Files
mgmt/resources/resources.go
James Shubin b7948c7f40 resources: Specify defaults for the MetaParams
When creating new resources, we didn't specify the defaults, which for
the limit metaparam caused invalid resources by default. It would be
nice to change the limit param to have the 1/X (reciprocal) as the
default, although the problem with that is that (1) it is illogical, and
(2) it's not clear if the precision for the common cases is enough.

If someone wants to investigate this further, please do! Zero value
structs are definitely more useful! In any case, we can now specify the
default. It's not entirely obvious to me if this is the best way to do
it, or if there is a superior method.
2017-02-16 21:08:46 -05:00

605 lines
19 KiB
Go

// Mgmt
// Copyright (C) 2013-2017+ James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
// Package resources provides the resource framework and idempotent primitives.
package resources
import (
"bytes"
"encoding/base64"
"encoding/gob"
"fmt"
"log"
"math"
"os"
"path"
"sync"
"time"
// TODO: should each resource be a sub-package?
"github.com/purpleidea/mgmt/converger"
"github.com/purpleidea/mgmt/event"
"github.com/purpleidea/mgmt/prometheus"
errwrap "github.com/pkg/errors"
"golang.org/x/time/rate"
)
//go:generate stringer -type=ResState -output=resstate_stringer.go
// The ResState type represents the current activity state of each resource.
type ResState int
// Each ResState should be set properly in the relevant part of the resource.
const (
ResStateNil ResState = iota
ResStateProcess // we're in process, but we haven't done much yet
ResStateCheckApply // we're about to run CheckApply
ResStatePoking // we're done CheckApply, and we're about to poke
)
const refreshPathToken = "refresh"
// Data is the set of input values passed into the pgraph for the resources.
type Data struct {
//Hostname string // uuid for the host
//Noop bool
Converger converger.Converger
Prometheus *prometheus.Prometheus
Prefix string // the prefix to be used for the pgraph namespace
Debug bool
// NOTE: we can add more fields here if needed for the resources.
}
// ResUID is a unique identifier for a resource, namely it's name, and the kind ("type").
type ResUID interface {
GetName() string
Kind() string
IFF(ResUID) bool
Reversed() bool // true means this resource happens before the generator
}
// The BaseUID struct is used to provide a unique resource identifier.
type BaseUID struct {
name string // name and kind are the values of where this is coming from
kind string
reversed *bool // piggyback edge information here
}
// The AutoEdge interface is used to implement the autoedges feature.
type AutoEdge interface {
Next() []ResUID // call to get list of edges to add
Test([]bool) bool // call until false
}
// MetaParams is a struct will all params that apply to every resource.
type MetaParams struct {
AutoEdge bool `yaml:"autoedge"` // metaparam, should we generate auto edges?
AutoGroup bool `yaml:"autogroup"` // metaparam, should we auto group?
Noop bool `yaml:"noop"`
// NOTE: there are separate Watch and CheckApply retry and delay values,
// but I've decided to use the same ones for both until there's a proper
// reason to want to do something differently for the Watch errors.
Retry int16 `yaml:"retry"` // metaparam, number of times to retry on error. -1 for infinite
Delay uint64 `yaml:"delay"` // metaparam, number of milliseconds to wait between retries
Poll uint32 `yaml:"poll"` // metaparam, number of seconds between poll intervals, 0 to watch
Limit rate.Limit `yaml:"limit"` // metaparam, number of events per second to allow through
Burst int `yaml:"burst"` // metaparam, number of events to allow in a burst
}
// UnmarshalYAML is the custom unmarshal handler for the MetaParams struct. It
// is primarily useful for setting the defaults.
func (obj *MetaParams) UnmarshalYAML(unmarshal func(interface{}) error) error {
type rawMetaParams MetaParams // indirection to avoid infinite recursion
raw := rawMetaParams(DefaultMetaParams) // convert; the defaults go here
if err := unmarshal(&raw); err != nil {
return err
}
*obj = MetaParams(raw) // restore from indirection with type conversion!
return nil
}
// DefaultMetaParams are the defaults to be used for undefined metaparams.
var DefaultMetaParams = MetaParams{
AutoEdge: true,
AutoGroup: true,
Noop: false,
Retry: 0, // TODO: is this a good default?
