Files
mgmt/lang/funcs/operators/operators.go
James Shubin 37bb67dffd lang: Improve graph shape with speculative execution
Most of the time, we don't need to have a dynamic call sub graph, since
the actual function call could be represented statically as it
originally was before lambda functions were implemented. Simplifying the
graph shape has important performance benefits in terms of both keep the
graph smaller (memory, etc) and in avoiding the need to run transactions
at runtime (speed) to reshape the graph.

Co-authored-by: Samuel Gélineau <gelisam@gmail.com>
2025-04-27 22:14:51 -04:00

845 lines
25 KiB
Go

// Mgmt
// Copyright (C) James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
//
// Additional permission under GNU GPL version 3 section 7
//
// If you modify this program, or any covered work, by linking or combining it
// with embedded mcl code and modules (and that the embedded mcl code and
// modules which link with this program, contain a copy of their source code in
// the authoritative form) containing parts covered by the terms of any other
// license, the licensors of this program grant you additional permission to
// convey the resulting work. Furthermore, the licensors of this program grant
// the original author, James Shubin, additional permission to update this
// additional permission if he deems it necessary to achieve the goals of this
// additional permission.
// Package operators provides a helper library to load all of the built-in
// operators, which are actually just functions.
package operators // this is here, in case we allow others to register operators
import (
"context"
"fmt"
"math"
docsUtil "github.com/purpleidea/mgmt/docs/util"
"github.com/purpleidea/mgmt/lang/funcs"
"github.com/purpleidea/mgmt/lang/funcs/simple"
"github.com/purpleidea/mgmt/lang/interfaces"
"github.com/purpleidea/mgmt/lang/types"
"github.com/purpleidea/mgmt/util"
"github.com/purpleidea/mgmt/util/errwrap"
)
const (
// OperatorFuncName is the name this function is registered as. This
// starts with an underscore so that it cannot be used from the lexer.
OperatorFuncName = "_operator"
// operatorArgName is the edge and arg name used for the function's
// operator.
operatorArgName = "op" // something short and arbitrary
)
func init() {
info := &simple.Info{
Pure: true,
Memo: true,
Fast: true,
Spec: true,
}
RegisterOperator("+", &simple.Scaffold{
I: info,
T: types.NewType("func(?1, ?1) ?1"),
C: simple.TypeMatch([]string{
"func(str, str) str", // concatenation
"func(int, int) int", // addition
"func(float, float) float", // floating-point addition
}),
F: func(ctx context.Context, input []types.Value) (types.Value, error) {
if l := len(input); l != 2 { // catch programming bugs
return nil, fmt.Errorf("invalid len %d", l)
}
switch k := input[0].Type().Kind; k {
case types.KindStr:
return &types.StrValue{
V: input[0].Str() + input[1].Str(),
}, nil
case types.KindInt:
// FIXME: check for overflow?
return &types.IntValue{
V: input[0].Int() + input[1].Int(),
}, nil
case types.KindFloat:
return &types.FloatValue{
V: input[0].Float() + input[1].Float(),
}, nil
default:
return nil, fmt.Errorf("unsupported kind: %+v", k)
}
},
})
RegisterOperator("-", &simple.Scaffold{
I: info,
T: types.NewType("func(?1, ?1) ?1"),
C: simple.TypeMatch([]string{
"func(int, int) int", // subtraction
"func(float, float) float", // floating-point subtraction
}),
F: func(ctx context.Context, input []types.Value) (types.Value, error) {
switch k := input[0].Type().Kind; k {
case types.KindInt:
return &types.IntValue{
V: input[0].Int() - input[1].Int(),
}, nil
case types.KindFloat:
return &types.FloatValue{
V: input[0].Float() - input[1].Float(),
}, nil
default:
return nil, fmt.Errorf("unsupported kind: %+v", k)
}
},
})
RegisterOperator("*", &simple.Scaffold{
I: info,
T: types.NewType("func(?1, ?1) ?1"),
C: simple.TypeMatch([]string{
"func(int, int) int", // multiplication
"func(float, float) float", // floating-point multiplication
}),
F: func(ctx context.Context, input []types.Value) (types.Value, error) {
switch k := input[0].Type().Kind; k {
case types.KindInt:
// FIXME: check for overflow?
