This refactors my etcd use into a struct (object) wrapper, which makes it easier to add an exit on converged timer.
605 lines
14 KiB
Go
605 lines
14 KiB
Go
// Mgmt
|
|
// Copyright (C) 2013-2015+ James Shubin and the project contributors
|
|
// Written by James Shubin <james@shubin.ca> and the project contributors
|
|
//
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU Affero General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU Affero General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Affero General Public License
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
// Pgraph (Pointer Graph)
|
|
package main
|
|
|
|
import (
|
|
"errors"
|
|
"fmt"
|
|
"io/ioutil"
|
|
"log"
|
|
"os"
|
|
"os/exec"
|
|
"strconv"
|
|
"sync"
|
|
"syscall"
|
|
)
|
|
|
|
//go:generate stringer -type=graphState -output=graphstate_stringer.go
|
|
type graphState int
|
|
|
|
const (
|
|
graphNil graphState = iota
|
|
graphStarting
|
|
graphStarted
|
|
graphPausing
|
|
graphPaused
|
|
)
|
|
|
|
// The graph abstract data type (ADT) is defined as follows:
|
|
// * the directed graph arrows point from left to right ( -> )
|
|
// * the arrows point away from their dependencies (eg: arrows mean "before")
|
|
// * IOW, you might see package -> file -> service (where package runs first)
|
|
// * This is also the direction that the notify should happen in...
|
|
type Graph struct {
|
|
Name string
|
|
Adjacency map[*Vertex]map[*Vertex]*Edge // *Vertex -> *Vertex (edge)
|
|
state graphState
|
|
mutex sync.Mutex // used when modifying graph State variable
|
|
//Directed bool
|
|
}
|
|
|
|
type Vertex struct {
|
|
graph *Graph // store a pointer to the graph it's on
|
|
Type // anonymous field
|
|
data map[string]string // XXX: currently unused i think, remove?
|
|
}
|
|
|
|
type Edge struct {
|
|
Name string
|
|
}
|
|
|
|
func NewGraph(name string) *Graph {
|
|
return &Graph{
|
|
Name: name,
|
|
Adjacency: make(map[*Vertex]map[*Vertex]*Edge),
|
|
state: graphNil,
|
|
}
|
|
}
|
|
|
|
func NewVertex(t Type) *Vertex {
|
|
return &Vertex{
|
|
Type: t,
|
|
data: make(map[string]string),
|
|
}
|
|
}
|
|
|
|
func NewEdge(name string) *Edge {
|
|
return &Edge{
|
|
Name: name,
|
|
}
|
|
}
|
|
|
|
// returns the name of the graph
|
|
func (g *Graph) GetName() string {
|
|
return g.Name
|
|
}
|
|
|
|
// set name of the graph
|
|
func (g *Graph) SetName(name string) {
|
|
g.Name = name
|
|
}
|
|
|
|
func (g *Graph) GetState() graphState {
|
|
g.mutex.Lock()
|
|
defer g.mutex.Unlock()
|
|
return g.state
|
|
}
|
|
|
|
func (g *Graph) SetState(state graphState) {
|
|
g.mutex.Lock()
|
|
defer g.mutex.Unlock()
|
|
g.state = state
|
|
}
|
|
|
|
// store a pointer in the type to it's parent vertex
|
|
func (g *Graph) SetVertex() {
|
|
for v := range g.GetVerticesChan() {
|
|
v.Type.SetVertex(v)
|
|
}
|
|
}
|
|
|
|
// add a new vertex to the graph
|
|
func (g *Graph) AddVertex(v *Vertex) {
|
|
if _, exists := g.Adjacency[v]; !exists {
|
|
g.Adjacency[v] = make(map[*Vertex]*Edge)
|
|
|
|
// store a pointer to the graph it's on for convenience and readability
|
|
v.graph = g
|
|
}
|
|
}
|
|
|
|
func (g *Graph) DeleteVertex(v *Vertex) {
|
|
delete(g.Adjacency, v)
|
|
for k := range g.Adjacency {
|
|
delete(g.Adjacency[k], v)
|
|
}
|
|
}
|
|
|
|
// adds a directed edge to the graph from v1 to v2
|
|
func (g *Graph) AddEdge(v1, v2 *Vertex, e *Edge) {
|
|
// NOTE: this doesn't allow more than one edge between two vertexes...
