution. If it is
|
|
// inconsistent, then it errors.
|
|
func (obj *EqualityWrapCallInvariant) Matches(solved map[interfaces.Expr]*types.Type) (bool, error) {
|
|
t1, exists1 := solved[obj.Expr1] // call type
|
|
t2, exists2 := solved[obj.Expr2Func]
|
|
if !exists1 || !exists2 {
|
|
return false, nil // not matched yet
|
|
}
|
|
//if t1.Kind != types.KindFunc {
|
|
// return false, fmt.Errorf("expected func kind")
|
|
//}
|
|
|
|
if t2.Kind != types.KindFunc {
|
|
return false, fmt.Errorf("expected func kind")
|
|
}
|
|
if err := t1.Cmp(t2.Out); err != nil {
|
|
return false, err // inconsistent!
|
|
}
|
|
return true, nil // matched!
|
|
}
|
|
|
|
// Possible returns an error if it is certain that it is NOT possible to get a
|
|
// solution with this invariant and the set of partials. In certain cases, it
|
|
// might not be able to determine that it's not possible, while simultaneously
|
|
// not being able to guarantee a possible solution either. In this situation, it
|
|
// should return nil, since this is used as a filtering mechanism, and the nil
|
|
// result of possible is preferred over eliminating a tricky, but possible one.
|
|
// This particular implementation is currently not implemented!
|
|
func (obj *EqualityWrapCallInvariant) Possible(partials []interfaces.Invariant) error {
|
|
// XXX: not implemented
|
|
return nil // safer to return nil than error
|
|
}
|
|
|
|
// ConjunctionInvariant represents a list of invariants which must all be true
|
|
// together. In other words, it's a grouping construct for a set of invariants.
|
|
type ConjunctionInvariant struct {
|
|
Invariants []interfaces.Invariant
|
|
}
|
|
|
|
// String returns a representation of this invariant.
|
|
func (obj *ConjunctionInvariant) String() string {
|
|
var a []string
|
|
for _, x := range obj.Invariants {
|
|
s := x.String()
|
|
a = append(a, s)
|
|
}
|
|
return fmt.Sprintf("[%s]", strings.Join(a, ", "))
|
|
}
|
|
|
|
// ExprList returns the list of valid expressions in this invariant.
|
|
func (obj *ConjunctionInvariant) ExprList() []interfaces.Expr {
|
|
exprs := []interfaces.Expr{}
|
|
for _, x := range obj.Invariants {
|
|
exprs = append(exprs, x.ExprList()...)
|
|
}
|
|
return exprs
|
|
}
|
|
|
|
// Matches returns whether an invariant matches the existing solution. If it is
|
|
// inconsistent, then it errors.
|
|
func (obj *ConjunctionInvariant) Matches(solved map[interfaces.Expr]*types.Type) (bool, error) {
|
|
found := true // assume true
|
|
for _, invar := range obj.Invariants {
|
|
match, err := invar.Matches(solved)
|
|
if err != nil {
|
|
return false, nil
|
|
}
|
|
if !match {
|
|
found = false
|
|
}
|
|
}
|
|
return found, nil
|
|
}
|
|
|
|
// Possible returns an error if it is certain that it is NOT possible to get a
|
|
// solution with this invariant and the set of partials. In certain cases, it
|
|
// might not be able to determine that it's not possible, while simultaneously
|
|
// not being able to guarantee a possible solution either. In this situation, it
|
|
// should return nil, since this is used as a filtering mechanism, and the nil
|
|
// result of possible is preferred over eliminating a tricky, but possible one.
|
|
// This particular implementation is currently not implemented!
|
|
func (obj *ConjunctionInvariant) Possible(partials []interfaces.Invariant) error {
|
|
for _, invar := range obj.Invariants {
|
|
if err := invar.Possible(partials); err != nil {
|
|
// we found proof it's not possible
|
|
return errwrap.Wrapf(err, "not possible")
|
|
}
|
|
}
|
|
// XXX: unfortunately we didn't look for them all together with a solver
|
|
return nil
|
|
}
|
|
|
|
// ExclusiveInvariant represents a list of invariants where one and *only* one
|
|
// should hold true. To combine multiple invariants in one of the list elements,
|
|
// you can group multiple invariants together using a ConjunctionInvariant. Do
|
|
// note that the solver might not verify that only one of the invariants in the
|
|
// list holds true, as it might choose to be lazy and pick the first solution
|
|
// found.
|
|
type ExclusiveInvariant struct {
|
|
Invariants []interfaces.Invariant
|
|
}
|
|
|
|
// String returns a representation of this invariant.
