Files
mgmt/lang/structs.go
James Shubin b19583e7d3 lang: Initial implementation of the mgmt language
This is an initial implementation of the mgmt language. It is a
declarative (immutable) functional, reactive, domain specific
programming language. It is intended to be a language that is:

* safe
* powerful
* easy to reason about

With these properties, we hope this language, and the mgmt engine will
allow you to model the real-time systems that you'd like to automate.

This also includes a number of other associated changes. Sorry for the
large size of this patch.
2018-01-20 08:09:29 -05:00

3052 lines
99 KiB
Go

// Mgmt
// Copyright (C) 2013-2018+ James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
package lang // TODO: move this into a sub package of lang/$name?
import (
"fmt"
"log"
"reflect"
"strings"
"github.com/purpleidea/mgmt/lang/funcs"
"github.com/purpleidea/mgmt/lang/funcs/structs"
"github.com/purpleidea/mgmt/lang/interfaces"
"github.com/purpleidea/mgmt/lang/types"
"github.com/purpleidea/mgmt/lang/unification"
"github.com/purpleidea/mgmt/pgraph"
"github.com/purpleidea/mgmt/resources"
"github.com/purpleidea/mgmt/util"
errwrap "github.com/pkg/errors"
)
// StmtBind is a representation of an assignment, which binds a variable to an
// expression.
type StmtBind struct {
Ident string
Value interfaces.Expr
}
// Interpolate returns a new node (or itself) once it has been expanded. This
// generally increases the size of the AST when it is used. It calls Interpolate
// on any child elements and builds the new node with those new node contents.
func (obj *StmtBind) Interpolate() (interfaces.Stmt, error) {
interpolated, err := obj.Value.Interpolate()
if err != nil {
return nil, err
}
return &StmtBind{
Ident: obj.Ident,
Value: interpolated,
}, nil
}
// SetScope sets the scope of the child expression bound to it. It seems this is
// necessary in order to reach this, in particular in situations when a bound
// expression points to a previously bound expression.
func (obj *StmtBind) SetScope(scope *interfaces.Scope) error {
return obj.Value.SetScope(scope)
}
// Unify returns the list of invariants that this node produces. It recursively
// calls Unify on any children elements that exist in the AST, and returns the
// collection to the caller.
func (obj *StmtBind) Unify() ([]interfaces.Invariant, error) {
var invariants []interfaces.Invariant
invars, err := obj.Value.Unify()
if err != nil {
return nil, err
}
invariants = append(invariants, invars...)
return invariants, nil
}
// Graph returns the reactive function graph which is expressed by this node. It
// includes any vertices produced by this node, and the appropriate edges to any
// vertices that are produced by its children. Nodes which fulfill the Expr
// interface directly produce vertices (and possible children) where as nodes
// that fulfill the Stmt interface do not produces vertices, where as their
// children might. This particular bind statement adds its linked expression to
// the graph. It is not logically done in the ExprVar since that could exist
// mulitple times for the single binding operation done here.
func (obj *StmtBind) Graph() (*pgraph.Graph, error) {
return obj.Value.Graph()
}
// Output for the bind statement produces no output. Any values of interest come
// from the use of the var which this binds the expression to.
func (obj *StmtBind) Output() (*interfaces.Output, error) {
return (&interfaces.Output{}).Empty(), nil
}
// StmtRes is a representation of a resource.
type StmtRes struct {
Kind string // kind of resource, eg: pkg, file, svc, etc...
Name interfaces.Expr // unique name for the res of this kind
Fields []*StmtResField // list of fields in parsed order
}
// Interpolate returns a new node (or itself) once it has been expanded. This
// generally increases the size of the AST when it is used. It calls Interpolate
// on any child elements and builds the new node with those new node contents.
// TODO: could we expand Name (if it's a list) to have this return a list of
// Res's ? We'd have to return a StmtProg containing those in its place...
func (obj *StmtRes) Interpolate() (interfaces.Stmt, error) {
name, err := obj.Name.Interpolate()
if err != nil {
return nil, err
}
fields := []*StmtResField{}
for _, x := range obj.Fields {
interpolated, err := x.Value.Interpolate()
if err != nil {
return nil, err
}
field := &StmtResField{
Field: x.Field,
Value: interpolated,
}
fields = append(fields, field)
}
return &StmtRes{
Kind: obj.Kind,
Name: name,
Fields: fields,
}, nil
}
// SetScope stores the scope for later use in this resource and it's children,
// which it propogates this downwards to.
func (obj *StmtRes) SetScope(scope *interfaces.Scope) error {
if err := obj.Name.SetScope(scope); err != nil {
return err
}
for _, x := range obj.Fields {
if err := x.Value.SetScope(scope); err != nil {
return err
}
}
return nil
}
// Unify returns the list of invariants that this node produces. It recursively
// calls Unify on any children elements that exist in the AST, and returns the
// collection to the caller.
func (obj *StmtRes) Unify() ([]interfaces.Invariant, error) {
var invariants []interfaces.Invariant
invars, err := obj.Name.Unify()
if err != nil {
return nil, err
}
invariants = append(invariants, invars...)
// name must be a string
invar := &unification.EqualsInvariant{
Expr: obj.Name,
Type: types.TypeStr,
}
invariants = append(invariants, invar)
// collect all the invariants of each field
for _, x := range obj.Fields {
invars, err := x.Value.Unify()
if err != nil {
return nil, err
}
invariants = append(invariants, invars...)
}
typMap, err := resources.LangFieldNameToStructType(obj.Kind)
if err != nil {
return nil, err
}
for _, x := range obj.Fields {
field := strings.TrimSpace(x.Field)
if len(field) != len(x.Field) {
return nil, fmt.Errorf("field was wrapped in whitespace")
}
if len(strings.Fields(field)) != 1 {
return nil, fmt.Errorf("field was empty or contained spaces")
}
typ, exists := typMap[x.Field]
if !exists {
return nil, fmt.Errorf("could not determine type for `%s` field of `%s`", x.Field, obj.Kind)
}
invar := &unification.EqualsInvariant{
Expr: x.Value,
Type: typ,
}
invariants = append(invariants, invar)
}
return invariants, nil
}
// Graph returns the reactive function graph which is expressed by this node. It
// includes any vertices produced by this node, and the appropriate edges to any
// vertices that are produced by its children. Nodes which fulfill the Expr
// interface directly produce vertices (and possible children) where as nodes
// that fulfill the Stmt interface do not produces vertices, where as their
// children might. It is interesting to note that nothing directly adds an edge
// to the resources created, but rather, once all the values (expressions) with
// no outgoing edges have produced at least a single value, then the resources
// know they're able to be built.
func (obj *StmtRes) Graph() (*pgraph.Graph, error) {
graph, err := pgraph.NewGraph("res")
if err != nil {
return nil, errwrap.Wrapf(err, "could not create graph")
}
g, err := obj.Name.Graph()
if err != nil {
return nil, err
}
graph.AddGraph(g)
for _, x := range obj.Fields {
g, err := x.Value.Graph()
if err != nil {
return nil, err
}
graph.AddGraph(g)
}
return graph, nil
}
// Output returns the output that this "program" produces. This output is what
// is used to build the output graph. This only exists for statements. The
// analogous function for expressions is Value. Those Value functions might get
// called by this Output function if they are needed to produce the output. In
// the case of this resource statement, this is definitely the case.
// XXX: Add MetaParams...
func (obj *StmtRes) Output() (*interfaces.Output, error) {
nameValue, err := obj.Name.Value()
if err != nil {
return nil, err
}
name := nameValue.Str() // must not panic
res, err := resources.NewNamedResource(obj.Kind, name)
if err != nil {
return nil, errwrap.Wrapf(err, "cannot create resource kind `%s` with named `%s`", obj.Kind, name)
}
s := reflect.ValueOf(res).Elem() // pointer to struct, then struct
if k := s.Kind(); k != reflect.Struct {
panic(fmt.Sprintf("expected struct, got: %s", k))
}
mapping, err := resources.LangFieldNameToStructFieldName(obj.Kind)
if err != nil {
return nil, err
}
ts := reflect.TypeOf(res).Elem() // pointer to struct, then struct
// FIXME: we could probably simplify this code...
for _, x := range obj.Fields {
typ, err := x.Value.Type()
if err != nil {
return nil, errwrap.Wrapf(err, "resource field `%s` did not return a type", x.Field)
}
fieldValue, err := x.Value.Value() // Value method on Expr
if err != nil {
return nil, err
}
val := fieldValue.Value() // get interface value
name, exists := mapping[x.Field] // lookup recommended field name
if !exists {
return nil, fmt.Errorf("field `%s` does not exist", x.Field) // user made a typo?
}
f := s.FieldByName(name) // exported field
if !f.IsValid() || !f.CanSet() {
return nil, fmt.Errorf("field `%s` cannot be set", name) // field is broken?
}
tf, exists := ts.FieldByName(name) // exported field type
if !exists { // illogical because of above check?
return nil, fmt.Errorf("field `%s` type does not exist", x.Field)
}
// is expr type compatible with expected field type?
t, err := types.TypeOf(tf.Type)
if err != nil {
return nil, errwrap.Wrapf(err, "resource field `%s` has no compatible type", x.Field)
}
if err := t.Cmp(typ); err != nil {
return nil, errwrap.Wrapf(err, "resource field `%s` of type `%+v`, cannot take type `%+v", x.Field, t, typ)
}
// user `pestle` on #go-nuts irc wrongly insisted that it wasn't
// right to use reflect to do all of this. what is a better way?
// first iterate through the raw pointers to the underlying type
ttt := tf.Type // ttt is field expected type
tkk := ttt.Kind()
for tkk == reflect.Ptr {
ttt = ttt.Elem() // un-nest one pointer
tkk = ttt.Kind()
}
// all our int's are src kind == reflect.Int64 in our language!
if interfaces.Debug {
log.Printf("field `%s`: type(%+v), expected(%+v)", x.Field, typ, tkk)
}
// overflow check
switch tkk { // match on destination field kind
case reflect.Int, reflect.Int64, reflect.Int32, reflect.Int16, reflect.Int8:
ff := reflect.Zero(ttt) // test on a non-ptr equivalent
if ff.OverflowInt(val.(int64)) { // this is valid!
return nil, fmt.Errorf("field `%s` is an `%s`, and value `%d` will overflow it", x.Field, f.Kind(), val)
}
case reflect.Uint, reflect.Uint64, reflect.Uint32, reflect.Uint16, reflect.Uint8:
ff := reflect.Zero(ttt)
if ff.OverflowUint(uint64(val.(int64))) { // TODO: is this correct?
return nil, fmt.Errorf("field `%s` is an `%s`, and value `%d` will overflow it", x.Field, f.Kind(), val)
}
case reflect.Float64, reflect.Float32:
ff := reflect.Zero(ttt)
if ff.OverflowFloat(val.(float64)) {
return nil, fmt.Errorf("field `%s` is an `%s`, and value `%d` will overflow it", x.Field, f.Kind(), val)
}
}
value := reflect.ValueOf(val) // raw value
value = value.Convert(ttt) // now convert our raw value properly
// finally build a new value to set
tt := tf.Type
kk := tt.Kind()
if interfaces.Debug {
log.Printf("field `%s`: start(%v)->kind(%v)", x.Field, tt, kk)
}
//fmt.Printf("start: %v || %+v\n", tt, kk)
for kk == reflect.Ptr {
tt = tt.Elem() // un-nest one pointer
kk = tt.Kind()
if interfaces.Debug {
log.Printf("field `%s`:\tloop(%v)->kind(%v)", x.Field, tt, kk)
}
// wrap in ptr by one level
valof := reflect.ValueOf(value.Interface())
value = reflect.New(valof.Type())
value.Elem().Set(valof)
}
f.Set(value) // set it !
}
return &interfaces.Output{
Resources: []resources.Res{res},
}, nil
}
// StmtResField represents a single field in the parsed resource representation.
