Files
mgmt/lang/core/struct_lookup_optional.go
James Shubin 37bb67dffd lang: Improve graph shape with speculative execution
Most of the time, we don't need to have a dynamic call sub graph, since
the actual function call could be represented statically as it
originally was before lambda functions were implemented. Simplifying the
graph shape has important performance benefits in terms of both keep the
graph smaller (memory, etc) and in avoiding the need to run transactions
at runtime (speed) to reshape the graph.

Co-authored-by: Samuel Gélineau <gelisam@gmail.com>
2025-04-27 22:14:51 -04:00

378 lines
12 KiB
Go

// Mgmt
// Copyright (C) James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
//
// Additional permission under GNU GPL version 3 section 7
//
// If you modify this program, or any covered work, by linking or combining it
// with embedded mcl code and modules (and that the embedded mcl code and
// modules which link with this program, contain a copy of their source code in
// the authoritative form) containing parts covered by the terms of any other
// license, the licensors of this program grant you additional permission to
// convey the resulting work. Furthermore, the licensors of this program grant
// the original author, James Shubin, additional permission to update this
// additional permission if he deems it necessary to achieve the goals of this
// additional permission.
package core
import (
"context"
"fmt"
"github.com/purpleidea/mgmt/lang/funcs"
"github.com/purpleidea/mgmt/lang/interfaces"
"github.com/purpleidea/mgmt/lang/types"
"github.com/purpleidea/mgmt/util/errwrap"
)
const (
// StructLookupOptionalFuncName is the name this function is registered
// as. This starts with an underscore so that it cannot be used from the
// lexer.
StructLookupOptionalFuncName = funcs.StructLookupOptionalFuncName
// arg names...
structLookupOptionalArgNameStruct = "struct"
structLookupOptionalArgNameField = "field"
structLookupOptionalArgNameOptional = "optional"
)
func init() {
funcs.Register(StructLookupOptionalFuncName, func() interfaces.Func { return &StructLookupOptionalFunc{} }) // must register the func and name
}
var _ interfaces.InferableFunc = &StructLookupOptionalFunc{} // ensure it meets this expectation
// StructLookupOptionalFunc is a struct field lookup function. It does a special
// trick in that it will unify on a struct that doesn't have the specified field
// in it, but in that case, it will always return the optional value. This is a
// bit different from the "default" mechanism that is used by list and map
// lookup functions.
type StructLookupOptionalFunc struct {
Type *types.Type // Kind == Struct, that is used as the struct we lookup
Out *types.Type // type of field we're extracting (also the type of optional)
built bool // was this function built yet?
init *interfaces.Init
last types.Value // last value received to use for diff
field string
result types.Value // last calculated output
}
// String returns a simple name for this function. This is needed so this struct
// can satisfy the pgraph.Vertex interface.
func (obj *StructLookupOptionalFunc) String() string {
return StructLookupOptionalFuncName
}
// ArgGen returns the Nth arg name for this function.
func (obj *StructLookupOptionalFunc) ArgGen(index int) (string, error) {
seq := []string{structLookupOptionalArgNameStruct, structLookupOptionalArgNameField, structLookupOptionalArgNameOptional}
if l := len(seq); index >= l {
return "", fmt.Errorf("index %d exceeds arg length of %d", index, l)
}
return seq[index], nil
}
// helper
func (obj *StructLookupOptionalFunc) sig() *types.Type {
st := "?1"
out := "?2"
if obj.Type != nil {
st = obj.Type.String()
}
if obj.Out != nil {
out = obj.Out.String()
}
return types.NewType(fmt.Sprintf(
"func(%s %s, %s str, %s %s) %s",
structLookupOptionalArgNameStruct, st,
structLookupOptionalArgNameField,
structLookupOptionalArgNameOptional, out,
out,
))
}
// FuncInfer takes partial type and value information from the call site of this
// function so that it can build an appropriate type signature for it. The type
// signature may include unification variables.