Delay: 0, // TODO: is this a good default?
Poll: 0, // defaults to watching for events
Limit: rate.Inf, // defaults to no limit
Burst: 0, // no burst needed on an infinite rate // TODO: is this a good default?
}
// The Base interface is everything that is common to all resources.
// Everything here only needs to be implemented once, in the BaseRes.
type Base interface {
GetName() string // can't be named "Name()" because of struct field
SetName(string)
SetKind(string)
Kind() string
Meta() *MetaParams
Events() chan *event.Event
AssociateData(*Data)
IsWorking() bool
SetWorking(bool)
Converger() converger.Converger
RegisterConverger()
UnregisterConverger()
ConvergerUID() converger.ConvergerUID
GetState() ResState
SetState(ResState)
Event(chan *event.Event) error
SendEvent(event.EventName, error) error
ReadEvent(*event.Event) (*error, bool)
Refresh() bool // is there a pending refresh to run?
SetRefresh(bool) // set the refresh state of this resource
SendRecv(Res) (map[string]bool, error) // send->recv data passing function
IsStateOK() bool
StateOK(b bool)
GroupCmp(Res) bool // TODO: is there a better name for this?
GroupRes(Res) error // group resource (arg) into self
IsGrouped() bool // am I grouped?
SetGrouped(bool) // set grouped bool
GetGroup() []Res // return everyone grouped inside me
SetGroup([]Res)
VarDir(string) (string, error)
Running(chan *event.Event) error // notify the engine that Watch started
Started() <-chan struct{} // returns when the resource has started
Starter(bool)
Poll(chan *event.Event) error // poll alternative to watching :(
Prometheus() *prometheus.Prometheus
}
// Res is the minimum interface you need to implement to define a new resource.
type Res interface {
Base // include everything from the Base interface
Default() Res // return a struct with sane defaults as a Res
Validate() error
Init() error
Close() error
UIDs() []ResUID // most resources only return one
Watch(chan *event.Event) error // send on channel to signal process() events
CheckApply(apply bool) (checkOK bool, err error)
AutoEdges() AutoEdge
Compare(Res) bool
CollectPattern(string) // XXX: temporary until Res collection is more advanced
//UnmarshalYAML(unmarshal func(interface{}) error) error // optional
}
// BaseRes is the base struct that gets used in every resource.
type BaseRes struct {
Name string `yaml:"name"`
MetaParams MetaParams `yaml:"meta"` // struct of all the metaparams
Recv map[string]*Send // mapping of key to receive on from value
kind string
mutex *sync.Mutex // locks around sending and closing of events channel
events chan *event.Event
converger converger.Converger // converged tracking
cuid converger.ConvergerUID
prometheus *prometheus.Prometheus
prefix string // base prefix for this resource
debug bool
state ResState
working bool // is the Worker() loop running ?
started chan struct{} // closed when worker is started/running
isStarted bool // did the started chan already close?
starter bool // does this have indegree == 0 ? XXX: usually?
isStateOK bool // whether the state is okay based on events or not
isGrouped bool // am i contained within a group?
grouped []Res // list of any grouped resources
refresh bool // does this resource have a refresh to run?
//refreshState StatefulBool // TODO: future stateful bool
}
// UnmarshalYAML is the custom unmarshal handler for the BaseRes struct. It is
// primarily useful for setting the defaults, in particular if meta is absent!
// FIXME: how come we can't get this to work properly without dropping fields?
//func (obj *BaseRes) UnmarshalYAML(unmarshal func(interface{}) error) error {
// DefaultBaseRes := BaseRes{
// // without specifying a default here, if we don't specify *any*
// // meta parameters in the yaml file, then the UnmarshalYAML for
// // the MetaParams struct won't run, and we won't get defaults!