// This does not satisfy the Stmt interface.
type StmtResField struct {
Field string
Value interfaces.Expr
}
// StmtEdge is a representation of a dependency. It also supports send/recv.
// Edges represents that the first resource (Kind/Name) listed in the
// EdgeHalfList should happen in the resource graph *before* the next resource
// in the list. If there are multiple StmtEdgeHalf structs listed, then they
// should represent a chain, eg: a->b->c, should compile into a->b & b->c. If
// specified, values are sent and received along these edges if the Send/Recv
// names are compatible and listed. In this case of Send/Recv, only lists of
// length two are legal.
type StmtEdge struct {
EdgeHalfList []*StmtEdgeHalf // represents a chain of edges
// TODO: should notify be an Expr?
Notify bool // specifies that this edge sends a notification as well
}
// Interpolate returns a new node (or itself) once it has been expanded. This
// generally increases the size of the AST when it is used. It calls Interpolate
// on any child elements and builds the new node with those new node contents.
// TODO: could we expand the Name's from the EdgeHalf (if they're lists) to have
// them return a list of Edges's ?
// XXX: type check the kind1:send -> kind2:recv fields are compatible!
// XXX: we won't know the names yet, but it's okay.
func (obj *StmtEdge) Interpolate() (interfaces.Stmt, error) {
edgeHalfList := []*StmtEdgeHalf{}
for _, x := range obj.EdgeHalfList {
name, err := x.Name.Interpolate()
if err != nil {
return nil, err
}
edgeHalf := &StmtEdgeHalf{
Kind: x.Kind,
Name: name,
SendRecv: x.SendRecv,
}
edgeHalfList = append(edgeHalfList, edgeHalf)
}
return &StmtEdge{
EdgeHalfList: edgeHalfList,
Notify: obj.Notify,
}, nil
}
// SetScope stores the scope for later use in this resource and it's children,
// which it propogates this downwards to.
func (obj *StmtEdge) SetScope(scope *interfaces.Scope) error {
for _, x := range obj.EdgeHalfList {
if err := x.Name.SetScope(scope); err != nil {
return err
}
}
return nil
}
// Unify returns the list of invariants that this node produces. It recursively
// calls Unify on any children elements that exist in the AST, and returns the
// collection to the caller.
func (obj *StmtEdge) Unify() ([]interfaces.Invariant, error) {
var invariants []interfaces.Invariant
// TODO: this sort of sideloaded validation could happen in a dedicated
// Validate() function, but for now is here for lack of a better place!
if len(obj.EdgeHalfList) == 1 {
return nil, fmt.Errorf("can't create an edge with only one half")
}
if len(obj.EdgeHalfList) == 2 {
if (obj.EdgeHalfList[0].SendRecv == "") != (obj.EdgeHalfList[1].SendRecv == "") { // xor
return nil, fmt.Errorf("you must specify both send/recv fields or neither")
}
// XXX: check that the kind1:send -> kind2:recv fields are type
// compatible! XXX: we won't know the names yet, but it's okay.
}
for _, x := range obj.EdgeHalfList {
if x.Kind == "" {
return nil, fmt.Errorf("missing resource kind in edge")
}
if x.SendRecv != "" && len(obj.EdgeHalfList) != 2 {
return nil, fmt.Errorf("send/recv edges must come in pairs")
}
invars, err := x.Name.Unify()
if err != nil {
return nil, err
}
invariants = append(invariants, invars...)
// name must be a string
invar := &unification.EqualsInvariant{
Expr: x.Name,
Type: types.TypeStr,
}
invariants = append(invariants, invar)
}
return invariants, nil
}
// Graph returns the reactive function graph which is expressed by this node. It
// includes any vertices produced by this node, and the appropriate edges to any
// vertices that are produced by its children. Nodes which fulfill the Expr
// interface directly produce vertices (and possible children) where as nodes
// that fulfill the Stmt interface do not produces vertices, where as their
// children might. It is interesting to note that nothing directly adds an edge
// to the edges created, but rather, once all the values (expressions) with no
// outgoing function graph edges have produced at least a single value, then the
// edges know they're able to be built.
func (obj *StmtEdge) Graph() (*pgraph.Graph, error) {
graph, err := pgraph.NewGraph("edge")
if err != nil {
return nil, errwrap.Wrapf(err, "could not create graph")
}
for _, x := range obj.EdgeHalfList {
g, err := x.Name.Graph()
if err != nil {
return nil, err
}
graph.AddGraph(g)
}
return graph, nil
}
// Output returns the output that this "program" produces. This output is what
// is used to build the output graph. This only exists for statements. The
// analogous function for expressions is Value. Those Value functions might get
// called by this Output function if they are needed to produce the output. In
// the case of this edge statement, this is definitely the case. This edge stmt
// returns output consisting of edges.
func (obj *StmtEdge) Output() (*interfaces.Output, error) {
edges := []*interfaces.Edge{}
for i := 0; i < len(obj.EdgeHalfList)-1; i++ {
nameValue1, err := obj.EdgeHalfList[i].Name.Value()
if err != nil {
return nil, err
}
name1 := nameValue1.Str() // must not panic
nameValue2, err := obj.EdgeHalfList[i+1].Name.Value()
if err != nil {
return nil, err
}
name2 := nameValue2.Str() // must not panic
edge := &interfaces.Edge{
Kind1: obj.EdgeHalfList[i].Kind,
Name1: name1,
Send: obj.EdgeHalfList[i].SendRecv,
Kind2: obj.EdgeHalfList[i+1].Kind,
Name2: name2,
Recv: obj.EdgeHalfList[i+1].SendRecv,
Notify: obj.Notify,
}
edges = append(edges, edge)
}
return &interfaces.Output{
Edges: edges,
}, nil
}
// StmtEdgeHalf represents half of an edge in the parsed edge representation.
// This does not satisfy the Stmt interface.
type StmtEdgeHalf struct {
Kind string // kind of resource, eg: pkg, file, svc, etc...
Name interfaces.Expr // unique name for the res of this kind
SendRecv string // name of field to send/recv from, empty to ignore
}
// StmtIf represents an if condition that contains between one and two branches
// of statements to be executed based on the evaluation of the boolean condition
// over time. In particular, this is different from an ExprIf which returns a
// value, where as this produces some Output. Normally if one of the branches is
// optional, it is the else branch, although this struct allows either to be
// optional, even if it is not commonly used.
type StmtIf struct {
Condition interfaces.Expr
ThenBranch interfaces.Stmt // optional, but usually present
ElseBranch interfaces.Stmt // optional
}
// Interpolate returns a new node (or itself) once it has been expanded. This
// generally increases the size of the AST when it is used. It calls Interpolate
// on any child elements and builds the new node with those new node contents.
func (obj *StmtIf) Interpolate() (interfaces.Stmt, error) {
condition, err := obj.Condition.Interpolate()
if err != nil {
return nil, errwrap.Wrapf(err, "could not interpolate Condition")
}
var thenBranch interfaces.Stmt
if obj.ThenBranch != nil {
thenBranch, err = obj.ThenBranch.Interpolate()
if err != nil {
return nil, errwrap.Wrapf(err, "could not interpolate ThenBranch")
}
}
var elseBranch interfaces.Stmt
if obj.ElseBranch != nil {
elseBranch, err = obj.ElseBranch.Interpolate()
if err != nil {
return nil, errwrap.Wrapf(err, "could not interpolate ElseBranch")
}
}
return &StmtIf{
Condition: condition,
ThenBranch: thenBranch,
ElseBranch: elseBranch,
}, nil
}
// SetScope stores the scope for later use in this resource and it's children,
// which it propogates this downwards to.
func (obj *StmtIf) SetScope(scope *interfaces.Scope) error {
if err := obj.Condition.SetScope(scope); err != nil {
return err
}
if obj.ThenBranch != nil {
if err := obj.ThenBranch.SetScope(scope); err != nil {
return err
}
}
if obj.ElseBranch != nil {
if err := obj.ElseBranch.SetScope(scope); err != nil {
return err
}
}
return nil
}
// Unify returns the list of invariants that this node produces. It recursively
// calls Unify on any children elements that exist in the AST, and returns the
// collection to the caller.
func (obj *StmtIf) Unify() ([]interfaces.Invariant, error) {
var invariants []interfaces.Invariant
// conditional expression might have some children invariants to share
condition, err := obj.Condition.Unify()
if err != nil {
return nil, err
}
invariants = append(invariants, condition...)
// the condition must ultimately be a boolean
conditionInvar := &unification.EqualsInvariant{
Expr: obj.Condition,
Type: types.TypeBool,
}
invariants = append(invariants, conditionInvar)
// recurse into the two branches
if obj.ThenBranch != nil {
thenBranch, err := obj.ThenBranch.Unify()
if err != nil {
return nil, err
}
invariants = append(invariants, thenBranch...)
}
if obj.ElseBranch != nil {
elseBranch, err := obj.ElseBranch.Unify()
if err != nil {
return nil, err
}
invariants = append(invariants, elseBranch...)
}
return invariants, nil
}
// Graph returns the reactive function graph which is expressed by this node. It
// includes any vertices produced by this node, and the appropriate edges to any
// vertices that are produced by its children. Nodes which fulfill the Expr
// interface directly produce vertices (and possible children) where as nodes
// that fulfill the Stmt interface do not produces vertices, where as their
// children might. This particular if statement doesn't do anything clever here
// other than adding in both branches of the graph. Since we're functional, this
// shouldn't have any ill effects.
// XXX: is this completely true if we're running technically impure, but safe
// built-in functions on both branches? Can we turn off half of this?
func (obj *StmtIf) Graph() (*pgraph.Graph, error) {
graph, err := pgraph.NewGraph("if")
if err != nil {
return nil, errwrap.Wrapf(err, "could not create graph")
}
g, err := obj.Condition.Graph()
if err != nil {
return nil, err
}
graph.AddGraph(g)
for _, x := range []interfaces.Stmt{obj.ThenBranch, obj.ElseBranch} {
if x == nil {
continue
}
g, err := x.Graph()
if err != nil {
return nil, err
}
graph.AddGraph(g)
}
return graph, nil
}
// Output returns the output that this "program" produces. This output is what
// is used to build the output graph. This only exists for statements. The
// analogous function for expressions is Value. Those Value functions might get
// called by this Output function if they are needed to produce the output.
func (obj *StmtIf) Output() (*interfaces.Output, error) {
b, err := obj.Condition.Value()
if err != nil {
return nil, err
}
var output *interfaces.Output
if b.Bool() { // must not panic!
if obj.ThenBranch != nil { // logically then branch is optional
output, err = obj.ThenBranch.Output()
}
} else {
if obj.ElseBranch != nil { // else branch is optional
output, err = obj.ElseBranch.Output()
}
}
if err != nil {
return nil, err
}
resources := []resources.Res{}
if output != nil {
resources = append(resources, output.Resources...)