return &types.IntValue{
V: input[0].Int() * input[1].Int(),
}, nil
case types.KindFloat:
return &types.FloatValue{
V: input[0].Float() * input[1].Float(),
}, nil
default:
return nil, fmt.Errorf("unsupported kind: %+v", k)
}
},
})
// don't add: `func(int, float) float` or: `func(float, int) float`
RegisterOperator("/", &simple.Scaffold{
I: info,
T: types.NewType("func(?1, ?1) float"),
C: simple.TypeMatch([]string{
"func(int, int) float", // division
"func(float, float) float", // floating-point division
}),
F: func(ctx context.Context, input []types.Value) (types.Value, error) {
switch k := input[0].Type().Kind; k {
case types.KindInt:
divisor := input[1].Int()
if divisor == 0 {
return nil, fmt.Errorf("can't divide by zero")
}
return &types.FloatValue{
V: float64(input[0].Int()) / float64(divisor),
}, nil
case types.KindFloat:
divisor := input[1].Float()
if divisor == 0.0 {
return nil, fmt.Errorf("can't divide by zero")
}
return &types.FloatValue{
V: input[0].Float() / divisor,
}, nil
default:
return nil, fmt.Errorf("unsupported kind: %+v", k)
}
},
})
RegisterOperator("==", &simple.Scaffold{
I: info,
T: types.NewType("func(?1, ?1) bool"),
C: func(typ *types.Type) error {
//if typ == nil { // happens within iter
// return fmt.Errorf("nil type")
//}
iterFn := func(typ *types.Type) error {
if typ == nil {
return fmt.Errorf("nil type")
}
if !types.IsComparableKind(typ.Kind) {
return fmt.Errorf("not comparable")
}
return nil
}
if err := types.Iter(typ, iterFn); err != nil {
return err
}
// At this point, we know we can cmp any contained type.
match := simple.TypeMatch([]string{
//"func(bool, bool) bool", // bool equality
//"func(str, str) bool", // string equality
//"func(int, int) bool", // int equality
//"func(float, float) bool", // floating-point equality
//"func([]?1, []?1) bool", // list equality
//"func(map{?1:?2}, map{?1:?2}) bool", // map equality
// struct in-equality (just skip the entire match function)
"func(?1, ?1) bool",
})
return match(typ)
},
F: func(ctx context.Context, input []types.Value) (types.Value, error) {
k := input[0].Type().Kind
// Don't try and compare functions, this will panic!
if !types.IsComparableKind(k) {
return nil, fmt.Errorf("unsupported kind: %+v", k)
}
return &types.BoolValue{
V: input[0].Cmp(input[1]) == nil, // equality
}, nil
},
})
RegisterOperator("!=", &simple.Scaffold{
I: info,
T: types.NewType("func(?1, ?1) bool"),
C: func(typ *types.Type) error {
//if typ == nil { // happens within iter
// return fmt.Errorf("nil type")
//}
iterFn := func(typ *types.Type) error {
if typ == nil {
return fmt.Errorf("nil type")
}
if !types.IsComparableKind(typ.Kind) {
return fmt.Errorf("not comparable")
}
return nil
}
if err := types.Iter(typ, iterFn); err != nil {
return err
}
// At this point, we know we can cmp any contained type.
match := simple.TypeMatch([]string{
//"func(bool, bool) bool", // bool in-equality
//"func(str, str) bool", // string in-equality
//"func(int, int) bool", // int in-equality
//"func(float, float) bool", // floating-point in-equality
//"func([]?1, []?1) bool", // list in-equality
//"func(map{?1:?2}, map{?1:?2}) bool", // map in-equality
// struct in-equality (just skip the entire match function)
"func(?1, ?1) bool",
})
return match(typ)
},
F: func(ctx context.Context, input []types.Value) (types.Value, error) {
k := input[0].Type().Kind
// Don't try and compare functions, this will panic!