// MetaParams: DefaultMetaParams, // force a default
// }
// type rawBaseRes BaseRes // indirection to avoid infinite recursion
// raw := rawBaseRes(DefaultBaseRes) // convert; the defaults go here
// //raw := rawBaseRes{}
// if err := unmarshal(&raw); err != nil {
// return err
// }
// *obj = BaseRes(raw) // restore from indirection with type conversion!
// return nil
//}
// UIDExistsInUIDs wraps the IFF method when used with a list of UID's.
func UIDExistsInUIDs(uid ResUID, uids []ResUID) bool {
for _, u := range uids {
if uid.IFF(u) {
return true
}
}
return false
}
// GetName returns the name of the resource.
func (obj *BaseUID) GetName() string {
return obj.name
}
// Kind returns the kind of resource.
func (obj *BaseUID) Kind() string {
return obj.kind
}
// IFF looks at two UID's and if and only if they are equivalent, returns true.
// If they are not equivalent, it returns false.
// Most resources will want to override this method, since it does the important
// work of actually discerning if two resources are identical in function.
func (obj *BaseUID) IFF(uid ResUID) bool {
res, ok := uid.(*BaseUID)
if !ok {
return false
}
return obj.name == res.name
}
// Reversed is part of the ResUID interface, and true means this resource
// happens before the generator.
func (obj *BaseUID) Reversed() bool {
if obj.reversed == nil {
log.Fatal("Programming error!")
}
return *obj.reversed
}
// Validate reports any problems with the struct definition.
func (obj *BaseRes) Validate() error {
isInf := obj.Meta().Limit == rate.Inf || math.IsInf(float64(obj.Meta().Limit), 1)
if obj.Meta().Burst == 0 && !isInf { // blocked
return fmt.Errorf("Permanently limited (rate != Inf, burst: 0)")
}
return nil
}
// Init initializes structures like channels if created without New constructor.
func (obj *BaseRes) Init() error {
if obj.kind == "" {
return fmt.Errorf("Resource did not set kind!")
}
obj.mutex = &sync.Mutex{}
obj.events = make(chan *event.Event) // unbuffered chan to avoid stale events
obj.started = make(chan struct{}) // closes when started
// FIXME: force a sane default until UnmarshalYAML on *BaseRes works...
if obj.Meta().Burst == 0 && obj.Meta().Limit == 0 { // blocked
obj.Meta().Limit = rate.Inf
}
if math.IsInf(float64(obj.Meta().Limit), 1) { // yaml `.inf` -> rate.Inf
obj.Meta().Limit = rate.Inf
}
//dir, err := obj.VarDir("")
//if err != nil {
// return errwrap.Wrapf(err, "VarDir failed in Init()")
//}
// TODO: this StatefulBool implementation could be eventually swappable
//obj.refreshState = &DiskBool{Path: path.Join(dir, refreshPathToken)}
return nil
}
// Close shuts down and performs any cleanup.
func (obj *BaseRes) Close() error {
obj.mutex.Lock()
obj.working = false // obj.SetWorking(false)
close(obj.events) // this is where we properly close this channel!
obj.mutex.Unlock()
return nil
}
// GetName is used by all the resources to Get the name.
func (obj *BaseRes) GetName() string {
return obj.Name
}
// SetName is used to set the name of the resource.
func (obj *BaseRes) SetName(name string) {
obj.Name = name
}
// SetKind sets the kind. This is used internally for exported resources.
func (obj *BaseRes) SetKind(kind string) {
obj.kind = kind
}
// Kind returns the kind of resource this is.
func (obj *BaseRes) Kind() string {
return obj.kind
}
// Meta returns the MetaParams as a reference, which we can then get/set on.
func (obj *BaseRes) Meta() *MetaParams {
return &obj.MetaParams
}
// Events returns the channel of events to listen on.
func (obj *BaseRes) Events() chan *event.Event {
return obj.events
}
// AssociateData associates some data with the object in question.