func (obj *StructLookupOptionalFunc) FuncInfer(partialType *types.Type, partialValues []types.Value) (*types.Type, []*interfaces.UnificationInvariant, error) {
// func(struct ?1, field str, optional ?2) ?2
// This particular function should always get called with a known string
// for the second argument. Without it being known statically, we refuse
// to build this function.
if l := 3; len(partialValues) != l {
return nil, nil, fmt.Errorf("function must have %d args", l)
}
if err := partialValues[1].Type().Cmp(types.TypeStr); err != nil {
return nil, nil, errwrap.Wrapf(err, "function field name must be a str")
}
s := partialValues[1].Str() // must not panic
if s == "" {
return nil, nil, fmt.Errorf("function must not have an empty field name")
}
// This can happen at runtime too, but we save it here for Build()!
obj.field = s
// Figure out more about the sig if any information is known statically.
if len(partialType.Ord) > 0 && partialType.Map[partialType.Ord[0]] != nil {
obj.Type = partialType.Map[partialType.Ord[0]] // assume this
if obj.Type.Kind == types.KindStruct && obj.Type.Map != nil {
if typ, exists := obj.Type.Map[s]; exists {
obj.Out = typ
}
}
}
// This isn't precise enough because we must guarantee that the field is
// in the struct and that ?1 is actually a struct, but that's okay it is
// something that we'll verify at build time! (Or skip it for optional!)
return obj.sig(), []*interfaces.UnificationInvariant{}, nil
}
// Build is run to turn the polymorphic, undetermined function, into the
// specific statically typed version. It is usually run after Unify completes,
// and must be run before Info() and any of the other Func interface methods are
// used. This function is idempotent, as long as the arg isn't changed between
// runs.
func (obj *StructLookupOptionalFunc) Build(typ *types.Type) (*types.Type, error) {
// typ is the KindFunc signature we're trying to build...
if typ.Kind != types.KindFunc {
return nil, fmt.Errorf("input type must be of kind func")
}
if len(typ.Ord) != 3 {
return nil, fmt.Errorf("the structlookup function needs exactly three args")
}
if typ.Out == nil {
return nil, fmt.Errorf("return type of function must be specified")
}
if typ.Map == nil {
return nil, fmt.Errorf("invalid input type")
}
tStruct, exists := typ.Map[typ.Ord[0]]
if !exists || tStruct == nil {
return nil, fmt.Errorf("first arg must be specified")
}
tField, exists := typ.Map[typ.Ord[1]]
if !exists || tField == nil {
return nil, fmt.Errorf("second arg must be specified")
}
if err := tField.Cmp(types.TypeStr); err != nil {
return nil, errwrap.Wrapf(err, "field must be an str")
}
tOptional, exists := typ.Map[typ.Ord[2]]
if !exists || tOptional == nil {
return nil, fmt.Errorf("third arg must be specified")
}
if err := tOptional.Cmp(typ.Out); err != nil {
return nil, errwrap.Wrapf(err, "optional arg must match return type")
}
// NOTE: We actually don't know which field this is yet, only its type!
// We don't care, because that's a runtime issue and doesn't need to be
// our problem as long as this is a struct. The only optimization we can
// add is to know statically if we're returning the optional value.
if tStruct.Kind != types.KindStruct {
return nil, fmt.Errorf("first arg must be of kind struct, got: %s", tStruct.Kind)
}
if obj.field == "" {
// programming error
return nil, fmt.Errorf("got an empty field name")
}
// If the field exists, then it MUST match typ.Out of course!
tFoundField, exists := tStruct.Map[obj.field]
if exists {
if err := typ.Out.Cmp(tFoundField); err != nil {
return nil, errwrap.Wrapf(err, "non-optional arg must match return type")
}
}
obj.Type = tStruct // struct type
obj.Out = typ.Out // type of return value
obj.built = true
return obj.sig(), nil
}
// Copy is implemented so that the obj.field value is not lost if we copy this
// function. That value is learned during FuncInfer, and previously would have
// been lost by the time we used it in Build.
func (obj *StructLookupOptionalFunc) Copy() interfaces.Func {
return &StructLookupOptionalFunc{
Type: obj.Type, // don't copy because we use this after unification
Out: obj.Out,
built: obj.built,
init: obj.init, // likely gets overwritten anyways
field: obj.field, // this we really need!