if !types.IsComparableKind(k) {
return nil, fmt.Errorf("unsupported kind: %+v", k)
}
return &types.BoolValue{
V: input[0].Cmp(input[1]) != nil, // in-equality
}, nil
},
})
RegisterOperator("<", &simple.Scaffold{
I: info,
T: types.NewType("func(?1, ?1) bool"),
C: simple.TypeMatch([]string{
"func(int, int) bool", // less-than
"func(float, float) bool", // floating-point less-than
}),
F: func(ctx context.Context, input []types.Value) (types.Value, error) {
switch k := input[0].Type().Kind; k {
case types.KindInt:
return &types.BoolValue{
V: input[0].Int() < input[1].Int(),
}, nil
case types.KindFloat:
// TODO: should we do an epsilon check?
return &types.BoolValue{
V: input[0].Float() < input[1].Float(),
}, nil
default:
return nil, fmt.Errorf("unsupported kind: %+v", k)
}
},
})
RegisterOperator(">", &simple.Scaffold{
I: info,
T: types.NewType("func(?1, ?1) bool"),
C: simple.TypeMatch([]string{
"func(int, int) bool", // greater-than
"func(float, float) bool", // floating-point greater-than
}),
F: func(ctx context.Context, input []types.Value) (types.Value, error) {
switch k := input[0].Type().Kind; k {
case types.KindInt:
return &types.BoolValue{
V: input[0].Int() > input[1].Int(),
}, nil
case types.KindFloat:
// TODO: should we do an epsilon check?
return &types.BoolValue{
V: input[0].Float() > input[1].Float(),
}, nil
default:
return nil, fmt.Errorf("unsupported kind: %+v", k)
}
},
})
RegisterOperator("<=", &simple.Scaffold{
I: info,
T: types.NewType("func(?1, ?1) bool"),
C: simple.TypeMatch([]string{
"func(int, int) bool", // less-than-equal
"func(float, float) bool", // floating-point less-than-equal
}),
F: func(ctx context.Context, input []types.Value) (types.Value, error) {
switch k := input[0].Type().Kind; k {
case types.KindInt:
return &types.BoolValue{
V: input[0].Int() <= input[1].Int(),
}, nil
case types.KindFloat:
// TODO: should we do an epsilon check?
return &types.BoolValue{
V: input[0].Float() <= input[1].Float(),
}, nil
default:
return nil, fmt.Errorf("unsupported kind: %+v", k)
}
},
})
RegisterOperator(">=", &simple.Scaffold{
I: info,
T: types.NewType("func(?1, ?1) bool"),
C: simple.TypeMatch([]string{
"func(int, int) bool", // greater-than-equal
"func(float, float) bool", // floating-point greater-than-equal
}),
F: func(ctx context.Context, input []types.Value) (types.Value, error) {
switch k := input[0].Type().Kind; k {
case types.KindInt:
return &types.BoolValue{
V: input[0].Int() >= input[1].Int(),
}, nil
case types.KindFloat:
// TODO: should we do an epsilon check?
return &types.BoolValue{
V: input[0].Float() >= input[1].Float(),
}, nil
default:
return nil, fmt.Errorf("unsupported kind: %+v", k)
}
},
})
// logical and
// TODO: is there a way for the engine to have
// short-circuit operators, and does it matter?
RegisterOperator("and", &simple.Scaffold{
I: info,
T: types.NewType("func(bool, bool) bool"),
F: func(ctx context.Context, input []types.Value) (types.Value, error) {
return &types.BoolValue{
V: input[0].Bool() && input[1].Bool(),
}, nil
},
})
// logical or
RegisterOperator("or", &simple.Scaffold{
I: info,
T: types.NewType("func(bool, bool) bool"),
F: func(ctx context.Context, input []types.Value) (types.Value, error) {
return &types.BoolValue{
V: input[0].Bool() || input[1].Bool(),
}, nil
},
})
// logical not (unary operator)
RegisterOperator("not", &simple.Scaffold{
I: info,
T: types.NewType("func(bool) bool"),
F: func(ctx context.Context, input []types.Value) (types.Value, error) {
return &types.BoolValue{
V: !input[0].Bool(),
}, nil
},
})
// pi operator (this is an easter egg to demo a zero arg operator)
RegisterOperator("π", &simple.Scaffold{
I: info,
T: types.NewType("func() float"),
F: func(ctx context.Context, input []types.Value) (types.Value, error) {
return &types.FloatValue{
V: math.Pi,
}, nil
},
})
// register a copy in the main function database
// XXX: use simple.Register instead?