func (obj *BaseRes) AssociateData(data *Data) {
obj.converger = data.Converger
obj.prometheus = data.Prometheus
obj.prefix = data.Prefix
obj.debug = data.Debug
}
// IsWorking tells us if the Worker() function is running.
func (obj *BaseRes) IsWorking() bool {
obj.mutex.Lock()
defer obj.mutex.Unlock()
return obj.working
}
// SetWorking tracks the state of if Worker() function is running.
func (obj *BaseRes) SetWorking(b bool) {
obj.mutex.Lock()
defer obj.mutex.Unlock()
obj.working = b
}
// Converger returns the converger object used by the system. It can be used to
// register new convergers if needed.
func (obj *BaseRes) Converger() converger.Converger {
return obj.converger
}
// RegisterConverger sets up the cuid for the resource. This is a helper
// function for the engine, and shouldn't be called by the resources directly.
func (obj *BaseRes) RegisterConverger() {
obj.cuid = obj.converger.Register()
}
// UnregisterConverger tears down the cuid for the resource. This is a helper
// function for the engine, and shouldn't be called by the resources directly.
func (obj *BaseRes) UnregisterConverger() {
obj.cuid.Unregister()
}
// ConvergerUID returns the ConvergerUID for the resource. This should be called
// by the Watch method of the resource to set the converged state.
func (obj *BaseRes) ConvergerUID() converger.ConvergerUID {
return obj.cuid
}
// GetState returns the state of the resource.
func (obj *BaseRes) GetState() ResState {
return obj.state
}
// SetState sets the state of the resource.
func (obj *BaseRes) SetState(state ResState) {
if obj.debug {
log.Printf("%s[%s]: State: %v -> %v", obj.Kind(), obj.GetName(), obj.GetState(), state)
}
obj.state = state
}
// IsStateOK returns the cached state value.
func (obj *BaseRes) IsStateOK() bool {
return obj.isStateOK
}
// StateOK sets the cached state value.
func (obj *BaseRes) StateOK(b bool) {
obj.isStateOK = b
}
// GroupCmp compares two resources and decides if they're suitable for grouping
// You'll probably want to override this method when implementing a resource...
func (obj *BaseRes) GroupCmp(res Res) bool {
return false // base implementation assumes false, override me!
}
// GroupRes groups resource (arg) into self.
func (obj *BaseRes) GroupRes(res Res) error {
if l := len(res.GetGroup()); l > 0 {
return fmt.Errorf("Res: %v already contains %d grouped resources!", res, l)
}
if res.IsGrouped() {
return fmt.Errorf("Res: %v is already grouped!", res)
}
obj.grouped = append(obj.grouped, res)
res.SetGrouped(true) // i am contained _in_ a group
return nil
}
// IsGrouped determines if we are grouped.
func (obj *BaseRes) IsGrouped() bool { // am I grouped?
return obj.isGrouped
}
// SetGrouped sets a flag to tell if we are grouped.
func (obj *BaseRes) SetGrouped(b bool) {
obj.isGrouped = b
}
// GetGroup returns everyone grouped inside me.
func (obj *BaseRes) GetGroup() []Res { // return everyone grouped inside me
return obj.grouped
}
// SetGroup sets the grouped resources into me.
func (obj *BaseRes) SetGroup(g []Res) {
obj.grouped = g
}
// Compare is the base compare method, which also handles the metaparams cmp.
func (obj *BaseRes) Compare(res Res) bool {
// TODO: should the AutoEdge values be compared?
if obj.Meta().AutoEdge != res.Meta().AutoEdge {
return false
}
if obj.Meta().AutoGroup != res.Meta().AutoGroup {
return false
}
if obj.Meta().Noop != res.Meta().Noop {
// obj is the existing res, res is the *new* resource
// if we go from no-noop -> noop, we can re-use the obj
// if we go from noop -> no-noop, we need to regenerate
if obj.Meta().Noop { // asymmetrical
return false // going from noop to no-noop!