//edges = output.Edges
}
return &interfaces.Output{
Resources: resources,
//Edges: edges,
}, nil
}
// StmtProg represents a list of stmt's. This usually occurs at the top-level of
// any program, and often within an if stmt. It also contains the logic so that
// the bind statement's are correctly applied in this scope, and irrespective of
// their order of definition.
type StmtProg struct {
Prog []interfaces.Stmt
}
// Interpolate returns a new node (or itself) once it has been expanded. This
// generally increases the size of the AST when it is used. It calls Interpolate
// on any child elements and builds the new node with those new node contents.
func (obj *StmtProg) Interpolate() (interfaces.Stmt, error) {
prog := []interfaces.Stmt{}
for _, x := range obj.Prog {
interpolated, err := x.Interpolate()
if err != nil {
return nil, err
}
prog = append(prog, interpolated)
}
return &StmtProg{
Prog: prog,
}, nil
}
// SetScope propagates the scope into its list of statements. It does so
// cleverly by first collecting all bind statements and adding those into the
// scope after checking for any collisions. Finally it pushes the new scope
// downwards to all child statements.
func (obj *StmtProg) SetScope(scope *interfaces.Scope) error {
newScope := scope.Copy()
binds := []*StmtBind{}
names := make(map[string]struct{})
// collect all the bind statements in the first pass
// this allows them to appear out of order in this scope
for _, x := range obj.Prog {
bind, ok := x.(*StmtBind)
if !ok {
continue
}
// check for duplicates *in this scope*
if _, exists := names[bind.Ident]; exists {
return fmt.Errorf("var `%s` already exists in this scope", bind.Ident)
}
names[bind.Ident] = struct{}{} // add to scope
binds = append(binds, bind)
}
// now we know there are no duplicates in this scope, there is only
// the possibility of shadowing a variable from the parent scope...
for _, bind := range binds {
// add to scope, (overwriting, aka shadowing is ok)
newScope.Variables[bind.Ident] = bind.Value
}
// now set the child scopes (even on bind...)
for _, x := range obj.Prog {
if err := x.SetScope(newScope); err != nil {
return err
}
}
return nil
}
// Unify returns the list of invariants that this node produces. It recursively
// calls Unify on any children elements that exist in the AST, and returns the
// collection to the caller.
func (obj *StmtProg) Unify() ([]interfaces.Invariant, error) {
var invariants []interfaces.Invariant
// collect all the invariants of each sub-expression
for _, x := range obj.Prog {
invars, err := x.Unify()
if err != nil {
return nil, err
}
invariants = append(invariants, invars...)
}
return invariants, nil
}
// Graph returns the reactive function graph which is expressed by this node. It
// includes any vertices produced by this node, and the appropriate edges to any
// vertices that are produced by its children. Nodes which fulfill the Expr
// interface directly produce vertices (and possible children) where as nodes
// that fulfill the Stmt interface do not produces vertices, where as their
// children might.
func (obj *StmtProg) Graph() (*pgraph.Graph, error) {
graph, err := pgraph.NewGraph("prog")
if err != nil {
return nil, errwrap.Wrapf(err, "could not create graph")
}
// collect all graphs that need to be included
for _, x := range obj.Prog {
g, err := x.Graph()
if err != nil {
return nil, err
}
graph.AddGraph(g)
}
return graph, nil
}
// Output returns the output that this "program" produces. This output is what
// is used to build the output graph. This only exists for statements. The
// analogous function for expressions is Value. Those Value functions might get
// called by this Output function if they are needed to produce the output.
func (obj *StmtProg) Output() (*interfaces.Output, error) {
resources := []resources.Res{}
for _, stmt := range obj.Prog {
output, err := stmt.Output()
if err != nil {
return nil, err
}
if output != nil {
resources = append(resources, output.Resources...)
//edges = append(edges, output.Edges)
}
}
return &interfaces.Output{
Resources: resources,
//Edges: edges,
}, nil
}
// StmtComment is a representation of a comment. It is currently unused. It
// probably makes sense to make a third kind of Node (not a Stmt or an Expr) so
// that comments can still be part of the AST (for eventual automatic code
// formatting) but so that they can exist anywhere in the code. Currently these
// are dropped by the lexer.
type StmtComment struct {
Value string
}
// Interpolate returns a new node (or itself) once it has been expanded. This
// generally increases the size of the AST when it is used. It calls Interpolate
// on any child elements and builds the new node with those new node contents.
// Here it simply returns itself, as no interpolation is possible.
func (obj *StmtComment) Interpolate() (interfaces.Stmt, error) { return obj, nil }
// SetScope does nothing for this struct, because it has no child nodes, and it
// does not need to know about the parent scope.
func (obj *StmtComment) SetScope(*interfaces.Scope) error { return nil }
// Unify returns the list of invariants that this node produces. It recursively
// calls Unify on any children elements that exist in the AST, and returns the
// collection to the caller.
func (obj *StmtComment) Unify() ([]interfaces.Invariant, error) {
return []interfaces.Invariant{}, nil
}
// Graph returns the reactive function graph which is expressed by this node. It
// includes any vertices produced by this node, and the appropriate edges to any
// vertices that are produced by its children. Nodes which fulfill the Expr
// interface directly produce vertices (and possible children) where as nodes
// that fulfill the Stmt interface do not produces vertices, where as their
// children might. This particular graph does nothing clever.
func (obj *StmtComment) Graph() (*pgraph.Graph, error) {
graph, err := pgraph.NewGraph("comment")
if err != nil {
return nil, errwrap.Wrapf(err, "could not create graph")
}
return graph, nil
}
// Output for the comment statement produces no output.
func (obj *StmtComment) Output() (*interfaces.Output, error) {
return (&interfaces.Output{}).Empty(), nil
}
// ExprBool is a representation of a boolean.
type ExprBool struct {
V bool
}
// String returns a short representation of this expression.
func (obj *ExprBool) String() string { return fmt.Sprintf("bool(%t)", obj.V) }
// Interpolate returns a new node (or itself) once it has been expanded. This
// generally increases the size of the AST when it is used. It calls Interpolate
// on any child elements and builds the new node with those new node contents.
// Here it simply returns itself, as no interpolation is possible.
func (obj *ExprBool) Interpolate() (interfaces.Expr, error) { return obj, nil }
// SetScope does nothing for this struct, because it has no child nodes, and it
// does not need to know about the parent scope.
func (obj *ExprBool) SetScope(*interfaces.Scope) error { return nil }
// SetType will make no changes if called here. It will error if anything other
// than a Bool is passed in, and doesn't need to be called for this expr to work.
func (obj *ExprBool) SetType(typ *types.Type) error { return types.TypeBool.Cmp(typ) }
// Type returns the type of this expression. This method always returns Bool here.
func (obj *ExprBool) Type() (*types.Type, error) { return types.TypeBool, nil }
// Unify returns the list of invariants that this node produces. It recursively
// calls Unify on any children elements that exist in the AST, and returns the
// collection to the caller.
func (obj *ExprBool) Unify() ([]interfaces.Invariant, error) {
invariants := []interfaces.Invariant{
&unification.EqualsInvariant{
Expr: obj,
Type: types.TypeBool,
},
}
return invariants, nil
}
// Graph returns the reactive function graph which is expressed by this node. It
// includes any vertices produced by this node, and the appropriate edges to any
// vertices that are produced by its children. Nodes which fulfill the Expr
// interface directly produce vertices (and possible children) where as nodes
// that fulfill the Stmt interface do not produces vertices, where as their
// children might. This returns a graph with a single vertex (itself) in it.
func (obj *ExprBool) Graph() (*pgraph.Graph, error) {
graph, err := pgraph.NewGraph("bool")
if err != nil {
return nil, errwrap.Wrapf(err, "could not create graph")
}
graph.AddVertex(obj)
return graph, nil
}
// Func returns the reactive stream of values that this expression produces.
func (obj *ExprBool) Func() (interfaces.Func, error) {
return &structs.ConstFunc{
Value: &types.BoolValue{V: obj.V},
}, nil
}
// SetValue for a bool expression is always populated statically, and does not
// ever receive any incoming values (no incoming edges) so this should never be
// called. It has been implemented for uniformity.
func (obj *ExprBool) SetValue(value types.Value) error {
if err := types.TypeBool.Cmp(value.Type()); err != nil {
return err
}
obj.V = value.Bool()
return nil
}
// Value returns the value of this expression in our type system. This will
// usually only be valid once the engine has run and values have been produced.
// This might get called speculatively (early) during unification to learn more.
// This particular value is always known since it is a constant.
func (obj *ExprBool) Value() (types.Value, error) {
return &types.BoolValue{
V: obj.V,
}, nil
}
// ExprStr is a representation of a string.
type ExprStr struct {
V string // value of this string
}
// String returns a short representation of this expression.
func (obj *ExprStr) String() string { return fmt.Sprintf("str(%s)", obj.V) }
// Interpolate returns a new node (or itself) once it has been expanded. This
// generally increases the size of the AST when it is used. It calls Interpolate
// on any child elements and builds the new node with those new node contents.
// Here it attempts to expand the string if there are any internal variables
// which need interpolation. If any are found, it returns a larger AST which
// has a function which returns a string as its root. Otherwise it returns
// itself.
func (obj *ExprStr) Interpolate() (interfaces.Expr, error) {
pos := &Pos{
// column/line number, starting at 1
//Column: -1, // TODO
//Line: -1, // TODO
//Filename: "", // optional source filename, if known
}
result, err := InterpolateStr(obj.V, pos)
if err != nil {
return nil, err
}
if result == nil {
return obj, nil // pass self through, no changes
}
// we got something, overwrite the existing static str
return result, nil // replacement
}
// SetScope does nothing for this struct, because it has no child nodes, and it
// does not need to know about the parent scope.
func (obj *ExprStr) SetScope(*interfaces.Scope) error { return nil }
// SetType will make no changes if called here. It will error if anything other
// than an Str is passed in, and doesn't need to be called for this expr to work.
func (obj *ExprStr) SetType(typ *types.Type) error { return types.TypeStr.Cmp(typ) }
// Type returns the type of this expression. This method always returns Str here.
func (obj *ExprStr) Type() (*types.Type, error) { return types.TypeStr, nil }
// Unify returns the list of invariants that this node produces. It recursively
// calls Unify on any children elements that exist in the AST, and returns the
// collection to the caller.
func (obj *ExprStr) Unify() ([]interfaces.Invariant, error) {
invariants := []interfaces.Invariant{
&unification.EqualsInvariant{
Expr: obj, // unique id for this expression (a pointer)
Type: types.TypeStr,
},
}
return invariants, nil
}
// Graph returns the reactive function graph which is expressed by this node. It
// includes any vertices produced by this node, and the appropriate edges to any
// vertices that are produced by its children. Nodes which fulfill the Expr
// interface directly produce vertices (and possible children) where as nodes
// that fulfill the Stmt interface do not produces vertices, where as their
// children might. This returns a graph with a single vertex (itself) in it.
func (obj *ExprStr) Graph() (*pgraph.Graph, error) {
graph, err := pgraph.NewGraph("str")
if err != nil {
return nil, errwrap.Wrapf(err, "could not create graph")
}
graph.AddVertex(obj)
return graph, nil
}
// Func returns the reactive stream of values that this expression produces.
func (obj *ExprStr) Func() (interfaces.Func, error) {
return &structs.ConstFunc{
Value: &types.StrValue{V: obj.V},
}, nil
}
// SetValue for an str expression is always populated statically, and does not
// ever receive any incoming values (no incoming edges) so this should never be
// called. It has been implemented for uniformity.
func (obj *ExprStr) SetValue(value types.Value) error {
if err := types.TypeStr.Cmp(value.Type()); err != nil {
return err
}
obj.V = value.Str()
return nil
}
// Value returns the value of this expression in our type system. This will
// usually only be valid once the engine has run and values have been produced.
// This might get called speculatively (early) during unification to learn more.
// This particular value is always known since it is a constant.
func (obj *ExprStr) Value() (types.Value, error) {
return &types.StrValue{
V: obj.V,
}, nil
}
// ExprInt is a representation of an int.
type ExprInt struct {
V int64
}
// String returns a short representation of this expression.
func (obj *ExprInt) String() string { return fmt.Sprintf("int(%d)", obj.V) }
// Interpolate returns a new node (or itself) once it has been expanded. This
// generally increases the size of the AST when it is used. It calls Interpolate
// on any child elements and builds the new node with those new node contents.