funcs.Register(OperatorFuncName, func() interfaces.Func { return &OperatorFunc{} })
}
var _ interfaces.InferableFunc = &OperatorFunc{} // ensure it meets this expectation
// OperatorFuncs maps an operator to a list of callable function values.
var OperatorFuncs = make(map[string]*simple.Scaffold) // must initialize
// RegisterOperator registers the given string operator and function value
// implementation with the mini-database for this generalized, static,
// polymorphic operator implementation.
func RegisterOperator(operator string, scaffold *simple.Scaffold) {
if _, exists := OperatorFuncs[operator]; exists {
panic(fmt.Sprintf("operator %s already has an implementation", operator))
}
if scaffold == nil {
panic(fmt.Sprintf("no scaffold specified for operator %s", operator))
}
if scaffold.T == nil {
panic(fmt.Sprintf("no type specified for operator %s", operator))
}
if scaffold.T.Kind != types.KindFunc {
panic(fmt.Sprintf("operator %s type must be a func", operator))
}
if scaffold.T.HasVariant() {
panic(fmt.Sprintf("operator %s contains a variant type signature", operator))
}
// It's okay if scaffold.C is nil.
if scaffold.F == nil {
panic(fmt.Sprintf("no implementation specified for operator %s", operator))
}
for _, x := range scaffold.T.Ord {
if x == operatorArgName {
panic(fmt.Sprintf("can't use `%s` as an argName for operator `%s` with type `%+v`", x, operator, scaffold.T))
}
// yes this limits the arg max to 24 (`x`) including operator
// if the operator is `x`...
//if s := util.NumToAlpha(i); x != s {
// panic(fmt.Sprintf("arg for operator `%s` (index `%d`) should be named `%s`, not `%s`", operator, i, s, x))
//}
}
OperatorFuncs[operator] = scaffold // store a copy for ourselves
}
// LookupOperator returns the type for the operator you looked up. It errors if
// it doesn't exist, or if the arg length isn't equal to size.
func LookupOperator(operator string, size int) (*types.Type, error) {
scaffold, exists := OperatorFuncs[operator]
if !exists {
return nil, fmt.Errorf("operator not found")
}
typ := addOperatorArg(scaffold.T) // add in the `operatorArgName` arg
if len(typ.Ord) != size {
return nil, fmt.Errorf("operator has wrong size")
}
return typ, nil
}
// OperatorFunc is an operator function that performs an operation on N values.
// XXX: Can we wrap SimpleFunc instead of having the boilerplate here ourselves?
type OperatorFunc struct {
*docsUtil.Metadata
Type *types.Type // Kind == Function, including operator arg
init *interfaces.Init
last types.Value // last value received to use for diff
lastOp string
fn interfaces.FuncSig
result types.Value // last calculated output
}
// String returns a simple name for this function. This is needed so this struct
// can satisfy the pgraph.Vertex interface.
func (obj *OperatorFunc) String() string {
// TODO: return the exact operator if we can guarantee it doesn't change
return OperatorFuncName
}
// argNames returns the maximum list of possible argNames. This can be truncated
// if needed. The first arg name is the operator.
func (obj *OperatorFunc) argNames() ([]string, error) {
// we could just do this statically, but i did it dynamically so that I
// wouldn't ever have to remember to update this list...
m := 0 // max
for _, scaffold := range OperatorFuncs {
m = max(m, len(scaffold.T.Ord))
}
args := []string{operatorArgName}
for i := 0; i < m; i++ {
s := util.NumToAlpha(i)
if s == operatorArgName {
return nil, fmt.Errorf("can't use `%s` as arg name", operatorArgName)
}
args = append(args, s)
}
return args, nil
}
// findFunc tries to find the first available registered operator function that
// matches the Operator/Type pattern requested. If none is found it returns nil.
func (obj *OperatorFunc) findFunc(operator string) interfaces.FuncSig {
scaffold, exists := OperatorFuncs[operator]
if !exists {
return nil
}
//typ := removeOperatorArg(obj.Type) // remove operator so we can match...
//for _, fn := range fns {
// if err := fn.Type().Cmp(typ); err == nil { // found one!