|
|
func (obj *ExclusiveInvariant) String() string {
|
|
var a []string
|
|
for _, x := range obj.Invariants {
|
|
s := x.String()
|
|
a = append(a, s)
|
|
}
|
|
return fmt.Sprintf("[%s]", strings.Join(a, ", "))
|
|
}
|
|
|
|
// ExprList returns the list of valid expressions in this invariant.
|
|
func (obj *ExclusiveInvariant) ExprList() []interfaces.Expr {
|
|
// XXX: We should do this if we assume that exclusives don't have some
|
|
// sort of transient expr to satisfy that doesn't disappear depending on
|
|
// which choice in the exclusive is chosen...
|
|
//exprs := []interfaces.Expr{}
|
|
//for _, x := range obj.Invariants {
|
|
// exprs = append(exprs, x.ExprList()...)
|
|
//}
|
|
//return exprs
|
|
// XXX: But if we ever specify an expr in this exclusive that isn't
|
|
// referenced anywhere else, then we'd need to use the above so that our
|
|
// type unification algorithm knows not to stop too early.
|
|
return []interfaces.Expr{} // XXX: Do we want to the set instead?
|
|
}
|
|
|
|
// Matches returns whether an invariant matches the existing solution. If it is
|
|
// inconsistent, then it errors. Because this partial invariant requires only
|
|
// one to be true, it will mask children errors, since it's normal for only one
|
|
// to be consistent.
|
|
func (obj *ExclusiveInvariant) Matches(solved map[interfaces.Expr]*types.Type) (bool, error) {
|
|
found := false
|
|
reterr := fmt.Errorf("all exclusives errored")
|
|
var errs error
|
|
for _, invar := range obj.Invariants {
|
|
match, err := invar.Matches(solved)
|
|
if err != nil {
|
|
errs = errwrap.Append(errs, err)
|
|
continue
|
|
}
|
|
if !match {
|
|
// at least one was false, so we're not done here yet...
|
|
// we don't want to error yet, since we can't know there
|
|
// won't be a conflict once we get more data about this!
|
|
reterr = nil // clear the error
|
|
continue
|
|
}
|
|
if found { // we already found one
|
|
return false, fmt.Errorf("more than one exclusive solution")
|
|
}
|
|
found = true
|
|
}
|
|
|
|
if found { // we got exactly one valid solution
|
|
return true, nil
|
|
}
|
|
|
|
return false, errwrap.Wrapf(reterr, errwrap.String(errs))
|
|
}
|
|
|
|
// Possible returns an error if it is certain that it is NOT possible to get a
|
|
// solution with this invariant and the set of partials. In certain cases, it
|
|
// might not be able to determine that it's not possible, while simultaneously
|
|
// not being able to guarantee a possible solution either. In this situation, it
|
|
// should return nil, since this is used as a filtering mechanism, and the nil
|
|
// result of possible is preferred over eliminating a tricky, but possible one.
|
|
// This particular implementation is currently not implemented!
|
|
func (obj *ExclusiveInvariant) Possible(partials []interfaces.Invariant) error {
|
|
var errs error
|
|
for _, invar := range obj.Invariants {
|
|
err := invar.Possible(partials)
|
|
if err == nil {
|
|
// we found proof it's possible
|
|
return nil
|
|
}
|
|
errs = errwrap.Append(errs, err)
|
|
}
|
|
|
|
return errwrap.Wrapf(errs, "not possible")
|
|
}
|
|
|
|
// simplify attempts to reduce the exclusive invariant to eliminate any
|
|
// possibilities based on the list of known partials at this time. Hopefully,
|
|
// this will weed out some of the function polymorphism possibilities so that we
|
|
// can solve the problem without recursive, combinatorial permutation, which is
|
|
// very, very slow.
|
|
func (obj *ExclusiveInvariant) simplify(partials []interfaces.Invariant) ([]interfaces.Invariant, error) {
|
|
if len(obj.Invariants) == 0 { // unexpected case
|
|
return []interfaces.Invariant{}, nil // we don't need anything!
|
|
}
|
|
|
|
possible := []interfaces.Invariant{}
|
|
var reasons error
|
|
for _, invar := range obj.Invariants { // []interfaces.Invariant
|
|
if err := invar.Possible(partials); err != nil {
|
|
reasons = errwrap.Append(reasons, err)
|
|
continue
|
|
}
|
|
possible = append(possible, invar)
|
|
}
|
|
|
|
if len(possible) == 0 { // nothing was possible
|
|
return nil, errwrap.Wrapf(reasons, "no possible simplifications")
|
|
}
|
|
if len(possible) == 1 { // we flattened out the exclusive!