// Here it simply returns itself, as no interpolation is possible.
func (obj *ExprInt) Interpolate() (interfaces.Expr, error) { return obj, nil }
// SetScope does nothing for this struct, because it has no child nodes, and it
// does not need to know about the parent scope.
func (obj *ExprInt) SetScope(*interfaces.Scope) error { return nil }
// SetType will make no changes if called here. It will error if anything other
// than an Int is passed in, and doesn't need to be called for this expr to work.
func (obj *ExprInt) SetType(typ *types.Type) error { return types.TypeInt.Cmp(typ) }
// Type returns the type of this expression. This method always returns Int here.
func (obj *ExprInt) Type() (*types.Type, error) { return types.TypeInt, nil }
// Unify returns the list of invariants that this node produces. It recursively
// calls Unify on any children elements that exist in the AST, and returns the
// collection to the caller.
func (obj *ExprInt) Unify() ([]interfaces.Invariant, error) {
invariants := []interfaces.Invariant{
&unification.EqualsInvariant{
Expr: obj,
Type: types.TypeInt,
},
}
return invariants, nil
}
// Graph returns the reactive function graph which is expressed by this node. It
// includes any vertices produced by this node, and the appropriate edges to any
// vertices that are produced by its children. Nodes which fulfill the Expr
// interface directly produce vertices (and possible children) where as nodes
// that fulfill the Stmt interface do not produces vertices, where as their
// children might. This returns a graph with a single vertex (itself) in it.
func (obj *ExprInt) Graph() (*pgraph.Graph, error) {
graph, err := pgraph.NewGraph("int")
if err != nil {
return nil, errwrap.Wrapf(err, "could not create graph")
}
graph.AddVertex(obj)
return graph, nil
}
// Func returns the reactive stream of values that this expression produces.
func (obj *ExprInt) Func() (interfaces.Func, error) {
return &structs.ConstFunc{
Value: &types.IntValue{V: obj.V},
}, nil
}
// SetValue for an int expression is always populated statically, and does not
// ever receive any incoming values (no incoming edges) so this should never be
// called. It has been implemented for uniformity.
func (obj *ExprInt) SetValue(value types.Value) error {
if err := types.TypeInt.Cmp(value.Type()); err != nil {
return err
}
obj.V = value.Int()
return nil
}
// Value returns the value of this expression in our type system. This will
// usually only be valid once the engine has run and values have been produced.
// This might get called speculatively (early) during unification to learn more.
// This particular value is always known since it is a constant.
func (obj *ExprInt) Value() (types.Value, error) {
return &types.IntValue{
V: obj.V,
}, nil
}
// ExprFloat is a representation of a float.
type ExprFloat struct {
V float64
}
// String returns a short representation of this expression.
func (obj *ExprFloat) String() string {
return fmt.Sprintf("float(%g)", obj.V) // TODO: %f instead?
}
// Interpolate returns a new node (or itself) once it has been expanded. This
// generally increases the size of the AST when it is used. It calls Interpolate
// on any child elements and builds the new node with those new node contents.
// Here it simply returns itself, as no interpolation is possible.
func (obj *ExprFloat) Interpolate() (interfaces.Expr, error) { return obj, nil }
// SetScope does nothing for this struct, because it has no child nodes, and it
// does not need to know about the parent scope.
func (obj *ExprFloat) SetScope(*interfaces.Scope) error { return nil }
// SetType will make no changes if called here. It will error if anything other
// than a Float is passed in, and doesn't need to be called for this expr to work.
func (obj *ExprFloat) SetType(typ *types.Type) error { return types.TypeFloat.Cmp(typ) }
// Type returns the type of this expression. This method always returns Float here.
func (obj *ExprFloat) Type() (*types.Type, error) { return types.TypeFloat, nil }
// Unify returns the list of invariants that this node produces. It recursively
// calls Unify on any children elements that exist in the AST, and returns the
// collection to the caller.
func (obj *ExprFloat) Unify() ([]interfaces.Invariant, error) {
invariants := []interfaces.Invariant{
&unification.EqualsInvariant{
Expr: obj,
Type: types.TypeFloat,
},
}
return invariants, nil
}
// Graph returns the reactive function graph which is expressed by this node. It
// includes any vertices produced by this node, and the appropriate edges to any
// vertices that are produced by its children. Nodes which fulfill the Expr
// interface directly produce vertices (and possible children) where as nodes
// that fulfill the Stmt interface do not produces vertices, where as their
// children might. This returns a graph with a single vertex (itself) in it.
func (obj *ExprFloat) Graph() (*pgraph.Graph, error) {
graph, err := pgraph.NewGraph("float")
if err != nil {
return nil, errwrap.Wrapf(err, "could not create graph")
}
graph.AddVertex(obj)
return graph, nil
}
// Func returns the reactive stream of values that this expression produces.
func (obj *ExprFloat) Func() (interfaces.Func, error) {
return &structs.ConstFunc{
Value: &types.FloatValue{V: obj.V},
}, nil
}
// SetValue for a float expression is always populated statically, and does not
// ever receive any incoming values (no incoming edges) so this should never be
// called. It has been implemented for uniformity.
func (obj *ExprFloat) SetValue(value types.Value) error {
if err := types.TypeFloat.Cmp(value.Type()); err != nil {
return err
}
obj.V = value.Float()
return nil
}
// Value returns the value of this expression in our type system. This will
// usually only be valid once the engine has run and values have been produced.
// This might get called speculatively (early) during unification to learn more.
// This particular value is always known since it is a constant.
func (obj *ExprFloat) Value() (types.Value, error) {
return &types.FloatValue{
V: obj.V,
}, nil
}
// ExprList is a representation of a list.
type ExprList struct {
typ *types.Type
//Elements []*ExprListElement
Elements []interfaces.Expr
}
// String returns a short representation of this expression.
func (obj *ExprList) String() string {
var s []string
for _, x := range obj.Elements {
s = append(s, x.String())
}
return fmt.Sprintf("list(%s)", strings.Join(s, ", "))
}
// Interpolate returns a new node (or itself) once it has been expanded. This
// generally increases the size of the AST when it is used. It calls Interpolate
// on any child elements and builds the new node with those new node contents.
func (obj *ExprList) Interpolate() (interfaces.Expr, error) {
elements := []interfaces.Expr{}
for _, x := range obj.Elements {
interpolated, err := x.Interpolate()
if err != nil {
return nil, err
}
elements = append(elements, interpolated)
}
return &ExprList{
typ: obj.typ,
Elements: elements,
}, nil
}
// SetScope stores the scope for later use in this resource and it's children,
// which it propogates this downwards to.
func (obj *ExprList) SetScope(scope *interfaces.Scope) error {
for _, x := range obj.Elements {
if err := x.SetScope(scope); err != nil {
return err
}
}
return nil
}
// SetType is used to set the type of this expression once it is known. This
// usually happens during type unification, but it can also happen during
// parsing if a type is specified explicitly. Since types are static and don't
// change on expressions, if you attempt to set a different type than what has
// previously been set (when not initially known) this will error.
func (obj *ExprList) SetType(typ *types.Type) error {
// TODO: should we ensure this is set to a KindList ?
if obj.typ != nil {
return obj.typ.Cmp(typ) // if not set, ensure it doesn't change
}
obj.typ = typ // set
return nil
}
// Type returns the type of this expression.
func (obj *ExprList) Type() (*types.Type, error) {
var typ *types.Type
var err error
for i, expr := range obj.Elements {
etyp, e := expr.Type()
if e != nil {
err = errwrap.Wrapf(e, "list index `%d` did not return a type", i)
break
}
if typ == nil {
typ = etyp
}
if e := typ.Cmp(etyp); e != nil {
err = errwrap.Wrapf(e, "list elements have different types")
break
}
}
if err == nil && obj.typ == nil && len(obj.Elements) > 0 {
return &types.Type{ // speculate!
Kind: types.KindList,
Val: typ,
}, nil
}
if obj.typ == nil {
return nil, interfaces.ErrTypeCurrentlyUnknown
}
return obj.typ, nil
}
// Unify returns the list of invariants that this node produces. It recursively
// calls Unify on any children elements that exist in the AST, and returns the
// collection to the caller.
func (obj *ExprList) Unify() ([]interfaces.Invariant, error) {
var invariants []interfaces.Invariant
// if this was set explicitly by the parser
if obj.typ != nil {
invar := &unification.EqualsInvariant{
Expr: obj,
Type: obj.typ,
}
invariants = append(invariants, invar)
}
// collect all the invariants of each sub-expression
for _, x := range obj.Elements {
invars, err := x.Unify()
if err != nil {
return nil, err
}
invariants = append(invariants, invars...)
}
// each element must be equal to each other
if len(obj.Elements) > 1 {
invariant := &unification.EqualityInvariantList{
Exprs: obj.Elements,
}
invariants = append(invariants, invariant)
}
// we should be type list of (type of element)
if len(obj.Elements) > 0 {
invariant := &unification.EqualityWrapListInvariant{
Expr1: obj, // unique id for this expression (a pointer)
Expr2Val: obj.Elements[0],
}
invariants = append(invariants, invariant)
}
return invariants, nil
}
// Graph returns the reactive function graph which is expressed by this node. It
// includes any vertices produced by this node, and the appropriate edges to any
// vertices that are produced by its children. Nodes which fulfill the Expr
// interface directly produce vertices (and possible children) where as nodes
// that fulfill the Stmt interface do not produces vertices, where as their
// children might. This returns a graph with a single vertex (itself) in it, and
// the edges from all of the child graphs to this.
func (obj *ExprList) Graph() (*pgraph.Graph, error) {
graph, err := pgraph.NewGraph("list")
if err != nil {
return nil, errwrap.Wrapf(err, "could not create graph")
}
graph.AddVertex(obj)
// each list element needs to point to the final list expression
for index, x := range obj.Elements { // list elements in order
g, err := x.Graph()
if err != nil {
return nil, err
}
fieldName := fmt.Sprintf("%d", index) // argNames as integers!
edge := &funcs.Edge{Args: []string{fieldName}}
var once bool
edgeGenFn := func(v1, v2 pgraph.Vertex) pgraph.Edge {
if once {
panic(fmt.Sprintf("edgeGenFn for list, index `%d` was called twice", index))
}
once = true
return edge
}
graph.AddEdgeGraphVertexLight(g, obj, edgeGenFn) // element -> list
}
return graph, nil
}
// Func returns the reactive stream of values that this expression produces.
func (obj *ExprList) Func() (interfaces.Func, error) {
typ, err := obj.Type()
if err != nil {
return nil, err
}
// composite func (list, map, struct)
return &structs.CompositeFunc{
Type: typ,
Len: len(obj.Elements),
}, nil
}
// SetValue here is a no-op, because algorithmically when this is called from
// the func engine, the child elements (the list elements) will have had this
// done to them first, and as such when we try and retrieve the set value from
// this expression by calling `Value`, it will build it from scratch!
func (obj *ExprList) SetValue(value types.Value) error {
if err := obj.typ.Cmp(value.Type()); err != nil {
return err
}
// noop!
//obj.V = value
return nil
}
// Value returns the value of this expression in our type system. This will
// usually only be valid once the engine has run and values have been produced.
// This might get called speculatively (early) during unification to learn more.
func (obj *ExprList) Value() (types.Value, error) {
values := []types.Value{}
var typ *types.Type
for i, expr := range obj.Elements {
etyp, err := expr.Type()
if err != nil {
return nil, errwrap.Wrapf(err, "list index `%d` did not return a type", i)
}
if typ == nil {
typ = etyp
}
if err := typ.Cmp(etyp); err != nil {
return nil, errwrap.Wrapf(err, "list elements have different types")
}
value, err := expr.Value()
if err != nil {
return nil, err
}
if value == nil {
return nil, fmt.Errorf("value for list index `%d` was nil", i)
}
values = append(values, value)
}
if len(obj.Elements) > 0 {
t := &types.Type{
Kind: types.KindList,
Val: typ,
}
// Run SetType to ensure type is consistent with what we found,
// which is an easy way to ensure the Cmp passes as expected...
if err := obj.SetType(t); err != nil {
return nil, errwrap.Wrapf(err, "type did not match expected!")