|
|
// TODO: is this a problem?
|
|
g.AddVertex(v1)
|
|
g.AddVertex(v2)
|
|
g.Adjacency[v1][v2] = e
|
|
}
|
|
|
|
// XXX: does it make sense to return a channel here?
|
|
// GetVertex finds the vertex in the graph with a particular search name
|
|
func (g *Graph) GetVertex(name string) chan *Vertex {
|
|
ch := make(chan *Vertex, 1)
|
|
go func(name string) {
|
|
for k := range g.Adjacency {
|
|
if k.GetName() == name {
|
|
ch <- k
|
|
break
|
|
}
|
|
}
|
|
close(ch)
|
|
}(name)
|
|
return ch
|
|
}
|
|
|
|
func (g *Graph) GetVertexMatch(obj Type) *Vertex {
|
|
for k := range g.Adjacency {
|
|
if k.Compare(obj) { // XXX test
|
|
return k
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func (g *Graph) HasVertex(v *Vertex) bool {
|
|
if _, exists := g.Adjacency[v]; exists {
|
|
return true
|
|
}
|
|
//for k := range g.Adjacency {
|
|
// if k == v {
|
|
// return true
|
|
// }
|
|
//}
|
|
return false
|
|
}
|
|
|
|
// number of vertices in the graph
|
|
func (g *Graph) NumVertices() int {
|
|
return len(g.Adjacency)
|
|
}
|
|
|
|
// number of edges in the graph
|
|
func (g *Graph) NumEdges() int {
|
|
count := 0
|
|
for k := range g.Adjacency {
|
|
count += len(g.Adjacency[k])
|
|
}
|
|
return count
|
|
}
|
|
|
|
// get an array (slice) of all vertices in the graph
|
|
func (g *Graph) GetVertices() []*Vertex {
|
|
vertices := make([]*Vertex, 0)
|
|
for k := range g.Adjacency {
|
|
vertices = append(vertices, k)
|
|
}
|
|
return vertices
|
|
}
|
|
|
|
// returns a channel of all vertices in the graph
|
|
func (g *Graph) GetVerticesChan() chan *Vertex {
|
|
ch := make(chan *Vertex)
|
|
go func(ch chan *Vertex) {
|
|
for k := range g.Adjacency {
|
|
ch <- k
|
|
}
|
|
close(ch)
|
|
}(ch)
|
|
return ch
|
|
}
|
|
|
|
// make the graph pretty print
|
|
func (g *Graph) String() string {
|
|
return fmt.Sprintf("Vertices(%d), Edges(%d)", g.NumVertices(), g.NumEdges())
|
|
}
|
|
|
|
// output the graph in graphviz format
|
|
// https://en.wikipedia.org/wiki/DOT_%28graph_description_language%29
|
|
func (g *Graph) Graphviz() (out string) {
|
|
//digraph g {
|
|
// label="hello world";
|
|
// node [shape=box];
|
|
// A [label="A"];
|
|
// B [label="B"];
|
|
// C [label="C"];
|
|
// D [label="D"];
|
|
// E [label="E"];
|
|
// A -> B [label=f];
|
|
// B -> C [label=g];
|
|
// D -> E [label=h];
|
|
//}
|
|
out += fmt.Sprintf("digraph %v {\n", g.GetName())
|
|
out += fmt.Sprintf("\tlabel=\"%v\";\n", g.GetName())
|
|
//out += "\tnode [shape=box];\n"
|
|
str := ""
|
|
for i, _ := range g.Adjacency { // reverse paths
|
|
out += fmt.Sprintf("\t%v [label=\"%v[%v]\"];\n", i.GetName(), i.GetType(), i.GetName())
|
|
for j, _ := range g.Adjacency[i] {
|
|
k := g.Adjacency[i][j]
|
|
// use str for clearer output ordering
|
|
str += fmt.Sprintf("\t%v -> %v [label=%v];\n", i.GetName(), j.GetName(), k.Name)
|
|
}
|
|
}
|
|
out += str
|
|
out += "}\n"
|
|
return
|
|
}
|
|
|
|
// write out the graphviz data and run the correct graphviz filter command
|
|
func (g *Graph) ExecGraphviz(program, filename string) error {
|
|
|
|
switch program {
|
|
case "dot", "neato", "twopi", "circo", "fdp":
|
|
default:
|
|
return errors.New("Invalid graphviz program selected!")