}
}
// Validate tells us if the input struct takes a valid form.
func (obj *StructLookupOptionalFunc) Validate() error {
if !obj.built {
return fmt.Errorf("function wasn't built yet")
}
if obj.Type == nil { // build must be run first
return fmt.Errorf("type is still unspecified")
}
if obj.Type.Kind != types.KindStruct {
return fmt.Errorf("type must be a kind of struct")
}
if obj.Out == nil {
return fmt.Errorf("return type must be specified")
}
// TODO: can we do better and validate more aspects here?
return nil
}
// Info returns some static info about itself. Build must be called before this
// will return correct data.
func (obj *StructLookupOptionalFunc) Info() *interfaces.Info {
// Since this function implements FuncInfer we want sig to return nil to
// avoid an accidental return of unification variables when we should be
// getting them from FuncInfer, and not from here. (During unification!)
var sig *types.Type
if obj.built {
sig = obj.sig() // helper
}
return &interfaces.Info{
Pure: true,
Memo: true,
Fast: true,
Spec: true,
Sig: sig,
Err: obj.Validate(),
}
}
// Init runs some startup code for this function.
func (obj *StructLookupOptionalFunc) Init(init *interfaces.Init) error {
obj.init = init
return nil
}
// Stream returns the changing values that this func has over time.
func (obj *StructLookupOptionalFunc) Stream(ctx context.Context) error {
defer close(obj.init.Output) // the sender closes
for {
select {
case input, ok := <-obj.init.Input:
if !ok {
return nil // can't output any more
}
//if err := input.Type().Cmp(obj.Info().Sig.Input); err != nil {
// return errwrap.Wrapf(err, "wrong function input")
//}
if obj.last != nil && input.Cmp(obj.last) == nil {
continue // value didn't change, skip it
}
obj.last = input // store for next
st := (input.Struct()[structLookupOptionalArgNameStruct]).(*types.StructValue)
field := input.Struct()[structLookupOptionalArgNameField].Str()
optional := input.Struct()[structLookupOptionalArgNameOptional]
if field == "" {
return fmt.Errorf("received empty field")
}
if obj.field == "" {
// This can happen at compile time too. Bonus!
obj.field = field // store first field
}
if field != obj.field {
return fmt.Errorf("input field changed from: `%s`, to: `%s`", obj.field, field)
}
// We know the result of this lookup statically at
// compile time, but for simplicity we check each time
// here anyways. Maybe one day there will be a fancy
// reason why this might vary over time.
var result types.Value
val, exists := st.Lookup(obj.field)
if exists {
result = val
} else {
result = optional
}
// if previous input was `2 + 4`, but now it
// changed to `1 + 5`, the result is still the
// same, so we can skip sending an update...
if obj.result != nil && result.Cmp(obj.result) == nil {
continue // result didn't change
}
obj.result = result // store new result
case <-ctx.Done():
return nil
}
select {
case obj.init.Output <- obj.result: // send
case <-ctx.Done():
return nil
}
}
}
// Call returns the result of this function.
func (obj *StructLookupOptionalFunc) Call(ctx context.Context, args []types.Value) (types.Value, error) {
if len(args) < 3 {
return nil, fmt.Errorf("not enough args")
}
st := args[0].(*types.StructValue)
field := args[1].Str()
optional := args[2]
if field == "" {
return nil, fmt.Errorf("received empty field")
}
// TODO: Is it a hack to grab this first value?
if obj.field == "" {
// This can happen at compile time too. Bonus!
obj.field = field // store first field
}
if field != obj.field {
return nil, fmt.Errorf("input field changed from: `%s`, to: `%s`", obj.field, field)
}
// We know the result of this lookup statically at compile time, but for
// simplicity we check each time here anyways. Maybe one day there will
// be a fancy reason why this might vary over time.
val, exists := st.Lookup(obj.field)
if !exists {
return optional, nil
}
return val, nil
}