}
}
return &types.ListValue{
T: obj.typ,
V: values,
}, nil
}
// ExprMap is a representation of a (dictionary) map.
type ExprMap struct {
typ *types.Type
KVs []*ExprMapKV
}
// String returns a short representation of this expression.
func (obj *ExprMap) String() string {
var s []string
for _, x := range obj.KVs {
s = append(s, fmt.Sprintf("%s: %s", x.Key.String(), x.Val.String()))
}
return fmt.Sprintf("map(%s)", strings.Join(s, ", "))
}
// Interpolate returns a new node (or itself) once it has been expanded. This
// generally increases the size of the AST when it is used. It calls Interpolate
// on any child elements and builds the new node with those new node contents.
func (obj *ExprMap) Interpolate() (interfaces.Expr, error) {
kvs := []*ExprMapKV{}
for _, x := range obj.KVs {
interpolatedKey, err := x.Key.Interpolate()
if err != nil {
return nil, err
}
interpolatedVal, err := x.Val.Interpolate()
if err != nil {
return nil, err
}
kv := &ExprMapKV{
Key: interpolatedKey,
Val: interpolatedVal,
}
kvs = append(kvs, kv)
}
return &ExprMap{
typ: obj.typ,
KVs: kvs,
}, nil
}
// SetScope stores the scope for later use in this resource and it's children,
// which it propogates this downwards to.
func (obj *ExprMap) SetScope(scope *interfaces.Scope) error {
for _, x := range obj.KVs {
if err := x.Key.SetScope(scope); err != nil {
return err
}
if err := x.Val.SetScope(scope); err != nil {
return err
}
}
return nil
}
// SetType is used to set the type of this expression once it is known. This
// usually happens during type unification, but it can also happen during
// parsing if a type is specified explicitly. Since types are static and don't
// change on expressions, if you attempt to set a different type than what has
// previously been set (when not initially known) this will error.
func (obj *ExprMap) SetType(typ *types.Type) error {
// TODO: should we ensure this is set to a KindMap ?
if obj.typ != nil {
return obj.typ.Cmp(typ) // if not set, ensure it doesn't change
}
obj.typ = typ // set
return nil
}
// Type returns the type of this expression.
func (obj *ExprMap) Type() (*types.Type, error) {
var ktyp, vtyp *types.Type
var err error
for i, x := range obj.KVs {
// keys
kt, e := x.Key.Type()
if e != nil {
err = errwrap.Wrapf(e, "map key, index `%d` did not return a type", i)
break
}
if ktyp == nil {
ktyp = kt
}
if e := ktyp.Cmp(kt); e != nil {
err = errwrap.Wrapf(e, "key elements have different types")
break
}
// vals
vt, e := x.Val.Type()
if e != nil {
err = errwrap.Wrapf(e, "map val, index `%d` did not return a type", i)
break
}
if vtyp == nil {
vtyp = vt
}
if e := vtyp.Cmp(vt); e != nil {
err = errwrap.Wrapf(e, "val elements have different types")
break
}
}
if err == nil && obj.typ == nil && len(obj.KVs) > 0 {
return &types.Type{ // speculate!
Kind: types.KindMap,
Key: ktyp,
Val: vtyp,
}, nil
}
if obj.typ == nil {
return nil, interfaces.ErrTypeCurrentlyUnknown
}
return obj.typ, nil
}
// Unify returns the list of invariants that this node produces. It recursively
// calls Unify on any children elements that exist in the AST, and returns the
// collection to the caller.
func (obj *ExprMap) Unify() ([]interfaces.Invariant, error) {
var invariants []interfaces.Invariant
// if this was set explicitly by the parser
if obj.typ != nil {
invar := &unification.EqualsInvariant{
Expr: obj,
Type: obj.typ,
}
invariants = append(invariants, invar)
}
// collect all the invariants of each sub-expression
for _, x := range obj.KVs {
keyInvars, err := x.Key.Unify()
if err != nil {
return nil, err
}
invariants = append(invariants, keyInvars...)
valInvars, err := x.Val.Unify()
if err != nil {
return nil, err
}
invariants = append(invariants, valInvars...)
}
// all keys must have the same type, all vals must have the same type
if len(obj.KVs) > 1 {
keyExprs, valExprs := []interfaces.Expr{}, []interfaces.Expr{}
for i := range obj.KVs {
keyExprs = append(keyExprs, obj.KVs[i].Key)
valExprs = append(valExprs, obj.KVs[i].Val)
}
keyInvariant := &unification.EqualityInvariantList{
Exprs: keyExprs,
}
invariants = append(invariants, keyInvariant)
valInvariant := &unification.EqualityInvariantList{
Exprs: valExprs,
}
invariants = append(invariants, valInvariant)
}
// we should be type map of (type of element)
if len(obj.KVs) > 0 {
invariant := &unification.EqualityWrapMapInvariant{
Expr1: obj, // unique id for this expression (a pointer)
Expr2Key: obj.KVs[0].Key,
Expr2Val: obj.KVs[0].Val,
}
invariants = append(invariants, invariant)
}
return invariants, nil
}
// Graph returns the reactive function graph which is expressed by this node. It
// includes any vertices produced by this node, and the appropriate edges to any
// vertices that are produced by its children. Nodes which fulfill the Expr
// interface directly produce vertices (and possible children) where as nodes
// that fulfill the Stmt interface do not produces vertices, where as their
// children might. This returns a graph with a single vertex (itself) in it, and
// the edges from all of the child graphs to this.
func (obj *ExprMap) Graph() (*pgraph.Graph, error) {
graph, err := pgraph.NewGraph("map")
if err != nil {
return nil, errwrap.Wrapf(err, "could not create graph")
}
graph.AddVertex(obj)
// each map key value pair needs to point to the final map expression
for index, x := range obj.KVs { // map fields in order
g, err := x.Key.Graph()
if err != nil {
return nil, err
}
// do the key names ever change? -- yes
fieldName := fmt.Sprintf("key:%d", index) // stringify map key
edge := &funcs.Edge{Args: []string{fieldName}}
var once bool
edgeGenFn := func(v1, v2 pgraph.Vertex) pgraph.Edge {
if once {
panic(fmt.Sprintf("edgeGenFn for map, key `%s` was called twice", fieldName))
}
once = true
return edge
}
graph.AddEdgeGraphVertexLight(g, obj, edgeGenFn) // key -> func
}
// each map key value pair needs to point to the final map expression
for index, x := range obj.KVs { // map fields in order
g, err := x.Val.Graph()
if err != nil {
return nil, err
}
fieldName := fmt.Sprintf("val:%d", index) // stringify map val
edge := &funcs.Edge{Args: []string{fieldName}}
var once bool
edgeGenFn := func(v1, v2 pgraph.Vertex) pgraph.Edge {
if once {
panic(fmt.Sprintf("edgeGenFn for map, val `%s` was called twice", fieldName))
}
once = true
return edge
}
graph.AddEdgeGraphVertexLight(g, obj, edgeGenFn) // val -> func
}
return graph, nil
}
// Func returns the reactive stream of values that this expression produces.
func (obj *ExprMap) Func() (interfaces.Func, error) {
typ, err := obj.Type()
if err != nil {
return nil, err
}
// composite func (list, map, struct)
return &structs.CompositeFunc{
Type: typ, // the key/val types are known via this type
Len: len(obj.KVs),
}, nil
}
// SetValue here is a no-op, because algorithmically when this is called from
// the func engine, the child key/value's (the map elements) will have had this
// done to them first, and as such when we try and retrieve the set value from
// this expression by calling `Value`, it will build it from scratch!
func (obj *ExprMap) SetValue(value types.Value) error {
if err := obj.typ.Cmp(value.Type()); err != nil {
return err
}
// noop!
//obj.V = value
return nil
}
// Value returns the value of this expression in our type system. This will
// usually only be valid once the engine has run and values have been produced.
// This might get called speculatively (early) during unification to learn more.
func (obj *ExprMap) Value() (types.Value, error) {
kvs := make(map[types.Value]types.Value)
var ktyp, vtyp *types.Type
for i, x := range obj.KVs {
// keys
kt, err := x.Key.Type()
if err != nil {
return nil, errwrap.Wrapf(err, "map key, index `%d` did not return a type", i)
}
if ktyp == nil {
ktyp = kt
}
if err := ktyp.Cmp(kt); err != nil {
return nil, errwrap.Wrapf(err, "key elements have different types")
}
key, err := x.Key.Value()
if err != nil {
return nil, err
}
if key == nil {
return nil, fmt.Errorf("key for map index `%d` was nil", i)
}
// vals
vt, err := x.Val.Type()
if err != nil {
return nil, errwrap.Wrapf(err, "map val, index `%d` did not return a type", i)
}
if vtyp == nil {
vtyp = vt
}
if err := vtyp.Cmp(vt); err != nil {
return nil, errwrap.Wrapf(err, "val elements have different types")
}
val, err := x.Val.Value()
if err != nil {
return nil, err
}
if val == nil {
return nil, fmt.Errorf("val for map index `%d` was nil", i)
}
kvs[key] = val // add to map
}
if len(obj.KVs) > 0 {
t := &types.Type{
Kind: types.KindMap,
Key: ktyp,
Val: vtyp,
}
// Run SetType to ensure type is consistent with what we found,
// which is an easy way to ensure the Cmp passes as expected...
if err := obj.SetType(t); err != nil {
return nil, errwrap.Wrapf(err, "type did not match expected!")
}
}
return &types.MapValue{
T: obj.typ,
V: kvs,
}, nil
}
// ExprMapKV represents a key and value pair in a (dictionary) map. This does
// not satisfy the Expr interface.
type ExprMapKV struct {
Key interfaces.Expr // keys can be strings, int's, etc...
Val interfaces.Expr
}
// ExprStruct is a representation of a struct.
type ExprStruct struct {
typ *types.Type
Fields []*ExprStructField // the list (fields) are intentionally ordered!
}
// String returns a short representation of this expression.
func (obj *ExprStruct) String() string {
var s []string
for _, x := range obj.Fields {
s = append(s, fmt.Sprintf("%s: %s", x.Name, x.Value.String()))
}
return fmt.Sprintf("struct(%s)", strings.Join(s, "; "))
}
// Interpolate returns a new node (or itself) once it has been expanded. This
// generally increases the size of the AST when it is used. It calls Interpolate
// on any child elements and builds the new node with those new node contents.
func (obj *ExprStruct) Interpolate() (interfaces.Expr, error) {
fields := []*ExprStructField{}
for _, x := range obj.Fields {
interpolated, err := x.Value.Interpolate()
if err != nil {
return nil, err
}
field := &ExprStructField{
Name: x.Name, // don't interpolate the key
Value: interpolated,
}
fields = append(fields, field)
}
return &ExprStruct{
typ: obj.typ,
Fields: fields,
}, nil
}
// SetScope stores the scope for later use in this resource and it's children,
// which it propogates this downwards to.
func (obj *ExprStruct) SetScope(scope *interfaces.Scope) error {
for _, x := range obj.Fields {
if err := x.Value.SetScope(scope); err != nil {
return err
}
}
return nil
}
// SetType is used to set the type of this expression once it is known. This
// usually happens during type unification, but it can also happen during
// parsing if a type is specified explicitly. Since types are static and don't
// change on expressions, if you attempt to set a different type than what has
// previously been set (when not initially known) this will error.
func (obj *ExprStruct) SetType(typ *types.Type) error {
// TODO: should we ensure this is set to a KindStruct ?
if obj.typ != nil {
return obj.typ.Cmp(typ) // if not set, ensure it doesn't change
}
obj.typ = typ // set
return nil
}
// Type returns the type of this expression.
func (obj *ExprStruct) Type() (*types.Type, error) {
var m = make(map[string]*types.Type)
ord := []string{}
var err error
for i, x := range obj.Fields {
// vals
t, e := x.Value.Type()
if e != nil {
err = errwrap.Wrapf(e, "field val, index `%s` did not return a type", i)
break
}
if _, exists := m[x.Name]; exists {
err = fmt.Errorf("struct type field index `%d` already exists", i)
break
}
m[x.Name] = t
ord = append(ord, x.Name)
}
if err == nil && obj.typ == nil && len(obj.Fields) > 0 {
return &types.Type{ // speculate!
