Files
mgmt/lang/core/golang/template.go
James Shubin 7b45f94bb0 lang: core: Remove the unnecessary func suffix
We don't really need these, it's clear what things are.
2024-11-22 01:18:19 -05:00

497 lines
16 KiB
Go

// Mgmt
// Copyright (C) 2013-2024+ James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
//
// Additional permission under GNU GPL version 3 section 7
//
// If you modify this program, or any covered work, by linking or combining it
// with embedded mcl code and modules (and that the embedded mcl code and
// modules which link with this program, contain a copy of their source code in
// the authoritative form) containing parts covered by the terms of any other
// license, the licensors of this program grant you additional permission to
// convey the resulting work. Furthermore, the licensors of this program grant
// the original author, James Shubin, additional permission to update this
// additional permission if he deems it necessary to achieve the goals of this
// additional permission.
package coregolang
import (
"bytes"
"context"
"fmt"
"reflect"
"strings"
"text/template"
"github.com/purpleidea/mgmt/lang/funcs"
"github.com/purpleidea/mgmt/lang/funcs/simple"
"github.com/purpleidea/mgmt/lang/interfaces"
"github.com/purpleidea/mgmt/lang/types"
"github.com/purpleidea/mgmt/util/errwrap"
)
const (
// TemplateFuncName is the name this function is registered as.
TemplateFuncName = "template"
// TemplateName is the name of our template as required by the template
// library.
TemplateName = "template"
// arg names...
templateArgNameTemplate = "template"
templateArgNameVars = "vars"
)
var (
// errorType represents a reflection type of error as seen in:
// https://github.com/golang/go/blob/ec62ee7f6d3839fe69aeae538dadc1c9dc3bf020/src/text/template/exec.go#L612
errorType = reflect.TypeOf((*error)(nil)).Elem()
)
func init() {
funcs.ModuleRegister(ModuleName, TemplateFuncName, func() interfaces.Func { return &TemplateFunc{} })
}
var _ interfaces.InferableFunc = &TemplateFunc{} // ensure it meets this expectation
// TemplateFunc is a static polymorphic function that compiles a template and
// returns the output as a string. It bases its output on the values passed in
// to it. It examines the type of the second argument (the input data vars) at
// compile time and then determines the static functions signature by including
// that in the overall signature.
// TODO: We *might* need to add events for internal function changes over time,
// but only if they are not pure. We currently only use simple, pure functions.
type TemplateFunc struct {
// Type is the type of the input vars (2nd) arg if one is specified. Nil
// is the special undetermined value that is used before type is known.
Type *types.Type // type of vars
built bool // was this function built yet?
init *interfaces.Init
last types.Value // last value received to use for diff
result *string // last calculated output
}
// String returns a simple name for this function. This is needed so this struct
// can satisfy the pgraph.Vertex interface.
func (obj *TemplateFunc) String() string {
return TemplateFuncName
}
// ArgGen returns the Nth arg name for this function.
func (obj *TemplateFunc) ArgGen(index int) (string, error) {
seq := []string{templateArgNameTemplate, templateArgNameVars}
if l := len(seq); index >= l {
return "", fmt.Errorf("index %d exceeds arg length of %d", index, l)
}
return seq[index], nil
}
// helper
func (obj *TemplateFunc) sig() *types.Type {
if obj.Type != nil {
typ := fmt.Sprintf("func(%s str, %s %s) str", templateArgNameTemplate, templateArgNameVars, obj.Type.String())
return types.NewType(typ)
}
typ := fmt.Sprintf("func(%s str) str", templateArgNameTemplate)
return types.NewType(typ)
}
// FuncInfer takes partial type and value information from the call site of this
// function so that it can build an appropriate type signature for it. The type
// signature may include unification variables.
