I seem to have forgotten to differentiate between the empty string and no data because the zero value for the stored result was the empty string. This turns it into a pointer so that we don't block the function engine if a template or one of the other patched functions sends an empty string as the first value.
380 lines
11 KiB
Go
380 lines
11 KiB
Go
// Mgmt
|
|
// Copyright (C) 2013-2019+ James Shubin and the project contributors
|
|
// Written by James Shubin <james@shubin.ca> and the project contributors
|
|
//
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
package corefmt
|
|
|
|
import (
|
|
"fmt"
|
|
|
|
"github.com/purpleidea/mgmt/lang/funcs"
|
|
"github.com/purpleidea/mgmt/lang/interfaces"
|
|
"github.com/purpleidea/mgmt/lang/types"
|
|
"github.com/purpleidea/mgmt/util"
|
|
"github.com/purpleidea/mgmt/util/errwrap"
|
|
)
|
|
|
|
func init() {
|
|
// FIXME: should this be named sprintf instead?
|
|
funcs.ModuleRegister(ModuleName, "printf", func() interfaces.Func { return &PrintfFunc{} })
|
|
}
|
|
|
|
const (
|
|
formatArgName = "format" // name of the first arg
|
|
)
|
|
|
|
// PrintfFunc is a static polymorphic function that compiles a format string and
|
|
// returns the output as a string. It bases its output on the values passed in
|
|
// to it. It examines the type of the arguments at compile time and then
|
|
// determines the static function signature by parsing the format string and
|
|
// using that to determine the final function signature. One consequence of this
|
|
// is that the format string must be a static string which is known at compile
|
|
// time. This is reasonable, because if it was a reactive, changing string, then
|
|
// we could expect the type signature to change, which is not allowed in our
|
|
// statically typed language.
|
|
type PrintfFunc struct {
|
|
Type *types.Type // final full type of our function
|
|
|
|
init *interfaces.Init
|
|
last types.Value // last value received to use for diff
|
|
|
|
result *string // last calculated output
|
|
|
|
closeChan chan struct{}
|
|
}
|
|
|
|
// ArgGen returns the Nth arg name for this function.
|
|
func (obj *PrintfFunc) ArgGen(index int) (string, error) {
|
|
if index == 0 {
|
|
return formatArgName, nil
|
|
}
|
|
return util.NumToAlpha(index - 1), nil
|
|
}
|
|
|
|
// Polymorphisms returns the possible type signature for this function. In this
|
|
// case, since the number of arguments can be infinite, it returns the final
|
|
// precise type if it can be gleamed from the format argument. If it cannot, it
|
|
// is because either the format argument was not known statically, or because
|
|
// it had an invalid format string.
|
|
func (obj *PrintfFunc) Polymorphisms(partialType *types.Type, partialValues []types.Value) ([]*types.Type, error) {
|
|
if partialType == nil || len(partialValues) < 1 {
|
|
return nil, fmt.Errorf("first argument must be a static format string")
|
|
}
|
|
|
|
if partialType.Out != nil && partialType.Out.Cmp(types.TypeStr) != nil {
|
|
return nil, fmt.Errorf("return value of printf must be str")
|
|
}
|
|
|
|
ord := partialType.Ord
|
|
if partialType.Map != nil {
|
|
if len(ord) < 1 {
|
|
return nil, fmt.Errorf("must have at least one arg in printf func")
|
|
}
|
|
if t, exists := partialType.Map[ord[0]]; exists && t != nil {
|
|
if t.Cmp(types.TypeStr) != nil {
|
|
return nil, fmt.Errorf("first arg for printf must be an str")
|
|
}
|
|
}
|
|
}
|
|
|
|
// FIXME: we'd like to pre-compute the interpolation if we can, so that
|
|
// we can run this code properly... for now, we can't, so it's a compile
|
|
// time error...
|
|
if partialValues[0] == nil {
|
|
return nil, fmt.Errorf("could not determine type from format string")
|
|
}
|
|
|
|
format := partialValues[0].Str() // must not panic
|
|
typList, err := parseFormatToTypeList(format)
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "could not parse format string")
|
|
}
|
|
|
|
typ := &types.Type{
|
|
Kind: types.KindFunc, // function type
|
|
Map: make(map[string]*types.Type),
|
|
Ord: []string{},
|
|
Out: types.TypeStr,
|
|
}
|
|
// add first arg
|
|
typ.Map[formatArgName] = types.TypeStr
|
|
typ.Ord = append(typ.Ord, formatArgName)
|
|
|
|
for i, x := range typList {
|
|
name := util.NumToAlpha(i) // start with a...
