Files
mgmt/lang/core/value/get.go
James Shubin 642c6b952f lang: core, funcs: Port some functions to CallableFunc API
Some modern features of our function engine and language might require
this new API, so port what we can and figure out the rest later.
2025-03-16 23:23:57 -04:00

354 lines
12 KiB
Go

// Mgmt
// Copyright (C) James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
//
// Additional permission under GNU GPL version 3 section 7
//
// If you modify this program, or any covered work, by linking or combining it
// with embedded mcl code and modules (and that the embedded mcl code and
// modules which link with this program, contain a copy of their source code in
// the authoritative form) containing parts covered by the terms of any other
// license, the licensors of this program grant you additional permission to
// convey the resulting work. Furthermore, the licensors of this program grant
// the original author, James Shubin, additional permission to update this
// additional permission if he deems it necessary to achieve the goals of this
// additional permission.
package corevalue
import (
"context"
"fmt"
"github.com/purpleidea/mgmt/lang/funcs"
"github.com/purpleidea/mgmt/lang/interfaces"
"github.com/purpleidea/mgmt/lang/types"
"github.com/purpleidea/mgmt/util/errwrap"
)
const (
// GetFuncName is the name this function is registered as. This variant
// is the fanciest version, although type unification is much more
// difficult when using this.
// XXX: type unification doesn't work perfectly here yet... maybe a bug with returned structs?
GetFuncName = "get"
// GetBoolFuncName is the name this function is registered as. This
// variant can only pull in values of type bool.
GetBoolFuncName = "get_bool"
// GetStrFuncName is the name this function is registered as. This
// variant can only pull in values of type str.
GetStrFuncName = "get_str"
// GetIntFuncName is the name this function is registered as. This
// variant can only pull in values of type int.
GetIntFuncName = "get_int"
// GetFloatFuncName is the name this function is registered as. This
// variant can only pull in values of type float.
GetFloatFuncName = "get_float"
// arg names...
getArgNameKey = "key"
// struct field names...
getFieldNameValue = "value"
getFieldNameReady = "ready"
)
func init() {
funcs.ModuleRegister(ModuleName, GetFuncName, func() interfaces.Func { return &GetFunc{} })
funcs.ModuleRegister(ModuleName, GetBoolFuncName, func() interfaces.Func { return &GetFunc{Type: types.TypeBool} })
funcs.ModuleRegister(ModuleName, GetStrFuncName, func() interfaces.Func { return &GetFunc{Type: types.TypeStr} })
funcs.ModuleRegister(ModuleName, GetIntFuncName, func() interfaces.Func { return &GetFunc{Type: types.TypeInt} })
funcs.ModuleRegister(ModuleName, GetFloatFuncName, func() interfaces.Func { return &GetFunc{Type: types.TypeFloat} })
}
var _ interfaces.CallableFunc = &GetFunc{}
// GetFunc is special function which looks up the stored `Any` field in the
// value resource that it gets it from. If it is initialized with a fixed Type
// field, then it becomes a statically typed version that can only return keys
// of that type. It is instead recommended to use the Get* functions that are
// more strictly typed.
type GetFunc struct {
// Type is the actual type being used for the value we are looking up.
Type *types.Type
init *interfaces.Init
key string
args []types.Value
last types.Value
result types.Value // last calculated output
watchChan chan struct{}
}
// String returns a simple name for this function. This is needed so this struct
// can satisfy the pgraph.Vertex interface.
func (obj *GetFunc) String() string {
return GetFuncName
}
// ArgGen returns the Nth arg name for this function.
func (obj *GetFunc) ArgGen(index int) (string, error) {
seq := []string{getArgNameKey}
if l := len(seq); index >= l {
return "", fmt.Errorf("index %d exceeds arg length of %d", index, l)
}
return seq[index], nil
}
// helper
func (obj *GetFunc) sig() *types.Type {
// func(key str) struct{value ?1; ready bool}
typ := "?1"
if obj.Type != nil {
typ = obj.Type.String()
}
// output is a struct with two fields:
// value is the zero value if not ready. A bool for that in other field.
return types.NewType(fmt.Sprintf("func(%s str) struct{%s %s; %s bool}", getArgNameKey, getFieldNameValue, typ, getFieldNameReady))
}
// Build is run to turn the polymorphic, undetermined function, into the
// specific statically typed version. It is usually run after Unify completes,
// and must be run before Info() and any of the other Func interface methods are
// used. This function is idempotent, as long as the arg isn't changed between
// runs.
func (obj *GetFunc) Build(typ *types.Type) (*types.Type, error) {
// typ is the KindFunc signature we're trying to build...
if typ.Kind != types.KindFunc {
return nil, fmt.Errorf("input type must be of kind func")
}
if typ.Map == nil {
return nil, fmt.Errorf("invalid input type")
}
if len(typ.Ord) != 1 {
return nil, fmt.Errorf("the function needs exactly one arg")
}
if typ.Out == nil {
return nil, fmt.Errorf("return type of function must be specified")
}
tKey, exists := typ.Map[typ.Ord[0]]
if !exists || tKey == nil {
return nil, fmt.Errorf("first arg must be specified")
}
if tKey.Kind != types.KindStr {
return nil, fmt.Errorf("key must be str kind")
}
if typ.Out.Kind != types.KindStruct {
return nil, fmt.Errorf("return must be kind struct")
}
if typ.Out.Map == nil {
return nil, fmt.Errorf("invalid return type")
}
if len(typ.Out.Ord) != 2 {
return nil, fmt.Errorf("invalid return type")
}
tValue, exists := typ.Out.Map[typ.Out.Ord[0]]
if !exists || tValue == nil {
return nil, fmt.Errorf("first struct field must be specified")
}
tReady, exists := typ.Out.Map[typ.Out.Ord[1]]
if !exists || tReady == nil {
return nil, fmt.Errorf("second struct field must be specified")
}
if tReady.Kind != types.KindBool {
return nil, fmt.Errorf("second struct field must be bool kind")
}
obj.Type = tValue // type of our value
return obj.sig(), nil
}
// Validate makes sure we've built our struct properly. It is usually unused for
// normal functions that users can use directly.