|
|
return possible, nil
|
|
}
|
|
|
|
if len(possible) == len(obj.Invariants) { // nothing changed
|
|
return nil, fmt.Errorf("no possible simplifications, we're unchanged")
|
|
}
|
|
|
|
invar := &ExclusiveInvariant{
|
|
Invariants: possible, // hopefully a smaller exclusive!
|
|
}
|
|
return []interfaces.Invariant{invar}, nil
|
|
}
|
|
|
|
// exclusivesProduct returns a list of different products produced from the
|
|
// combinatorial product of the list of exclusives. Each ExclusiveInvariant
|
|
// must contain between one and more Invariants. This takes every combination of
|
|
// Invariants (choosing one from each ExclusiveInvariant) and returns that list.
|
|
// In other words, if you have three exclusives, with invariants named (A1, B1),
|
|
// (A2), and (A3, B3, C3) you'll get: (A1, A2, A3), (A1, A2, B3), (A1, A2, C3),
|
|
// (B1, A2, A3), (B1, A2, B3), (B1, A2, C3) as results for this function call.
|
|
func exclusivesProduct(exclusives []*ExclusiveInvariant) [][]interfaces.Invariant {
|
|
if len(exclusives) == 0 {
|
|
return nil
|
|
}
|
|
|
|
length := func(i int) int { return len(exclusives[i].Invariants) }
|
|
|
|
// NextIx sets ix to the lexicographically next value,
|
|
// such that for each i > 0, 0 <= ix[i] < length(i).
|
|
NextIx := func(ix []int) {
|
|
for i := len(ix) - 1; i >= 0; i-- {
|
|
ix[i]++
|
|
if i == 0 || ix[i] < length(i) {
|
|
return
|
|
}
|
|
ix[i] = 0
|
|
}
|
|
}
|
|
|
|
results := [][]interfaces.Invariant{}
|
|
|
|
for ix := make([]int, len(exclusives)); ix[0] < length(0); NextIx(ix) {
|
|
x := []interfaces.Invariant{}
|
|
for j, k := range ix {
|
|
x = append(x, exclusives[j].Invariants[k])
|
|
}
|
|
results = append(results, x)
|
|
}
|
|
|
|
return results
|
|
}
|
|
|
|
// AnyInvariant is an invariant that symbolizes that the expression can be any
|
|
// type. It is sometimes used to ensure that an expr actually gets a solution
|
|
// type so that it is not left unreferenced, and as a result, unsolved.
|
|
// TODO: is there a better name than AnyInvariant
|
|
type AnyInvariant struct {
|
|
Expr interfaces.Expr
|
|
}
|
|
|
|
// String returns a representation of this invariant.
|
|
func (obj *AnyInvariant) String() string {
|
|
return fmt.Sprintf("%p == *", obj.Expr)
|
|
}
|
|
|
|
// ExprList returns the list of valid expressions in this invariant.
|
|
func (obj *AnyInvariant) ExprList() []interfaces.Expr {
|
|
return []interfaces.Expr{obj.Expr}
|
|
}
|
|
|
|
// Matches returns whether an invariant matches the existing solution. If it is
|
|
// inconsistent, then it errors.
|
|
func (obj *AnyInvariant) Matches(solved map[interfaces.Expr]*types.Type) (bool, error) {
|
|
_, exists := solved[obj.Expr] // we only care that it is found.
|
|
return exists, nil
|
|
}
|
|
|
|
// Possible returns an error if it is certain that it is NOT possible to get a
|
|
// solution with this invariant and the set of partials. In certain cases, it
|
|
// might not be able to determine that it's not possible, while simultaneously
|
|
// not being able to guarantee a possible solution either. In this situation, it
|
|
// should return nil, since this is used as a filtering mechanism, and the nil
|
|
// result of possible is preferred over eliminating a tricky, but possible one.
|
|
// This particular implementation always returns nil.
|
|
func (obj *AnyInvariant) Possible([]interfaces.Invariant) error {
|
|
// keep it simple, even though we don't technically check the inputs...
|
|
return nil
|
|
}
|
|
|
|
// InvariantSolution lists a trivial set of EqualsInvariant mappings so that you
|
|
// can populate your AST with SetType calls in a simple loop.
|
|
type InvariantSolution struct {
|
|
Solutions []*EqualsInvariant // list of trivial solutions for each node
|
|
}
|
|
|
|
// ExprList returns the list of valid expressions. This struct is not part of
|
|
// the invariant interface, but it implements this anyways.
|
|
func (obj *InvariantSolution) ExprList() []interfaces.Expr {
|
|
exprs := []interfaces.Expr{}
|
|
for _, x := range obj.Solutions {
|
|
exprs = append(exprs, x.ExprList()...)
|
|
}
|
|
return exprs
|
|
}
|