|
|
}
|
|
|
|
if filename == "" {
|
|
return errors.New("No filename given!")
|
|
}
|
|
|
|
// run as a normal user if possible when run with sudo
|
|
uid, err1 := strconv.Atoi(os.Getenv("SUDO_UID"))
|
|
gid, err2 := strconv.Atoi(os.Getenv("SUDO_GID"))
|
|
|
|
err := ioutil.WriteFile(filename, []byte(g.Graphviz()), 0644)
|
|
if err != nil {
|
|
return errors.New("Error writing to filename!")
|
|
}
|
|
|
|
if err1 == nil && err2 == nil {
|
|
if err := os.Chown(filename, uid, gid); err != nil {
|
|
return errors.New("Error changing file owner!")
|
|
}
|
|
}
|
|
|
|
path, err := exec.LookPath(program)
|
|
if err != nil {
|
|
return errors.New("Graphviz is missing!")
|
|
}
|
|
|
|
out := fmt.Sprintf("%v.png", filename)
|
|
cmd := exec.Command(path, "-Tpng", fmt.Sprintf("-o%v", out), filename)
|
|
|
|
if err1 == nil && err2 == nil {
|
|
cmd.SysProcAttr = &syscall.SysProcAttr{}
|
|
cmd.SysProcAttr.Credential = &syscall.Credential{
|
|
Uid: uint32(uid),
|
|
Gid: uint32(gid),
|
|
}
|
|
}
|
|
_, err = cmd.Output()
|
|
if err != nil {
|
|
return errors.New("Error writing to image!")
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// google/golang hackers apparently do not think contains should be a built-in!
|
|
func Contains(s []*Vertex, element *Vertex) bool {
|
|
for _, v := range s {
|
|
if element == v {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
// return an array (slice) of all directed vertices to vertex v (??? -> v)
|
|
// ostimestamp should use this
|
|
func (g *Graph) IncomingGraphEdges(v *Vertex) []*Vertex {
|
|
// TODO: we might be able to implement this differently by reversing
|
|
// the Adjacency graph and then looping through it again...
|
|
s := make([]*Vertex, 0)
|
|
for k, _ := range g.Adjacency { // reverse paths
|
|
for w, _ := range g.Adjacency[k] {
|
|
if w == v {
|
|
s = append(s, k)
|
|
}
|
|
}
|
|
}
|
|
return s
|
|
}
|
|
|
|
// return an array (slice) of all vertices that vertex v points to (v -> ???)
|
|
// poke should use this
|
|
func (g *Graph) OutgoingGraphEdges(v *Vertex) []*Vertex {
|
|
s := make([]*Vertex, 0)
|
|
for k, _ := range g.Adjacency[v] { // forward paths
|
|
s = append(s, k)
|
|
}
|
|
return s
|
|
}
|
|
|
|
// return an array (slice) of all vertices that connect to vertex v
|
|
func (g *Graph) GraphEdges(v *Vertex) []*Vertex {
|
|
s := make([]*Vertex, 0)
|
|
s = append(s, g.IncomingGraphEdges(v)...)
|
|
s = append(s, g.OutgoingGraphEdges(v)...)
|
|
return s
|
|
}
|
|
|
|
func (g *Graph) DFS(start *Vertex) []*Vertex {
|
|
d := make([]*Vertex, 0) // discovered
|
|
s := make([]*Vertex, 0) // stack
|
|
if _, exists := g.Adjacency[start]; !exists {
|
|
return nil // TODO: error
|
|
}
|
|
v := start
|
|
s = append(s, v)
|
|
for len(s) > 0 {
|
|
|
|
v, s = s[len(s)-1], s[:len(s)-1] // s.pop()
|
|
|
|
if !Contains(d, v) { // if not discovered
|
|
d = append(d, v) // label as discovered
|
|
|
|
for _, w := range g.GraphEdges(v) {
|
|
s = append(s, w)
|
|
}
|
|
}
|
|
}
|
|
return d
|
|
}
|
|
|
|
// build a new graph containing only vertices from the list...