Kind: types.KindStruct,
Map: m,
Ord: ord, // assume same order as fields
}, nil
}
if obj.typ == nil {
return nil, interfaces.ErrTypeCurrentlyUnknown
}
return obj.typ, nil
}
// Unify returns the list of invariants that this node produces. It recursively
// calls Unify on any children elements that exist in the AST, and returns the
// collection to the caller.
func (obj *ExprStruct) Unify() ([]interfaces.Invariant, error) {
var invariants []interfaces.Invariant
// if this was set explicitly by the parser
if obj.typ != nil {
invar := &unification.EqualsInvariant{
Expr: obj,
Type: obj.typ,
}
invariants = append(invariants, invar)
}
// collect all the invariants of each sub-expression
for _, x := range obj.Fields {
invars, err := x.Value.Unify()
if err != nil {
return nil, err
}
invariants = append(invariants, invars...)
}
// build the reference to ourself if we have undetermined field types
mapped := make(map[string]interfaces.Expr)
ordered := []string{}
for _, x := range obj.Fields {
mapped[x.Name] = x.Value
ordered = append(ordered, x.Name)
}
invariant := &unification.EqualityWrapStructInvariant{
Expr1: obj, // unique id for this expression (a pointer)
Expr2Map: mapped,
Expr2Ord: ordered,
}
invariants = append(invariants, invariant)
return invariants, nil
}
// Graph returns the reactive function graph which is expressed by this node. It
// includes any vertices produced by this node, and the appropriate edges to any
// vertices that are produced by its children. Nodes which fulfill the Expr
// interface directly produce vertices (and possible children) where as nodes
// that fulfill the Stmt interface do not produces vertices, where as their
// children might. This returns a graph with a single vertex (itself) in it, and
// the edges from all of the child graphs to this.
func (obj *ExprStruct) Graph() (*pgraph.Graph, error) {
graph, err := pgraph.NewGraph("struct")
if err != nil {
return nil, errwrap.Wrapf(err, "could not create graph")
}
graph.AddVertex(obj)
// each struct field needs to point to the final struct expression
for _, x := range obj.Fields { // struct fields in order
g, err := x.Value.Graph()
if err != nil {
return nil, err
}
fieldName := x.Name
edge := &funcs.Edge{Args: []string{fieldName}}
var once bool
edgeGenFn := func(v1, v2 pgraph.Vertex) pgraph.Edge {
if once {
panic(fmt.Sprintf("edgeGenFn for struct, arg `%s` was called twice", fieldName))
}
once = true
return edge
}
graph.AddEdgeGraphVertexLight(g, obj, edgeGenFn) // arg -> func
}
return graph, nil
}
// Func returns the reactive stream of values that this expression produces.
func (obj *ExprStruct) Func() (interfaces.Func, error) {
typ, err := obj.Type()
if err != nil {
return nil, err
}
// composite func (list, map, struct)
return &structs.CompositeFunc{
Type: typ,
}, nil
}
// SetValue here is a no-op, because algorithmically when this is called from
// the func engine, the child fields (the struct elements) will have had this
// done to them first, and as such when we try and retrieve the set value from
// this expression by calling `Value`, it will build it from scratch!
func (obj *ExprStruct) SetValue(value types.Value) error {
if err := obj.typ.Cmp(value.Type()); err != nil {
return err
}
// noop!
//obj.V = value
return nil
}
// Value returns the value of this expression in our type system. This will
// usually only be valid once the engine has run and values have been produced.
// This might get called speculatively (early) during unification to learn more.
func (obj *ExprStruct) Value() (types.Value, error) {
fields := make(map[string]types.Value)
typ := &types.Type{
Kind: types.KindStruct,
Map: make(map[string]*types.Type),
//Ord: obj.typ.Ord, // assume same order
}
ord := []string{} // can't use obj.typ b/c it can be nil during speculation
for i, x := range obj.Fields {
// vals
t, err := x.Value.Type()
if err != nil {
return nil, errwrap.Wrapf(err, "field val, index `%s` did not return a type", i)
}
if _, exists := typ.Map[x.Name]; exists {
return nil, fmt.Errorf("struct type field index `%d` already exists", i)
}
typ.Map[x.Name] = t
val, err := x.Value.Value()
if err != nil {
return nil, err
}
if val == nil {
return nil, fmt.Errorf("val for field index `%d` was nil", i)
}
if _, exists := fields[x.Name]; exists {
return nil, fmt.Errorf("struct field index `%d` already exists", i)
}
fields[x.Name] = val // add to map
ord = append(ord, x.Name)
}
typ.Ord = ord
if len(obj.Fields) > 0 {
// Run SetType to ensure type is consistent with what we found,
// which is an easy way to ensure the Cmp passes as expected...
if err := obj.SetType(typ); err != nil {
return nil, errwrap.Wrapf(err, "type did not match expected!")
}
}
return &types.StructValue{
T: obj.typ,
V: fields,
}, nil
}
// ExprStructField represents a name value pair in a struct field. This does not
// satisfy the Expr interface.
type ExprStructField struct {
Name string
Value interfaces.Expr
}
// ExprFunc is a representation of a function value. This is not a function
// call, that is represented by ExprCall.
// XXX: this is currently not fully implemented, and parts may be incorrect.
type ExprFunc struct {
typ *types.Type
V func([]types.Value) (types.Value, error)
}
// String returns a short representation of this expression.
// FIXME: fmt.Sprintf("func(%+v)", obj.V) fails `go vet` (bug?), so wait until
// we have a better printable function value and put that here instead.
func (obj *ExprFunc) String() string { return fmt.Sprintf("func(???)") } // TODO: print nicely
// Interpolate returns a new node (or itself) once it has been expanded. This
// generally increases the size of the AST when it is used. It calls Interpolate
// on any child elements and builds the new node with those new node contents.
// Here it simply returns itself, as no interpolation is possible.
func (obj *ExprFunc) Interpolate() (interfaces.Expr, error) { return obj, nil }
// SetScope does nothing for this struct, because it has no child nodes, and it
// does not need to know about the parent scope.
// XXX: this may not be true in the future...
func (obj *ExprFunc) SetScope(*interfaces.Scope) error { return nil }
// SetType is used to set the type of this expression once it is known. This
// usually happens during type unification, but it can also happen during
// parsing if a type is specified explicitly. Since types are static and don't
// change on expressions, if you attempt to set a different type than what has
// previously been set (when not initially known) this will error.
func (obj *ExprFunc) SetType(typ *types.Type) error {
// TODO: should we ensure this is set to a KindFunc ?
if obj.typ != nil {
return obj.typ.Cmp(typ) // if not set, ensure it doesn't change
}
obj.typ = typ // set
return nil
}
// Type returns the type of this expression.
func (obj *ExprFunc) Type() (*types.Type, error) {
// TODO: implement speculative type lookup (if not already sufficient)
if obj.typ == nil {
return nil, interfaces.ErrTypeCurrentlyUnknown
}
return obj.typ, nil
}
// Unify returns the list of invariants that this node produces. It recursively
// calls Unify on any children elements that exist in the AST, and returns the
// collection to the caller.
func (obj *ExprFunc) Unify() ([]interfaces.Invariant, error) {
return nil, fmt.Errorf("not implemented") // XXX: not implemented
}
// Graph returns the reactive function graph which is expressed by this node. It
// includes any vertices produced by this node, and the appropriate edges to any
// vertices that are produced by its children. Nodes which fulfill the Expr
// interface directly produce vertices (and possible children) where as nodes
// that fulfill the Stmt interface do not produces vertices, where as their
// children might. This returns a graph with a single vertex (itself) in it.
func (obj *ExprFunc) Graph() (*pgraph.Graph, error) {
return nil, fmt.Errorf("not implemented") // XXX: not implemented
}
// Func returns the reactive stream of values that this expression produces.
func (obj *ExprFunc) Func() (interfaces.Func, error) {
return nil, fmt.Errorf("not implemented") // XXX: not implemented
}
// SetValue for a func expression is always populated statically, and does not
// ever receive any incoming values (no incoming edges) so this should never be
// called. It has been implemented for uniformity.
func (obj *ExprFunc) SetValue(value types.Value) error {
if err := obj.typ.Cmp(value.Type()); err != nil {
return err
}
return nil
}
// Value returns the value of this expression in our type system. This will
// usually only be valid once the engine has run and values have been produced.
// This might get called speculatively (early) during unification to learn more.
// This particular value is always known since it is a constant.
func (obj *ExprFunc) Value() (types.Value, error) {
// TODO: implement speculative value lookup (if not already sufficient)
return &types.FuncValue{
V: obj.V,
T: obj.typ,
}, nil
}
// ExprCall is a representation of a function call. This does not represent the
// declaration or implementation of a new function value.
type ExprCall struct {
typ *types.Type
V types.Value // stored result (set with SetValue)
Name string
Args []interfaces.Expr // list of args in parsed order
}
// String returns a short representation of this expression.
func (obj *ExprCall) String() string {
var s []string
for _, x := range obj.Args {
s = append(s, fmt.Sprintf("%s", x.String()))
}
return fmt.Sprintf("call:%s(%s)", obj.Name, strings.Join(s, ", "))
}
// buildType builds the KindFunc type of this function's signature if it can. It
// might not be able to if type unification hasn't yet been performed on this
// expression, and if SetType hasn't yet been called for the needed expressions.
// XXX: review this function logic please
func (obj *ExprCall) buildType() (*types.Type, error) {
m := make(map[string]*types.Type)
ord := []string{}
for pos, x := range obj.Args { // function arguments in order
t, err := x.Type()
if err != nil {
return nil, err
}
name := util.NumToAlpha(pos) // assume (incorrectly) for now...
//name := argNames[pos]
m[name] = t
ord = append(ord, name)
}
out, err := obj.Type()
if err != nil {
return nil, err
}
return &types.Type{
Kind: types.KindFunc,
Map: m,
Ord: ord,
Out: out,
}, nil
}
// buildFunc prepares and returns the function struct object needed for running
// this function execution.
// XXX: review this function logic please
func (obj *ExprCall) buildFunc() (interfaces.Func, error) {
// TODO: if we have locally defined functions that can exist in scope,
// then perhaps we should do a lookup here before we use the built-in.
//fn, exists := obj.scope.Functions[obj.Name] // look for a local function
// Remember that a local function might have Invariants it needs to add!
fn, err := funcs.Lookup(obj.Name) // lookup the function by name
if err != nil {
return nil, errwrap.Wrapf(err, "func `%s` could not be found", obj.Name)
}
polyFn, ok := fn.(interfaces.PolyFunc) // is it statically polymorphic?
if !ok {
return fn, nil
}
// PolyFunc's need more things done!
typ, err := obj.buildType()
if err == nil { // if we've errored, that's okay, this part isn't ready
if err := polyFn.Build(typ); err != nil {
return nil, errwrap.Wrapf(err, "could not build func `%s`", obj.Name)
}
}
return fn, nil
}
// Interpolate returns a new node (or itself) once it has been expanded. This
// generally increases the size of the AST when it is used. It calls Interpolate
// on any child elements and builds the new node with those new node contents.
func (obj *ExprCall) Interpolate() (interfaces.Expr, error) {
args := []interfaces.Expr{}
for _, x := range obj.Args {
interpolated, err := x.Interpolate()
if err != nil {
return nil, err
}
args = append(args, interpolated)
}
return &ExprCall{
typ: obj.typ,
Name: obj.Name,
Args: args,
}, nil
}
// SetScope stores the scope for later use in this resource and it's children,
// which it propogates this downwards to.
func (obj *ExprCall) SetScope(scope *interfaces.Scope) error {
for _, x := range obj.Args {
if err := x.SetScope(scope); err != nil {
return err
}
}
return nil
}
// SetType is used to set the type of this expression once it is known. This
// usually happens during type unification, but it can also happen during
// parsing if a type is specified explicitly. Since types are static and don't
// change on expressions, if you attempt to set a different type than what has
// previously been set (when not initially known) this will error. Remember that
// for this function expression, the type is the *return type* of the function,
// not the full type of the function signature.
func (obj *ExprCall) SetType(typ *types.Type) error {
if obj.typ != nil {
return obj.typ.Cmp(typ) // if not set, ensure it doesn't change
}
obj.typ = typ // set
return nil
}
// Type returns the type of this expression, which is the return type of the
// function call.
func (obj *ExprCall) Type() (*types.Type, error) {
fn, err := funcs.Lookup(obj.Name) // lookup the function by name
_, isPoly := fn.(interfaces.PolyFunc) // is it statically polymorphic?
if err == nil && obj.typ == nil && !isPoly {
if info := fn.Info(); info != nil {
if sig := info.Sig; sig != nil {
if typ := sig.Out; typ != nil && !typ.HasVariant() {
return typ, nil // speculate!