func (obj *TemplateFunc) FuncInfer(partialType *types.Type, partialValues []types.Value) (*types.Type, []*interfaces.UnificationInvariant, error) {
// func(format str) str
// OR
// func(format str, arg ?1) str
if l := len(partialValues); l < 1 || l > 2 {
return nil, nil, fmt.Errorf("must have at either one or two args")
}
var typ *types.Type
if len(partialValues) == 1 {
typ = types.NewType(fmt.Sprintf("func(%s str) str", templateArgNameTemplate))
}
if len(partialValues) == 2 {
typ = types.NewType(fmt.Sprintf("func(%s str, %s ?1) str", templateArgNameTemplate, templateArgNameVars))
}
return typ, []*interfaces.UnificationInvariant{}, nil
}
// Build takes the now known function signature and stores it so that this
// function can appear to be static. It extracts the type of the vars argument,
// which is the dynamic part which can change. That type is used to build our
// function statically.
func (obj *TemplateFunc) Build(typ *types.Type) (*types.Type, error) {
if typ.Kind != types.KindFunc {
return nil, fmt.Errorf("input type must be of kind func")
}
if len(typ.Ord) != 2 && len(typ.Ord) != 1 {
return nil, fmt.Errorf("the template function needs exactly one or two args")
}
if typ.Out == nil {
return nil, fmt.Errorf("return type of function must be specified")
}
if typ.Out.Cmp(types.TypeStr) != nil {
return nil, fmt.Errorf("return type of function must be an str")
}
if typ.Map == nil {
return nil, fmt.Errorf("invalid input type")
}
t0, exists := typ.Map[typ.Ord[0]]
if !exists || t0 == nil {
return nil, fmt.Errorf("first arg must be specified")
}
if t0.Cmp(types.TypeStr) != nil {
return nil, fmt.Errorf("first arg for template must be an str")
}
if len(typ.Ord) == 1 { // no args being passed in (boring template)
obj.built = true
return obj.sig(), nil
}
t1, exists := typ.Map[typ.Ord[1]]
if !exists || t1 == nil {
return nil, fmt.Errorf("second arg must be specified")
}
obj.Type = t1 // extracted vars type is now known!
obj.built = true
return obj.sig(), nil
}
// Validate makes sure we've built our struct properly. It is usually unused for
// normal functions that users can use directly.
func (obj *TemplateFunc) Validate() error {
if !obj.built {
return fmt.Errorf("function wasn't built yet")
}
return nil
}
// Info returns some static info about itself.
func (obj *TemplateFunc) Info() *interfaces.Info {
// Since this function implements FuncInfer we want sig to return nil to
// avoid an accidental return of unification variables when we should be
// getting them from FuncInfer, and not from here. (During unification!)
var sig *types.Type
if obj.built {
sig = obj.sig() // helper
}
return &interfaces.Info{
Pure: true,
Memo: false,
Sig: sig,
Err: obj.Validate(),
}
}
// Init runs some startup code for this function.
func (obj *TemplateFunc) Init(init *interfaces.Init) error {
obj.init = init
return nil
}
// run runs a template and returns the result.
func (obj *TemplateFunc) run(ctx context.Context, templateText string, vars types.Value) (string, error) {
// see: https://golang.org/pkg/text/template/#FuncMap for more info
// note: we can override any other functions by adding them here...
funcMap := map[string]interface{}{
//"test1": func(in interface{}) (interface{}, error) { // ok
// return fmt.Sprintf("got(%T): %+v", in, in), nil
//},
//"test2": func(in interface{}) interface{} { // NOT ok
// panic("panic") // a panic here brings down everything!
//},
//"test3": func(foo int64) (string, error) { // ok, but errors
// return "", fmt.Errorf("i am an error")
//},
//"test4": func(in1, in2 reflect.Value) (reflect.Value, error) { // ok
// s := fmt.Sprintf("got: %+v and: %+v", in1, in2)
// return reflect.ValueOf(s), nil
//},
}
// FIXME: should we do this once in init() instead, or in the Register
// function in the simple package?