|
|
func (g *Graph) FilterGraph(name string, vertices []*Vertex) *Graph {
|
|
newgraph := NewGraph(name)
|
|
|
|
for k1, x := range g.Adjacency {
|
|
for k2, e := range x {
|
|
|
|
//fmt.Printf("Filter: %v -> %v # %v\n", k1.Name, k2.Name, e.Name)
|
|
if Contains(vertices, k1) || Contains(vertices, k2) {
|
|
newgraph.AddEdge(k1, k2, e)
|
|
}
|
|
}
|
|
}
|
|
|
|
return newgraph
|
|
}
|
|
|
|
// return a channel containing the N disconnected graphs in our main graph
|
|
// we can then process each of these in parallel
|
|
func (g *Graph) GetDisconnectedGraphs() chan *Graph {
|
|
ch := make(chan *Graph)
|
|
go func() {
|
|
var start *Vertex
|
|
d := make([]*Vertex, 0) // discovered
|
|
c := g.NumVertices()
|
|
for len(d) < c {
|
|
|
|
// get an undiscovered vertex to start from
|
|
for _, s := range g.GetVertices() {
|
|
if !Contains(d, s) {
|
|
start = s
|
|
}
|
|
}
|
|
|
|
// dfs through the graph
|
|
dfs := g.DFS(start)
|
|
// filter all the collected elements into a new graph
|
|
newgraph := g.FilterGraph(g.Name, dfs)
|
|
|
|
// add number of elements found to found variable
|
|
d = append(d, dfs...) // extend
|
|
|
|
// return this new graph to the channel
|
|
ch <- newgraph
|
|
|
|
// if we've found all the elements, then we're done
|
|
// otherwise loop through to continue...
|
|
}
|
|
close(ch)
|
|
}()
|
|
return ch
|
|
}
|
|
|
|
// return the indegree for the graph
|
|
func (g *Graph) InDegree() map[*Vertex]int {
|
|
result := make(map[*Vertex]int)
|
|
for k := range g.Adjacency {
|
|
result[k] = 0 // initialize
|
|
}
|
|
|
|
for k := range g.Adjacency {
|
|
for z := range g.Adjacency[k] {
|
|
result[z] += 1
|
|
}
|
|
}
|
|
return result
|
|
}
|
|
|
|
// return the outdegree for the graph
|
|
func (g *Graph) OutDegree() map[*Vertex]int {
|
|
result := make(map[*Vertex]int)
|
|
|
|
for k := range g.Adjacency {
|
|
result[k] = 0 // initialize
|
|
for _ = range g.Adjacency[k] {
|
|
result[k] += 1
|
|
}
|
|
}
|
|
return result
|
|
}
|
|
|
|
// returns a topological sort for the graph
|
|
// based on descriptions and code from wikipedia and rosetta code
|
|
// TODO: add memoization, and cache invalidation to speed this up :)
|
|
func (g *Graph) TopologicalSort() (result []*Vertex, ok bool) { // kahn's algorithm
|
|
|
|
L := make([]*Vertex, 0) // empty list that will contain the sorted elements
|
|
S := make([]*Vertex, 0) // set of all nodes with no incoming edges
|
|
remaining := make(map[*Vertex]int) // amount of edges remaining
|
|
|
|
for v, d := range g.InDegree() {
|
|
if d == 0 {
|
|
// accumulate set of all nodes with no incoming edges
|
|
S = append(S, v)
|
|
} else {
|
|
// initialize remaining edge count from indegree
|
|
remaining[v] = d
|
|
}
|
|
}
|
|
|
|
for len(S) > 0 {
|
|
last := len(S) - 1 // remove a node v from S
|
|
v := S[last]
|
|
S = S[:last]
|
|
L = append(L, v) // add v to tail of L
|
|
for n, _ := range g.Adjacency[v] {
|
|
// for each node n remaining in the graph, consume from
|
|
// remaining, so for remaining[n] > 0
|
|
if remaining[n] > 0 {
|
|
remaining[n]-- // remove edge from the graph
|
|
if remaining[n] == 0 { // if n has no other incoming edges
|
|
S = append(S, n) // insert n into S
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// if graph has edges, eg if any value in rem is > 0
|
|
for c, in := range remaining {
|
|
if in > 0 {
|
|
for n, _ := range g.Adjacency[c] {
|
|
if remaining[n] > 0 {
|
|
return nil, false // not a dag!