}
}
}
}
if obj.typ == nil {
return nil, interfaces.ErrTypeCurrentlyUnknown
}
return obj.typ, nil
}
// Unify returns the list of invariants that this node produces. It recursively
// calls Unify on any children elements that exist in the AST, and returns the
// collection to the caller.
func (obj *ExprCall) Unify() ([]interfaces.Invariant, error) {
var invariants []interfaces.Invariant
// if this was set explicitly by the parser
if obj.typ != nil {
invar := &unification.EqualsInvariant{
Expr: obj,
Type: obj.typ,
}
invariants = append(invariants, invar)
}
// collect all the invariants of each sub-expression
for _, x := range obj.Args {
invars, err := x.Unify()
if err != nil {
return nil, err
}
invariants = append(invariants, invars...)
}
fn, err := obj.buildFunc() // uses obj.Name to build the func
if err != nil {
return nil, err
}
// XXX: can we put this inside the poly branch or is it needed everywhere?
// XXX: is there code we can pull out of this branch to use for all functions?
argNames := []string{}
mapped := make(map[string]*types.Type)
partialValues := []types.Value{}
for i := range obj.Args {
name := util.NumToAlpha(i) // assume (incorrectly) for now...
argNames = append(argNames, name)
mapped[name] = nil // unknown type
partialValues = append(partialValues, nil) // XXX: is this safe?
// optimization: if zeroth arg is a static string, specify this!
// TODO: this is a more specialized version of the next check...
if x, ok := obj.Args[0].(*ExprStr); i == 0 && ok { // is static?
mapped[name], _ = x.Type()
partialValues[i], _ = x.Value() // store value
}
// optimization: if type is already known, specify it now!
if t, err := obj.Args[i].Type(); err == nil { // is known?
mapped[name] = t
// if value is completely static, pass it in now!
if v, err := obj.Args[i].Value(); err == nil {
partialValues[i] = v // store value
}
}
}
// do we have a special case like the operator or template function?
polyFn, ok := fn.(interfaces.PolyFunc) // is it statically polymorphic?
if ok {
out, err := obj.Type() // do we know the return type yet?
if err != nil {
out = nil // just to make sure...
}
// partial type can have some type components that are nil!
// this means they are not yet known at this time...
partialType := &types.Type{
Kind: types.KindFunc,
Map: mapped,
Ord: argNames,
Out: out, // possibly nil
}
results, err := polyFn.Polymorphisms(partialType, partialValues)
if err != nil {
return nil, errwrap.Wrapf(err, "polymorphic signatures for func `%s` could not be found", obj.Name)
}
ors := []interfaces.Invariant{} // solve only one from this list
// each of these is a different possible signature
for _, typ := range results {
if typ.Kind != types.KindFunc {
panic("overloaded result was not of kind func")
}
// XXX: how do we deal with template returning a variant?
// XXX: i think we need more invariant types, and if it's
// going to be a variant, just return no results, and the
// defaults from the engine should just match it anyways!
if typ.HasVariant() { // XXX: ¯\_(ツ)_/¯
//continue // XXX: alternate strategy...
//return nil, fmt.Errorf("variant type not yet supported, got: %+v", typ) // XXX: old strategy
}
if typ.Kind == types.KindVariant { // XXX: ¯\_(ツ)_/¯
continue // can't deal with raw variant a.t.m.
}
if i, j := len(typ.Ord), len(obj.Args); i != j {
continue // this signature won't work for us, skip!
}
// what would a set of invariants for this sig look like?
var invars []interfaces.Invariant
// use Map and Ord for Input (Kind == Function)
for i, x := range typ.Ord {
if typ.Map[x].HasVariant() { // XXX: ¯\_(ツ)_/¯
invar := &unification.AnyInvariant{ // XXX: ???
Expr: obj.Args[i],
}
invars = append(invars, invar)
continue
}
invar := &unification.EqualsInvariant{
Expr: obj.Args[i],
Type: typ.Map[x], // type of arg
}
invars = append(invars, invar)
}
if typ.Out != nil {
// this expression should equal the output type of the function
if typ.Out.HasVariant() { // XXX: ¯\_(ツ)_/¯
invar := &unification.AnyInvariant{ // XXX: ???
Expr: obj,
}
invars = append(invars, invar)
} else {
invar := &unification.EqualsInvariant{
Expr: obj,
Type: typ.Out,
}
invars = append(invars, invar)
}
}
// add more invariants to link the partials...
mapped := make(map[string]interfaces.Expr)
ordered := []string{}
for pos, x := range obj.Args {
name := argNames[pos]
mapped[name] = x
ordered = append(ordered, name)
}
// unused expression, here only for linking...
// TODO: eventually like with proper ExprFunc in lang?
exprFunc := &ExprFunc{}
if !typ.HasVariant() { // XXX: ¯\_(ツ)_/¯
exprFunc.SetType(typ)
funcInvariant := &unification.EqualsInvariant{
Expr: exprFunc,
Type: typ,
}
invars = append(invars, funcInvariant)
}
invar := &unification.EqualityWrapFuncInvariant{
Expr1: exprFunc,
Expr2Map: mapped,
Expr2Ord: ordered,
Expr2Out: obj, // type of expression is return type of function
}
invars = append(invars, invar)
// all of these need to be true together
and := &unification.ConjunctionInvariant{
Invariants: invars,
}
ors = append(ors, and) // one solution added!
} // end results loop
// don't error here, we might not want to add any invariants!
//if len(results) == 0 {
// return nil, fmt.Errorf("can't find any valid signatures that match func `%s`", obj.Name)
//}
if len(ors) > 0 {
var invar interfaces.Invariant = &unification.ExclusiveInvariant{
Invariants: ors, // one and only one of these should be true
}
if len(ors) == 1 {
invar = ors[0] // there should only be one
}
invariants = append(invariants, invar)
}
} else {
sig := fn.Info().Sig
// build the reference to ourself if we have undetermined arg types
mapped := make(map[string]interfaces.Expr)
ordered := []string{}
for pos, x := range obj.Args {
name := argNames[pos]
mapped[name] = x
ordered = append(ordered, name)
}
// add an unused expression, because we need to link it to the partial
exprFunc := &ExprFunc{}
exprFunc.SetType(sig)
funcInvariant := &unification.EqualsInvariant{
Expr: exprFunc,
Type: sig,
}
invariants = append(invariants, funcInvariant)
// note: the usage of this invariant is different from the other wrap*
// invariants, because in this case, the expression type is the return
// type which is produced, where as the entire function itself has its
// own type which includes the types of the input arguments...
invariant := &unification.EqualityWrapFuncInvariant{
Expr1: exprFunc, // unused placeholder for unification
Expr2Map: mapped,
Expr2Ord: ordered,
Expr2Out: obj, // type of expression is return type of function
}
invariants = append(invariants, invariant)
}
return invariants, nil
}
// Graph returns the reactive function graph which is expressed by this node. It
// includes any vertices produced by this node, and the appropriate edges to any
// vertices that are produced by its children. Nodes which fulfill the Expr
// interface directly produce vertices (and possible children) where as nodes
// that fulfill the Stmt interface do not produces vertices, where as their
// children might. This returns a graph with a single vertex (itself) in it, and
// the edges from all of the child graphs to this.
func (obj *ExprCall) Graph() (*pgraph.Graph, error) {
graph, err := pgraph.NewGraph("func")
if err != nil {
return nil, errwrap.Wrapf(err, "could not create graph")
}
graph.AddVertex(obj)
fn, err := obj.buildFunc() // uses obj.Name to build the func
if err != nil {
return nil, err
}
argNames := fn.Info().Sig.Ord
if len(argNames) != len(obj.Args) { // extra safety...
return nil, fmt.Errorf("func `%s` expected %d args, got %d", obj.Name, len(argNames), len(obj.Args))
}
// each function argument needs to point to the final function expression
for pos, x := range obj.Args { // function arguments in order
g, err := x.Graph()
if err != nil {
return nil, err
}
argName := argNames[pos]
edge := &funcs.Edge{Args: []string{argName}}
var once bool
edgeGenFn := func(v1, v2 pgraph.Vertex) pgraph.Edge {
if once {
panic(fmt.Sprintf("edgeGenFn for func `%s`, arg `%s` was called twice", obj.Name, argName))
}
once = true
return edge
}
graph.AddEdgeGraphVertexLight(g, obj, edgeGenFn) // arg -> func
}
return graph, nil
}
// Func returns the reactive stream of values that this expression produces.
func (obj *ExprCall) Func() (interfaces.Func, error) {
return obj.buildFunc() // uses obj.Name to build the func
}
// SetValue here is used to store the result of the last computation of this
// expression node after it has received all the required input values. This
// value is cached and can be retrieved by calling Value.
func (obj *ExprCall) SetValue(value types.Value) error {
if err := obj.typ.Cmp(value.Type()); err != nil {
return err
}
obj.V = value
return nil
}
// Value returns the value of this expression in our type system. This will
// usually only be valid once the engine has run and values have been produced.
// This might get called speculatively (early) during unification to learn more.
// It is often unlikely that this kind of speculative execution finds something.
// This particular implementation of the function returns the previously stored
// and cached value as received by SetValue.
func (obj *ExprCall) Value() (types.Value, error) {
if obj.V == nil {
return nil, fmt.Errorf("func value does not yet exist")
}
return obj.V, nil
}
// ExprVar is a representation of a variable lookup. It returns the expression
// that that variable refers to.
type ExprVar struct {
scope *interfaces.Scope // store for referencing this later
typ *types.Type
Name string // name of the variable
}
// String returns a short representation of this expression.
func (obj *ExprVar) String() string { return fmt.Sprintf("var(%s)", obj.Name) }
// Interpolate returns a new node (or itself) once it has been expanded. This
// generally increases the size of the AST when it is used. It calls Interpolate
// on any child elements and builds the new node with those new node contents.
// Here it returns itself, since variable names cannot be interpolated. We don't
// support variable, variables or anything crazy like that.
func (obj *ExprVar) Interpolate() (interfaces.Expr, error) { return obj, nil }
// SetScope stores the scope for use in this resource.
func (obj *ExprVar) SetScope(scope *interfaces.Scope) error {
if scope == nil {
scope = scope.Empty()
}
obj.scope = scope
return nil
}
// SetType is used to set the type of this expression once it is known. This
// usually happens during type unification, but it can also happen during
// parsing if a type is specified explicitly. Since types are static and don't
// change on expressions, if you attempt to set a different type than what has
// previously been set (when not initially known) this will error.
func (obj *ExprVar) SetType(typ *types.Type) error {
if obj.typ != nil {
return obj.typ.Cmp(typ) // if not set, ensure it doesn't change
}
obj.typ = typ // set
return nil
}
// Type returns the type of this expression.
func (obj *ExprVar) Type() (*types.Type, error) {
// return type if it is already known statically...