// return fn
// }
//}
return scaffold.F
}
// ArgGen returns the Nth arg name for this function.
func (obj *OperatorFunc) ArgGen(index int) (string, error) {
seq, err := obj.argNames()
if err != nil {
return "", err
}
if l := len(seq); index >= l {
return "", fmt.Errorf("index %d exceeds arg length of %d", index, l)
}
return seq[index], nil
}
// FuncInfer takes partial type and value information from the call site of this
// function so that it can build an appropriate type signature for it. The type
// signature may include unification variables.
func (obj *OperatorFunc) FuncInfer(partialType *types.Type, partialValues []types.Value) (*types.Type, []*interfaces.UnificationInvariant, error) {
// The operator must be known statically to be able to return a result.
if partialType == nil || len(partialValues) == 0 {
return nil, nil, fmt.Errorf("partials must not be nil or empty")
}
// redundant
//if partialType.Map == nil || len(partialType.Map) == 0 {
// return nil, nil, fmt.Errorf("must have at least one arg in operator func")
//}
//if partialType.Ord == nil || len(partialType.Ord) == 0 {
// return nil, nil, fmt.Errorf("must have at least one arg in operator func")
//}
val := partialValues[0]
if val == nil {
return nil, nil, fmt.Errorf("first arg for operator func must not be nil")
}
if err := val.Type().Cmp(types.TypeStr); err != nil { // op must be str
return nil, nil, fmt.Errorf("first arg for operator func must be an str")
}
op := val.Str() // known str
size := len(partialType.Ord) // we know size!
typ, err := LookupOperator(op, size)
if err != nil {
return nil, nil, errwrap.Wrapf(err, "error finding signature for operator `%s`", op)
}
if typ == nil {
return nil, nil, fmt.Errorf("no matching signature for operator `%s` could be found", op)
}
return typ, []*interfaces.UnificationInvariant{}, nil
}
// Build is run to turn the polymorphic, undetermined function, into the
// specific statically typed version. It is usually run after Unify completes,
// and must be run before Info() and any of the other Func interface methods are
// used. This function is idempotent, as long as the arg isn't changed between
// runs.
func (obj *OperatorFunc) Build(typ *types.Type) (*types.Type, error) {
// typ is the KindFunc signature we're trying to build...
if len(typ.Ord) < 1 {
return nil, fmt.Errorf("the operator function needs at least 1 arg")
}
if typ.Out == nil {
return nil, fmt.Errorf("return type of function must be specified")
}
if typ.Kind != types.KindFunc {
return nil, fmt.Errorf("unexpected build kind of: %v", typ.Kind)
}
// Change arg names to be what we expect...
if _, exists := typ.Map[typ.Ord[0]]; !exists {
return nil, fmt.Errorf("invalid build type")
}
//newTyp := typ.Copy()
newTyp := &types.Type{
Kind: typ.Kind, // copy
Map: make(map[string]*types.Type), // new
Ord: []string{}, // new
Out: typ.Out, // copy
}
for i, x := range typ.Ord { // remap arg names
//argName := util.NumToAlpha(i - 1)
//if i == 0 {
// argName = operatorArgName
//}
argName, err := obj.ArgGen(i)
if err != nil {
return nil, err
}
newTyp.Map[argName] = typ.Map[x]
newTyp.Ord = append(newTyp.Ord, argName)
}
obj.Type = newTyp // func type
return obj.Type, nil
}
// Validate tells us if the input struct takes a valid form.
func (obj *OperatorFunc) Validate() error {
if obj.Type == nil { // build must be run first
return fmt.Errorf("type is still unspecified")
}
if obj.Type.Kind != types.KindFunc {
return fmt.Errorf("type must be a kind of func")
}
return nil
}
// Info returns some static info about itself. Build must be called before this
// will return correct data.
func (obj *OperatorFunc) Info() *interfaces.Info {
// Since this function implements FuncInfer we want sig to return nil to
// avoid an accidental return of unification variables when we should be
// getting them from FuncInfer, and not from here. (During unification!)
return &interfaces.Info{
// XXX: get these from the scaffold
Pure: true,
Memo: true,
Fast: true,
Spec: true,
Sig: obj.Type, // func kind, which includes operator arg as input
Err: obj.Validate(),
}
}
// Init runs some startup code for this function.
func (obj *OperatorFunc) Init(init *interfaces.Init) error {
obj.init = init
return nil
}
// Stream returns the changing values that this func has over time.