func (obj *GetFunc) Validate() error {
return nil
}
// Info returns some static info about itself.
func (obj *GetFunc) Info() *interfaces.Info {
var sig *types.Type
if obj.Type != nil { // don't panic if called speculatively
sig = obj.sig() // helper
}
return &interfaces.Info{
Pure: false, // definitely false
Memo: false,
Sig: sig,
Err: obj.Validate(),
}
}
// Init runs some startup code for this function.
func (obj *GetFunc) Init(init *interfaces.Init) error {
obj.init = init
obj.watchChan = make(chan struct{}) // sender closes this when Stream ends
return nil
}
// Stream returns the changing values that this func has over time.
func (obj *GetFunc) Stream(ctx context.Context) error {
defer close(obj.init.Output) // the sender closes
ctx, cancel := context.WithCancel(ctx)
defer cancel() // important so that we cleanup the watch when exiting
for {
select {
// TODO: should this first chan be run as a priority channel to
// avoid some sort of glitch? is that even possible? can our
// hostname check with reality (below) fix that?
case input, ok := <-obj.init.Input:
if !ok {
obj.init.Input = nil // don't infinite loop back
continue // no more inputs, but don't return!
}
//if err := input.Type().Cmp(obj.Info().Sig.Input); err != nil {
// return errwrap.Wrapf(err, "wrong function input")
//}
if obj.last != nil && input.Cmp(obj.last) == nil {
continue // value didn't change, skip it
}
obj.last = input // store for next
args, err := interfaces.StructToCallableArgs(input) // []types.Value, error)
if err != nil {
return err
}
obj.args = args
key := args[0].Str()
if key == "" {
return fmt.Errorf("can't use an empty key")
}
if obj.init.Debug {
obj.init.Logf("key: %s", key)
}
// We don't support changing the key over time, since it
// might cause the type to need to be changed.
if obj.key == "" {
obj.key = key // store it
var err error
// Don't send a value right away, wait for the
// first ValueWatch startup event to get one!
obj.watchChan, err = obj.init.Local.ValueWatch(ctx, obj.key) // watch for var changes
if err != nil {
return err
}
} else if obj.key != key {
return fmt.Errorf("can't change key, previously: `%s`", obj.key)
}
continue // we get values on the watch chan, not here!
case _, ok := <-obj.watchChan:
if !ok { // closed
return nil
}
//if err != nil {
// return errwrap.Wrapf(err, "channel watch failed on `%s`", obj.key)
//}
result, err := obj.Call(ctx, obj.args) // get the value...
if err != nil {
return err
}
// if the result is still the same, skip sending an update...
if obj.result != nil && result.Cmp(obj.result) == nil {
continue // result didn't change
}
obj.result = result // store new result
case <-ctx.Done():
return nil
}
select {
case obj.init.Output <- obj.result: // send
// pass
case <-ctx.Done():
return nil
}
}
}
// Call this function with the input args and return the value if it is possible
// to do so at this time. This was previously getValue which gets the value
// we're looking for.
func (obj *GetFunc) Call(ctx context.Context, args []types.Value) (types.Value, error) {
key := args[0].Str()
typ, exists := obj.Info().Sig.Out.Map[getFieldNameValue] // type of value field
if !exists || typ == nil {
// programming error
return nil, fmt.Errorf("missing type for %s field", getFieldNameValue)
}
// The API will pull from the on-disk stored cache if present... This
// value comes from the field in the Value resource... We only have an
// on-disk cache because since functions load before resources do, we'd
// like to warm the cache with the right value before the resource can
// issue a new one to our in-memory store. This avoids a re-provisioning
// step that might be needed if the value started out empty...
// TODO: We could even add a stored: bool field in the returned struct!
isReady := true // assume true
val, err := obj.init.Local.ValueGet(ctx, key)
if err != nil {
return nil, errwrap.Wrapf(err, "channel read failed on `%s`", key)
}
if val == nil { // val doesn't exist
isReady = false
}
ready := &types.BoolValue{V: isReady}
value := typ.New() // new zero value of that typ
if isReady {
value, err = types.ValueOfGolang(val) // interface{} -> types.Value
if err != nil {
// programming error
return nil, errwrap.Wrapf(err, "invalid value")
}
if err := value.Type().Cmp(typ); err != nil {
// XXX: when we run get_int, but the resource value is
// an str for example, this error happens... Do we want
// to: (1) coerce? -- no; (2) error? -- yep for now; (3)
// improve type unification? -- if it's possible, yes.
return nil, errwrap.Wrapf(err, "type mismatch, check type in Value[%s]", key)
}
}
st := types.NewStruct(obj.Info().Sig.Out)
if err := st.Set(getFieldNameValue, value); err != nil {
return nil, errwrap.Wrapf(err, "struct could not add field `%s`, val: `%s`", getFieldNameValue, value)
}
if err := st.Set(getFieldNameReady, ready); err != nil {
return nil, errwrap.Wrapf(err, "struct could not add field `%s`, val: `%s`", getFieldNameReady, ready)
}
return st, nil // put struct into interface type
}