// it is useful for type unification to have some extra info
expr, exists := obj.scope.Variables[obj.Name]
// if !exists, just ignore the error for now since this is speculation!
// this logic simplifies down to just this!
if exists && obj.typ == nil {
return expr.Type()
}
if obj.typ == nil {
return nil, interfaces.ErrTypeCurrentlyUnknown
}
return obj.typ, nil
}
// Unify returns the list of invariants that this node produces. It recursively
// calls Unify on any children elements that exist in the AST, and returns the
// collection to the caller.
func (obj *ExprVar) Unify() ([]interfaces.Invariant, error) {
var invariants []interfaces.Invariant
// lookup value from scope
expr, exists := obj.scope.Variables[obj.Name]
if !exists {
return nil, fmt.Errorf("var `%s` does not exist in this scope", obj.Name)
}
// don't recurse because we already got this through the bind statement
//invars, err := expr.Unify()
//if err != nil {
// return nil, err
//}
//invariants = append(invariants, invars...)
// this expression's type must be the type of what the var is bound to!
// TODO: does this always cause an identical duplicate invariant?
invar := &unification.EqualityInvariant{
Expr1: obj,
Expr2: expr,
}
invariants = append(invariants, invar)
return invariants, nil
}
// Graph returns the reactive function graph which is expressed by this node. It
// includes any vertices produced by this node, and the appropriate edges to any
// vertices that are produced by its children. Nodes which fulfill the Expr
// interface directly produce vertices (and possible children) where as nodes
// that fulfill the Stmt interface do not produces vertices, where as their
// children might. This returns a graph with a single vertex (itself) in it, and
// the edges from all of the child graphs to this. The child graph in this case
// is the graph which is obtained from the bound expression. The edge points
// from that expression to this vertex. The function used for this vertex is a
// simple placeholder which sucks incoming values in and passes them on. This is
// important for filling the logical requirements of the graph type checker, and
// to avoid duplicating production of the incoming input value from the bound
// expression.
func (obj *ExprVar) Graph() (*pgraph.Graph, error) {
graph, err := pgraph.NewGraph("var")
if err != nil {
return nil, errwrap.Wrapf(err, "could not create graph")
}
graph.AddVertex(obj)
// ??? = $foo (this is the foo)
// lookup value from scope
expr, exists := obj.scope.Variables[obj.Name]
if !exists {
return nil, fmt.Errorf("var `%s` does not exist in this scope", obj.Name)
}
// should already exist in graph (i think)...
graph.AddVertex(expr) // duplicate additions are ignored and are harmless
// the expr needs to point to the var lookup expression
g, err := expr.Graph()
if err != nil {
return nil, err
}
edge := &funcs.Edge{Args: []string{obj.Name}}
var once bool
edgeGenFn := func(v1, v2 pgraph.Vertex) pgraph.Edge {
if once {
panic(fmt.Sprintf("edgeGenFn for var `%s` was called twice", obj.Name))
}
once = true
return edge
}
graph.AddEdgeGraphVertexLight(g, obj, edgeGenFn) // expr -> var
return graph, nil
}
// Func returns a "pass-through" function which receives the bound value, and
// passes it to the consumer. This is essential for satisfying the type checker
// of the function graph engine.
func (obj *ExprVar) Func() (interfaces.Func, error) {
expr, exists := obj.scope.Variables[obj.Name]
if !exists {
return nil, fmt.Errorf("var `%s` does not exist in scope", obj.Name)
}
// this is wrong, if we did it this way, this expr wouldn't exist as a
// distinct node in the function graph to relay values through, instead,
// it would be acting as a "substitution/lookup" function, which just
// copies the bound function over into here. As a result, we'd have N
// copies of that function (based on the number of times N that that
// variable is used) instead of having that single bound function as
// input which is sent via N different edges to the multiple locations
// where the variables are used. Since the bound function would still
// have a single unique pointer, this wouldn't actually exist more than
// once in the graph, although since it's illogical, it causes the graph
// type checking (the edge counting in the function graph engine) to
// notice a problem and error.
//return expr.Func() // recurse?
// instead, return a function which correctly does a lookup in the scope
// and returns *that* stream of values instead.
typ, err := obj.Type()
if err != nil {
return nil, err
}
f, err := expr.Func()
if err != nil {
return nil, err
}
// var func
return &structs.VarFunc{
Type: typ,
Func: f,
Edge: obj.Name, // the edge name used above in Graph is this...
}, nil
}
// SetValue here is a no-op, because algorithmically when this is called from
// the func engine, the child fields (the dest lookup expr) will have had this
// done to them first, and as such when we try and retrieve the set value from
// this expression by calling `Value`, it will build it from scratch!
func (obj *ExprVar) SetValue(value types.Value) error {
if err := obj.typ.Cmp(value.Type()); err != nil {
return err
}
// noop!
//obj.V = value
return nil
}
// Value returns the value of this expression in our type system. This will
// usually only be valid once the engine has run and values have been produced.
// This might get called speculatively (early) during unification to learn more.
// This returns the value this variable points to. It is able to do so because
// it can lookup in the previous set scope which expression this points to, and
// then it can call Value on that expression.
func (obj *ExprVar) Value() (types.Value, error) {
expr, exists := obj.scope.Variables[obj.Name]
if !exists {
return nil, fmt.Errorf("var `%s` does not exist in scope", obj.Name)
}
return expr.Value() // recurse
}
// ExprIf represents an if expression which *must* have both branches, and which
// returns a value. As a result, it has a type. This is different from a StmtIf,
// which does not need to have both branches, and which does not return a value.
type ExprIf struct {
typ *types.Type
Condition interfaces.Expr
ThenBranch interfaces.Expr // could be an ExprBranch
ElseBranch interfaces.Expr // could be an ExprBranch
}
// String returns a short representation of this expression.
func (obj *ExprIf) String() string {
return fmt.Sprintf("if(%s)", obj.Condition.String()) // TODO: improve this
}
// Interpolate returns a new node (or itself) once it has been expanded. This
// generally increases the size of the AST when it is used. It calls Interpolate
// on any child elements and builds the new node with those new node contents.
func (obj *ExprIf) Interpolate() (interfaces.Expr, error) {
condition, err := obj.Condition.Interpolate()
if err != nil {
return nil, errwrap.Wrapf(err, "could not interpolate Condition")
}
thenBranch, err := obj.ThenBranch.Interpolate()
if err != nil {
return nil, errwrap.Wrapf(err, "could not interpolate ThenBranch")
}
elseBranch, err := obj.ElseBranch.Interpolate()
if err != nil {
return nil, errwrap.Wrapf(err, "could not interpolate ElseBranch")
}
return &ExprIf{
typ: obj.typ,
Condition: condition,
ThenBranch: thenBranch,
ElseBranch: elseBranch,
}, nil
}
// SetScope stores the scope for later use in this resource and it's children,
// which it propogates this downwards to.
func (obj *ExprIf) SetScope(scope *interfaces.Scope) error {
if err := obj.Condition.SetScope(scope); err != nil {
return err
}
if err := obj.ThenBranch.SetScope(scope); err != nil {
return err
}
if err := obj.ElseBranch.SetScope(scope); err != nil {
return err
}
return nil
}
// SetType is used to set the type of this expression once it is known. This
// usually happens during type unification, but it can also happen during
// parsing if a type is specified explicitly. Since types are static and don't
// change on expressions, if you attempt to set a different type than what has
// previously been set (when not initially known) this will error.
func (obj *ExprIf) SetType(typ *types.Type) error {
if obj.typ != nil {
return obj.typ.Cmp(typ) // if not set, ensure it doesn't change
}
obj.typ = typ // set
return nil
}
// Type returns the type of this expression.
func (obj *ExprIf) Type() (*types.Type, error) {
boolValue, err := obj.Condition.Value() // attempt early speculation
if err == nil && obj.typ == nil {
branch := obj.ElseBranch
if boolValue.Bool() { // must not panic
branch = obj.ThenBranch
}
return branch.Type()
}
if obj.typ == nil {
return nil, interfaces.ErrTypeCurrentlyUnknown
}
return obj.typ, nil
}
// Unify returns the list of invariants that this node produces. It recursively
// calls Unify on any children elements that exist in the AST, and returns the
// collection to the caller.
func (obj *ExprIf) Unify() ([]interfaces.Invariant, error) {
var invariants []interfaces.Invariant
// conditional expression might have some children invariants to share
condition, err := obj.Condition.Unify()
if err != nil {
return nil, err
}
invariants = append(invariants, condition...)
// the condition must ultimately be a boolean
conditionInvar := &unification.EqualsInvariant{
Expr: obj.Condition,
Type: types.TypeBool,
}
invariants = append(invariants, conditionInvar)
// recurse into the two branches
thenBranch, err := obj.ThenBranch.Unify()
if err != nil {
return nil, err
}
invariants = append(invariants, thenBranch...)
elseBranch, err := obj.ElseBranch.Unify()
if err != nil {
return nil, err
}
invariants = append(invariants, elseBranch...)
// the two branches must be equally typed
branchesInvar := &unification.EqualityInvariant{
Expr1: obj.ThenBranch,
Expr2: obj.ElseBranch,
}
invariants = append(invariants, branchesInvar)
return invariants, nil
}
// Graph returns the reactive function graph which is expressed by this node. It
// includes any vertices produced by this node, and the appropriate edges to any
// vertices that are produced by its children. Nodes which fulfill the Expr
// interface directly produce vertices (and possible children) where as nodes
// that fulfill the Stmt interface do not produces vertices, where as their
// children might. This particular if expression doesn't do anything clever here
// other than adding in both branches of the graph. Since we're functional, this
// shouldn't have any ill effects.
// XXX: is this completely true if we're running technically impure, but safe
// built-in functions on both branches? Can we turn off half of this?
func (obj *ExprIf) Graph() (*pgraph.Graph, error) {
graph, err := pgraph.NewGraph("if")
if err != nil {
return nil, errwrap.Wrapf(err, "could not create graph")
}
graph.AddVertex(obj)
exprs := map[string]interfaces.Expr{
"c": obj.Condition,
"a": obj.ThenBranch,
"b": obj.ElseBranch,
}
for _, argName := range []string{"c", "a", "b"} { // deterministic order
x := exprs[argName]
g, err := x.Graph()
if err != nil {
return nil, err
}
edge := &funcs.Edge{Args: []string{argName}}
var once bool
edgeGenFn := func(v1, v2 pgraph.Vertex) pgraph.Edge {
if once {
panic(fmt.Sprintf("edgeGenFn for ifexpr edge `%s` was called twice", argName))
}
once = true
return edge
}
graph.AddEdgeGraphVertexLight(g, obj, edgeGenFn) // branch -> if
}
return graph, nil
}
// Func returns a function which returns the correct branch based on the ever
// changing conditional boolean input.
func (obj *ExprIf) Func() (interfaces.Func, error) {
typ, err := obj.Type()
if err != nil {
return nil, err
}
return &structs.IfFunc{
Type: typ, // this is the output type of the expression
}, nil
}
// SetValue here is a no-op, because algorithmically when this is called from
// the func engine, the child fields (the branches expr's) will have had this
// done to them first, and as such when we try and retrieve the set value from
// this expression by calling `Value`, it will build it from scratch!
func (obj *ExprIf) SetValue(value types.Value) error {
if err := obj.typ.Cmp(value.Type()); err != nil {
return err
}
// noop!
//obj.V = value
return nil
}
// Value returns the value of this expression in our type system. This will
// usually only be valid once the engine has run and values have been produced.
// This might get called speculatively (early) during unification to learn more.
// This particular expression evaluates the condition and returns the correct
// branch's value accordingly.
func (obj *ExprIf) Value() (types.Value, error) {
boolValue, err := obj.Condition.Value()
if err != nil {
return nil, err
}
if boolValue.Bool() { // must not panic
return obj.ThenBranch.Value()
}
return obj.ElseBranch.Value()
}