}
}
if obj.Meta().Retry != res.Meta().Retry {
return false
}
if obj.Meta().Delay != res.Meta().Delay {
return false
}
if obj.Meta().Poll != res.Meta().Poll {
return false
}
if obj.Meta().Limit != res.Meta().Limit {
return false
}
if obj.Meta().Burst != res.Meta().Burst {
return false
}
return true
}
// CollectPattern is used for resource collection.
func (obj *BaseRes) CollectPattern(pattern string) {
// XXX: default method is empty
}
// VarDir returns the path to a working directory for the resource. It will try
// and create the directory first, and return an error if this failed.
func (obj *BaseRes) VarDir(extra string) (string, error) {
// Using extra adds additional dirs onto our namespace. An empty extra
// adds no additional directories.
if obj.prefix == "" {
return "", fmt.Errorf("VarDir prefix is empty!")
}
if obj.Kind() == "" {
return "", fmt.Errorf("VarDir kind is empty!")
}
if obj.GetName() == "" {
return "", fmt.Errorf("VarDir name is empty!")
}
// FIXME: is obj.GetName() sufficiently unique to use as a UID here?
uid := obj.GetName()
p := fmt.Sprintf("%s/", path.Join(obj.prefix, obj.Kind(), uid, extra))
if err := os.MkdirAll(p, 0770); err != nil {
return "", errwrap.Wrapf(err, "Can't create prefix for %s[%s]", obj.Kind(), obj.GetName())
}
return p, nil
}
// Started returns a channel that closes when the resource has started up.
func (obj *BaseRes) Started() <-chan struct{} { return obj.started }
// Starter sets the starter bool. This defines if a vertex has an indegree of 0.
// If we have an indegree of 0, we'll need to be a poke initiator in the graph.
func (obj *BaseRes) Starter(b bool) { obj.starter = b }
// Poll is the watch replacement for when we want to poll, which outputs events.
func (obj *BaseRes) Poll(processChan chan *event.Event) error {
cuid := obj.ConvergerUID() // get the converger uid used to report status
// create a time.Ticker for the given interval
ticker := time.NewTicker(time.Duration(obj.Meta().Poll) * time.Second)
defer ticker.Stop()
// notify engine that we're running
if err := obj.Running(processChan); err != nil {
return err // bubble up a NACK...
}
cuid.SetConverged(false) // quickly stop any converge due to Running()
var send = false
var exit *error
for {
select {
case <-ticker.C: // received the timer event
log.Printf("%s[%s]: polling...", obj.Kind(), obj.GetName())
send = true
obj.StateOK(false) // dirty
case event := <-obj.Events():
cuid.ResetTimer() // important
if exit, send = obj.ReadEvent(event); exit != nil {
return *exit // exit
}
}
if send {
send = false
obj.Event(processChan)
}
}
}
// Prometheus returns the prometheus instance.
func (obj *BaseRes) Prometheus() *prometheus.Prometheus {
return obj.prometheus
}
// ResToB64 encodes a resource to a base64 encoded string (after serialization)
func ResToB64(res Res) (string, error) {
b := bytes.Buffer{}
e := gob.NewEncoder(&b)
err := e.Encode(&res) // pass with &
if err != nil {
return "", fmt.Errorf("Gob failed to encode: %v", err)
}
return base64.StdEncoding.EncodeToString(b.Bytes()), nil
}
// B64ToRes decodes a resource from a base64 encoded string (after deserialization)
func B64ToRes(str string) (Res, error) {
var output interface{}
bb, err := base64.StdEncoding.DecodeString(str)
if err != nil {
return nil, fmt.Errorf("Base64 failed to decode: %v", err)
}
b := bytes.NewBuffer(bb)
d := gob.NewDecoder(b)
err = d.Decode(&output) // pass with &
if err != nil {
return nil, fmt.Errorf("Gob failed to decode: %v", err)
}
res, ok := output.(Res)
if !ok {
return nil, fmt.Errorf("Output %v is not a Res", res)
}
return res, nil
}