// TODO: loop through this map in a sorted, deterministic order
// XXX: should this use the scope instead (so imports are used properly) ?
for name, scaffold := range simple.RegisteredFuncs {
if scaffold.T == nil || scaffold.T.HasUni() {
if obj.init.Debug {
obj.init.Logf("warning, function named: `%s` is not unified", name)
}
continue
}
name = safename(name) // TODO: rename since we can't include dot
if _, exists := funcMap[name]; exists {
obj.init.Logf("warning, existing function named: `%s` exists", name)
continue
}
// When template execution invokes a function with an argument
// list, that list must be assignable to the function's
// parameter types. Functions meant to apply to arguments of
// arbitrary type can use parameters of type interface{} or of
// type reflect.Value.
f, err := wrap(ctx, name, scaffold) // wrap it so that it meets API expectations
if err != nil {
if obj.init.Debug {
obj.init.Logf("warning, skipping function named: `%s`, err: %v", name, err)
}
continue
}
funcMap[name] = f // add it
}
var err error
tmpl := template.New(TemplateName)
tmpl = tmpl.Funcs(funcMap)
tmpl, err = tmpl.Parse(templateText)
if err != nil {
return "", errwrap.Wrapf(err, "template: parse error")
}
buf := new(bytes.Buffer)
if vars == nil {
// run the template
if err := tmpl.Execute(buf, nil); err != nil {
return "", errwrap.Wrapf(err, "template: execution error")
}
return buf.String(), nil
}
// NOTE: any objects in here can have their methods called by the template!
var data interface{} // can be many types, eg a struct!
v := vars.Copy() // make a copy since we make modifications to it...
Loop:
// TODO: simplify with Type.Underlying()
for {
switch x := v.Type().Kind; x {
case types.KindBool:
fallthrough
case types.KindStr:
fallthrough
case types.KindInt:
fallthrough
case types.KindFloat:
// standalone values can be used in templates with a dot
data = v.Value()
break Loop
case types.KindList:
// TODO: can we improve on this to expose indexes?
data = v.Value()
break Loop
case types.KindMap:
if v.Type().Key.Cmp(types.TypeStr) != nil {
return "", errwrap.Wrapf(err, "template: map keys must be str")
}
m := make(map[string]interface{})
for k, v := range v.Map() { // map[Value]Value
m[k.Str()] = v.Value()
}
data = m
break Loop
case types.KindStruct:
m := make(map[string]interface{})
for k, v := range v.Struct() { // map[string]Value
m[k] = v.Value()
}
data = m
break Loop
// TODO: should we allow functions here?
//case types.KindFunc:
case types.KindVariant:
v = v.(*types.VariantValue).V // un-nest and recurse
continue Loop
default:
return "", fmt.Errorf("can't use `%+v` as vars input", x)
}
}
// run the template
if err := tmpl.Execute(buf, data); err != nil {
return "", errwrap.Wrapf(err, "template: execution error")
}
return buf.String(), nil
}
// Stream returns the changing values that this func has over time.
func (obj *TemplateFunc) Stream(ctx context.Context) error {
defer close(obj.init.Output) // the sender closes
for {
select {
case input, ok := <-obj.init.Input:
if !ok {
return nil // can't output any more
}
//if err := input.Type().Cmp(obj.Info().Sig.Input); err != nil {
// return errwrap.Wrapf(err, "wrong function input")
//}
if obj.last != nil && input.Cmp(obj.last) == nil {
continue // value didn't change, skip it
}
obj.last = input // store for next
st := input.Struct()
tmpl := st[templateArgNameTemplate].Str()
vars, exists := st[templateArgNameVars]
if !exists {
vars = nil
}
result, err := obj.run(ctx, tmpl, vars)
if err != nil {
return err // no errwrap needed b/c helper func
}
if obj.result != nil && *obj.result == result {
continue // result didn't change
}
obj.result = &result // store new result
case <-ctx.Done():
return nil
}
select {
case obj.init.Output <- &types.StrValue{
V: *obj.result,
}:
case <-ctx.Done():
return nil
}
}
}
// safename renames the functions so they're valid inside the template. This is
// a limitation of the template library, and it might be worth moving to a new
// one.