func (obj *OperatorFunc) Stream(ctx context.Context) error {
defer close(obj.init.Output) // the sender closes
for {
select {
case input, ok := <-obj.init.Input:
if !ok {
return nil // can't output any more
}
//if err := input.Type().Cmp(obj.Info().Sig.Input); err != nil {
// return errwrap.Wrapf(err, "wrong function input")
//}
if obj.last != nil && input.Cmp(obj.last) == nil {
continue // value didn't change, skip it
}
obj.last = input // store for next
// programming error safety check...
programmingError := false
keys := []string{}
for k := range input.Struct() {
keys = append(keys, k)
if !util.StrInList(k, obj.Type.Ord) {
programmingError = true
}
}
if programmingError {
return fmt.Errorf("bad args, got: %v, want: %v", keys, obj.Type.Ord)
}
args, err := interfaces.StructToCallableArgs(input) // []types.Value, error)
if err != nil {
return err
}
result, err := obj.Call(ctx, args) // (Value, error)
if err != nil {
return errwrap.Wrapf(err, "problem running function")
}
if result == nil {
return fmt.Errorf("computed function output was nil")
}
// if previous input was `2 + 4`, but now it
// changed to `1 + 5`, the result is still the
// same, so we can skip sending an update...
if obj.result != nil && result.Cmp(obj.result) == nil {
continue // result didn't change
}
obj.result = result // store new result
case <-ctx.Done():
return nil
}
select {
case obj.init.Output <- obj.result: // send
case <-ctx.Done():
return nil
}
}
}
// Copy is implemented so that the obj.Type value is not lost if we copy this
// function.
func (obj *OperatorFunc) Copy() interfaces.Func {
return &OperatorFunc{
Type: obj.Type, // don't copy because we use this after unification
init: obj.init, // likely gets overwritten anyways
}
}
// Call this function with the input args and return the value if it is possible
// to do so at this time.
func (obj *OperatorFunc) Call(ctx context.Context, args []types.Value) (types.Value, error) {
op := args[0].Str()
if op == "" {
// programming error
return nil, fmt.Errorf("operator cannot be empty, args: %v", args)
}
// operator selection is dynamic now, although mostly it
// should not change... to do so is probably uncommon...
if obj.fn == nil {
obj.fn = obj.findFunc(op)
} else if op != obj.lastOp {
// TODO: check sig is compatible instead?
return nil, fmt.Errorf("op changed from %s to %s", obj.lastOp, op)
}
if obj.fn == nil {
return nil, fmt.Errorf("func not found for operator `%s` with sig: `%+v`", op, obj.Type)
}
obj.lastOp = op
newArgs := []types.Value{}
for i, x := range args {
if i == 0 {
continue // skip over the operator
}
newArgs = append(newArgs, x)
}
return obj.fn(ctx, newArgs) // (Value, error)
}
// removeOperatorArg returns a copy of the input KindFunc type, without the
// operator arg which specifies which operator we're using. It *is* idempotent.
func removeOperatorArg(typ *types.Type) *types.Type {
if typ == nil {
return nil
}
if _, exists := typ.Map[operatorArgName]; !exists {
return typ // pass through
}
m := make(map[string]*types.Type)
ord := []string{}
for _, s := range typ.Ord {
if s == operatorArgName {
continue // remove the operator
}
m[s] = typ.Map[s]
ord = append(ord, s)
}
return &types.Type{
Kind: types.KindFunc,
Map: m,
Ord: ord,
Out: typ.Out,
}
}
// addOperatorArg returns a copy of the input KindFunc type, with the operator
// arg which specifies which operator we're using added. This is idempotent.
func addOperatorArg(typ *types.Type) *types.Type {
if typ == nil {
return nil
}
if _, exists := typ.Map[operatorArgName]; exists {
return typ // pass through
}
m := make(map[string]*types.Type)
m[operatorArgName] = types.TypeStr // add the operator
ord := []string{operatorArgName} // add the operator
for _, s := range typ.Ord {
m[s] = typ.Map[s]
ord = append(ord, s)
}
return &types.Type{
Kind: types.KindFunc,
Map: m,
Ord: ord,
Out: typ.Out,
}
}