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return L, true
|
|
}
|
|
|
|
func (v *Vertex) Value(key string) (string, bool) {
|
|
if value, exists := v.data[key]; exists {
|
|
return value, true
|
|
}
|
|
return "", false
|
|
}
|
|
|
|
func (v *Vertex) SetValue(key, value string) bool {
|
|
v.data[key] = value
|
|
return true
|
|
}
|
|
|
|
func (g *Graph) GetVerticesKeyValue(key, value string) chan *Vertex {
|
|
ch := make(chan *Vertex)
|
|
go func() {
|
|
for vertex := range g.GetVerticesChan() {
|
|
if v, exists := vertex.Value(key); exists && v == value {
|
|
ch <- vertex
|
|
}
|
|
}
|
|
close(ch)
|
|
}()
|
|
return ch
|
|
}
|
|
|
|
// return a pointer to the graph a vertex is on
|
|
func (v *Vertex) GetGraph() *Graph {
|
|
return v.graph
|
|
}
|
|
|
|
func HeisenbergCount(ch chan *Vertex) int {
|
|
c := 0
|
|
for x := range ch {
|
|
_ = x
|
|
c++
|
|
}
|
|
return c
|
|
}
|
|
|
|
// main kick to start the graph
|
|
func (g *Graph) Start(wg *sync.WaitGroup) { // start or continue
|
|
t, _ := g.TopologicalSort()
|
|
for _, v := range Reverse(t) {
|
|
|
|
if !v.Type.IsWatching() { // if Watch() is not running...
|
|
wg.Add(1)
|
|
// must pass in value to avoid races...
|
|
// see: https://ttboj.wordpress.com/2015/07/27/golang-parallelism-issues-causing-too-many-open-files-error/
|
|
go func(vv *Vertex) {
|
|
defer wg.Done()
|
|
vv.Type.Watch()
|
|
log.Printf("Finish: %v", vv.GetName())
|
|
}(v)
|
|
}
|
|
|
|
// ensure state is started before continuing on to next vertex
|
|
v.Type.SendEvent(eventStart, true)
|
|
|
|
}
|
|
}
|
|
|
|
func (g *Graph) Pause() {
|
|
t, _ := g.TopologicalSort()
|
|
for _, v := range t { // squeeze out the events...
|
|
v.Type.SendEvent(eventPause, true)
|
|
}
|
|
}
|
|
|
|
func (g *Graph) Exit() {
|
|
t, _ := g.TopologicalSort()
|
|
for _, v := range t { // squeeze out the events...
|
|
// turn off the taps...
|
|
// XXX: do this by sending an exit signal, and then returning
|
|
// when we hit the 'default' in the select statement!
|
|
// XXX: we can do this to quiesce, but it's not necessary now
|
|
|
|
v.Type.SendEvent(eventExit, true)
|
|
}
|
|
}
|
|
|
|
func (g *Graph) SetConvergedCallback(ctimeout int, converged chan bool) {
|
|
for v := range g.GetVerticesChan() {
|
|
v.Type.SetConvegedCallback(ctimeout, converged)
|
|
}
|
|
}
|
|
|
|
// in array function to test *vertices in a slice of *vertices
|
|
func HasVertex(v *Vertex, haystack []*Vertex) bool {
|
|
for _, r := range haystack {
|
|
if v == r {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
// reverse a list of vertices
|
|
func Reverse(vs []*Vertex) []*Vertex {
|
|
out := make([]*Vertex, 0) // empty list
|
|
l := len(vs)
|
|
for i := range vs {
|
|
out = append(out, vs[l-i-1])
|
|
}
|
|
return out
|
|
}
|