func safename(name string) string {
// TODO: should we pick a different replacement char?
char := funcs.ReplaceChar // can't be any of: .-#
result := strings.Replace(name, funcs.ModuleSep, char, -1)
result = strings.Replace(result, "/", char, -1) // nested imports
if result == name {
// No change, so add a prefix for package-less functions... This
// prevents conflicts from sys.func1 -> sys_func1 which would be
// a conflict with a top-level function named sys_func1 which is
// now renamed to _sys_func1.
return char + name
}
return result
}
// wrap builds a function in the format expected by the template engine, and
// returns it as an interface{}. It does so by wrapping our type system and
// function API with what is expected from the reflection API. It returns a
// version that includes the optional second error return value so that our
// functions can return errors without causing a panic.
func wrap(ctx context.Context, name string, scaffold *simple.Scaffold) (_ interface{}, reterr error) {
defer func() {
// catch unhandled panics
if r := recover(); r != nil {
reterr = fmt.Errorf("panic in template wrap of `%s` function: %+v", name, r)
}
}()
if scaffold.T == nil {
panic("malformed type")
}
if scaffold.T.HasUni() {
panic("type not unified")
}
if scaffold.T.Map == nil {
panic("malformed func type")
}
if len(scaffold.T.Map) != len(scaffold.T.Ord) {
panic("malformed func length")
}
in := []reflect.Type{}
for _, k := range scaffold.T.Ord {
t, ok := scaffold.T.Map[k]
if !ok {
panic("malformed func order")
}
if t == nil {
panic("malformed func arg")
}
in = append(in, t.Reflect())
}
ret := scaffold.T.Out.Reflect() // this can panic!
out := []reflect.Type{ret, errorType}
var variadic = false // currently not supported in our function value
typ := reflect.FuncOf(in, out, variadic)
// wrap our function with the translation that is necessary
f := func(args []reflect.Value) (results []reflect.Value) { // build
innerArgs := []types.Value{}
zeroValue := reflect.Zero(scaffold.T.Out.Reflect()) // zero value of return type
for _, x := range args {
v, err := types.ValueOf(x) // reflect.Value -> Value
if err != nil {
r := reflect.ValueOf(errwrap.Wrapf(err, "function `%s` errored", name))
if !r.Type().ConvertibleTo(errorType) { // for fun!
r = reflect.ValueOf(fmt.Errorf("function `%s` errored: %+v", name, err))
}
e := r.Convert(errorType) // must be seen as an `error`
return []reflect.Value{zeroValue, e}
}
innerArgs = append(innerArgs, v)
}
result, err := scaffold.F(ctx, innerArgs) // call it
if err != nil { // function errored :(
// errwrap is a better way to report errors, if allowed!
r := reflect.ValueOf(errwrap.Wrapf(err, "function `%s` errored", name))
if !r.Type().ConvertibleTo(errorType) { // for fun!
r = reflect.ValueOf(fmt.Errorf("function `%s` errored: %+v", name, err))
}
e := r.Convert(errorType) // must be seen as an `error`
return []reflect.Value{zeroValue, e}
} else if result == nil { // someone wrote a bad function
r := reflect.ValueOf(fmt.Errorf("function `%s` returned nil", name))
e := r.Convert(errorType) // must be seen as an `error`
return []reflect.Value{zeroValue, e}
}
nilError := reflect.Zero(errorType)
return []reflect.Value{reflect.ValueOf(result.Value()), nilError}
}
val := reflect.MakeFunc(typ, f)
return val.Interface(), nil
}