|
|
if name == formatArgName {
|
|
return nil, fmt.Errorf("could not build function with %d args", i+1) // +1 for format arg
|
|
}
|
|
|
|
// if we also had even more partial type information, check it!
|
|
if t, exists := partialType.Map[ord[i+1]]; exists && t != nil {
|
|
if err := t.Cmp(x); err != nil {
|
|
return nil, errwrap.Wrapf(err, "arg %d does not match expected type", i+1)
|
|
}
|
|
}
|
|
|
|
typ.Map[name] = x
|
|
typ.Ord = append(typ.Ord, name)
|
|
}
|
|
|
|
return []*types.Type{typ}, nil // return a list with a single possibility
|
|
}
|
|
|
|
// Build takes the now known function signature and stores it so that this
|
|
// function can appear to be static. That type is used to build our function
|
|
// statically.
|
|
func (obj *PrintfFunc) Build(typ *types.Type) error {
|
|
if typ.Kind != types.KindFunc {
|
|
return fmt.Errorf("input type must be of kind func")
|
|
}
|
|
if len(typ.Ord) < 1 {
|
|
return fmt.Errorf("the printf function needs at least one arg")
|
|
}
|
|
if typ.Out == nil {
|
|
return fmt.Errorf("return type of function must be specified")
|
|
}
|
|
if typ.Out.Cmp(types.TypeStr) != nil {
|
|
return fmt.Errorf("return type of function must be an str")
|
|
}
|
|
if typ.Map == nil {
|
|
return fmt.Errorf("invalid input type")
|
|
}
|
|
|
|
t0, exists := typ.Map[typ.Ord[0]]
|
|
if !exists || t0 == nil {
|
|
return fmt.Errorf("first arg must be specified")
|
|
}
|
|
if t0.Cmp(types.TypeStr) != nil {
|
|
return fmt.Errorf("first arg for printf must be an str")
|
|
}
|
|
|
|
obj.Type = typ // function type is now known!
|
|
return nil
|
|
}
|
|
|
|
// Validate makes sure we've built our struct properly. It is usually unused for
|
|
// normal functions that users can use directly.
|
|
func (obj *PrintfFunc) Validate() error {
|
|
if obj.Type == nil { // build must be run first
|
|
return fmt.Errorf("type is still unspecified")
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Info returns some static info about itself.
|
|
func (obj *PrintfFunc) Info() *interfaces.Info {
|
|
return &interfaces.Info{
|
|
Pure: true,
|
|
Memo: false,
|
|
Sig: obj.Type,
|
|
Err: obj.Validate(),
|
|
}
|
|
}
|
|
|
|
// Init runs some startup code for this function.
|
|
func (obj *PrintfFunc) Init(init *interfaces.Init) error {
|
|
obj.init = init
|
|
obj.closeChan = make(chan struct{})
|
|
return nil
|
|
}
|
|
|
|
// Stream returns the changing values that this func has over time.
|
|
func (obj *PrintfFunc) Stream() error {
|
|
defer close(obj.init.Output) // the sender closes
|
|
for {
|
|
select {
|
|
case input, ok := <-obj.init.Input:
|
|
if !ok {
|
|
return nil // can't output any more
|
|
}
|
|
//if err := input.Type().Cmp(obj.Info().Sig.Input); err != nil {
|
|
// return errwrap.Wrapf(err, "wrong function input")
|
|
//}
|
|
|
|
if obj.last != nil && input.Cmp(obj.last) == nil {
|
|
continue // value didn't change, skip it
|
|
}
|
|
obj.last = input // store for next
|
|
|
|
format := input.Struct()[formatArgName].Str()
|
|
values := []types.Value{}
|
|
for _, name := range obj.Type.Ord {
|
|
if name == formatArgName { // skip format arg
|
|
continue
|
|
}
|
|
x := input.Struct()[name]
|
|
values = append(values, x)
|
|
}
|
|
|
|
result, err := compileFormatToString(format, values)
|
|
if err != nil {
|
|
return err // no errwrap needed b/c helper func
|
|
}
|
|
|
|
if obj.result != nil && *obj.result == result {
|
|
continue // result didn't change
|
|
}
|
|
obj.result = &result // store new result
|
|
|
|
case <-obj.closeChan:
|
|
return nil
|
|
}
|
|
|
|
select {
|
|
case obj.init.Output <- &types.StrValue{
|
|
V: *obj.result,
|
|
}:
|
|
case <-obj.closeChan:
|
|
return nil
|
|
}
|
|
}
|
|
}
|
|
|
|
// Close runs some shutdown code for this function and turns off the stream.
|
|
func (obj *PrintfFunc) Close() error {
|
|
close(obj.closeChan)
|
|
return nil
|
|
}
|
|
|
|
// valueToString prints our values how we expect for printf.
|
|
// FIXME: if this turns out to be useful, add it to the types package.
|
|
func valueToString(value types.Value) string {
|
|
// FIXME: this is just an "easy-out" implementation for now...
|
|
return fmt.Sprintf("%v", value.Value())
|
|
|
|
//switch x := value.Type().Kind; x {
|
|
//case types.KindBool:
|
|
// return value.String()
|
|
//case types.KindStr:
|
|
// return value.Str() // use this since otherwise it adds " & "
|
|
//case types.KindInt:
|
|
// return value.String()
|
|
//case types.KindFloat:
|
|
// // TODO: use formatting flags ?
|
|
// return value.String()
|
|
//}
|
|
//panic("unhandled type") // TODO: not fully implemented yet
|
|
}
|
|
|
|
// parseFormatToTypeList takes a format string and returns a list of types that
|
|
// it expects to use in the order found in the format string.
|
|
// FIXME: add support for more types, and add tests!
|
|
func parseFormatToTypeList(format string) ([]*types.Type, error) {
|
|
typList := []*types.Type{}
|
|
inType := false
|
|
for i := 0; i < len(format); i++ {
|
|
|
|
// some normal char...
|
|
if !inType && format[i] != '%' {
|
|
continue
|
|
}
|
|
|
|
// in a type or we're a %
|
|
if format[i] == '%' {
|
|
if inType {
|
|
// it's a %%
|
|
inType = false
|
|
} else {
|
|
// start looking for type specification!
|
|
inType = true
|
|
}
|
|
continue
|
|
}
|
|
|
|
// we must be in a type
|
|
switch format[i] {
|
|
case 't':
|
|
typList = append(typList, types.TypeBool)
|
|
case 's':
|
|
typList = append(typList, types.TypeStr)
|
|
case 'd':
|
|
typList = append(typList, types.TypeInt)
|
|
|
|
// TODO: parse fancy formats like %0.2f and stuff
|
|
case 'f':
|
|
typList = append(typList, types.TypeFloat)
|
|
|
|
// FIXME: add fancy types like: %[]s, %[]f, %{s:f}, etc...
|
|
|
|
default:
|
|
return nil, fmt.Errorf("invalid format string at %d", i)
|
|
}
|
|
inType = false // done
|
|
}
|
|
|
|
return typList, nil
|
|
}
|
|
|
|
// compileFormatToString takes a format string and a list of values and returns
|
|
// the compiled/templated output.
|
|
// FIXME: add support for more types, and add tests!
|
|
func compileFormatToString(format string, values []types.Value) (string, error) {
|
|
output := ""
|
|
ix := 0
|
|
inType := false
|
|
for i := 0; i < len(format); i++ {
|
|
|
|
// some normal char...
|
|
if !inType && format[i] != '%' {
|
|
output += string(format[i])
|
|
continue
|
|
}
|
|
|
|
// in a type or we're a %
|
|
if format[i] == '%' {
|
|
if inType {
|
|
// it's a %%
|
|
output += string(format[i])
|
|
inType = false
|
|
} else {
|
|
// start looking for type specification!
|
|
inType = true
|
|
}
|
|
continue
|
|
}
|
|
|
|
// we must be in a type
|
|
var typ *types.Type
|
|
switch format[i] {
|
|
case 't':
|
|
typ = types.TypeBool
|
|
case 's':
|
|
typ = types.TypeStr
|
|
case 'd':
|
|
typ = types.TypeInt
|
|
|
|
// TODO: parse fancy formats like %0.2f and stuff
|
|
case 'f':
|
|
typ = types.TypeFloat
|
|
|
|
// FIXME: add fancy types like: %[]s, %[]f, %{s:f}, etc...
|
|
|
|
default:
|
|
return "", fmt.Errorf("invalid format string at %d", i)
|
|
}
|
|
inType = false // done
|
|
|
|
if err := typ.Cmp(values[ix].Type()); err != nil {
|
|
return "", errwrap.Wrapf(err, "unexpected type")
|
|
}
|
|
|
|
output += valueToString(values[ix])
|
|
ix++ // consume one value
|
|
}
|
|
|
|
return output, nil
|
|
}
|