Files
mgmt/lang/funcs/operator_polyfunc.go
James Shubin 5d664855de lang: interfaces, funcs: Implement fmt.Stringer for functions
This adds the requirement that all function implementations provider a
String() string method so that these can be used as vertices in the
pgraph library. If we eventually move to generics for the pgraph DAG,
then this might not matter, but it's not bad that these have names
either.
2023-03-03 14:12:09 -05:00

968 lines
28 KiB
Go

// Mgmt
// Copyright (C) 2013-2022+ James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
package funcs // this is here, in case we allow others to register operators...
import (
"fmt"
"math"
"sort"
"github.com/purpleidea/mgmt/lang/interfaces"
"github.com/purpleidea/mgmt/lang/types"
"github.com/purpleidea/mgmt/util"
"github.com/purpleidea/mgmt/util/errwrap"
)
const (
// OperatorFuncName is the name this function is registered as. This
// starts with an underscore so that it cannot be used from the lexer.
OperatorFuncName = "_operator"
// operatorArgName is the edge and arg name used for the function's
// operator.
operatorArgName = "op" // something short and arbitrary
)
func init() {
// concatenation
RegisterOperator("+", &types.FuncValue{
T: types.NewType("func(a str, b str) str"),
V: func(input []types.Value) (types.Value, error) {
return &types.StrValue{
V: input[0].Str() + input[1].Str(),
}, nil
},
})
// addition
RegisterOperator("+", &types.FuncValue{
T: types.NewType("func(a int, b int) int"),
V: func(input []types.Value) (types.Value, error) {
//if l := len(input); l != 2 {
// return nil, fmt.Errorf("expected two inputs, got: %d", l)
//}
// FIXME: check for overflow?
return &types.IntValue{
V: input[0].Int() + input[1].Int(),
}, nil
},
})
// floating-point addition
RegisterOperator("+", &types.FuncValue{
T: types.NewType("func(a float, b float) float"),
V: func(input []types.Value) (types.Value, error) {
return &types.FloatValue{
V: input[0].Float() + input[1].Float(),
}, nil
},
})
// subtraction
RegisterOperator("-", &types.FuncValue{
T: types.NewType("func(a int, b int) int"),
V: func(input []types.Value) (types.Value, error) {
return &types.IntValue{
V: input[0].Int() - input[1].Int(),
}, nil
},
})
// floating-point subtraction
RegisterOperator("-", &types.FuncValue{
T: types.NewType("func(a float, b float) float"),
V: func(input []types.Value) (types.Value, error) {
return &types.FloatValue{
V: input[0].Float() - input[1].Float(),
}, nil
},
})
// multiplication
RegisterOperator("*", &types.FuncValue{
T: types.NewType("func(a int, b int) int"),
V: func(input []types.Value) (types.Value, error) {
// FIXME: check for overflow?
return &types.IntValue{
V: input[0].Int() * input[1].Int(),
}, nil
},
})
// floating-point multiplication
RegisterOperator("*", &types.FuncValue{
T: types.NewType("func(a float, b float) float"),
V: func(input []types.Value) (types.Value, error) {
return &types.FloatValue{
V: input[0].Float() * input[1].Float(),
}, nil
},
})
// don't add: `func(int, float) float` or: `func(float, int) float`
// division
RegisterOperator("/", &types.FuncValue{
T: types.NewType("func(a int, b int) float"),
V: func(input []types.Value) (types.Value, error) {
divisor := input[1].Int()
if divisor == 0 {
return nil, fmt.Errorf("can't divide by zero")
}
return &types.FloatValue{
V: float64(input[0].Int()) / float64(divisor),
}, nil
},
})
// floating-point division
RegisterOperator("/", &types.FuncValue{
T: types.NewType("func(a float, b float) float"),
V: func(input []types.Value) (types.Value, error) {
divisor := input[1].Float()
if divisor == 0.0 {
return nil, fmt.Errorf("can't divide by zero")
}
return &types.FloatValue{
V: input[0].Float() / divisor,
}, nil
},
})
// string equality
RegisterOperator("==", &types.FuncValue{
T: types.NewType("func(a str, b str) bool"),
V: func(input []types.Value) (types.Value, error) {
return &types.BoolValue{
V: input[0].Str() == input[1].Str(),
}, nil
},
})
// bool equality
RegisterOperator("==", &types.FuncValue{
T: types.NewType("func(a bool, b bool) bool"),
V: func(input []types.Value) (types.Value, error) {
return &types.BoolValue{
V: input[0].Bool() == input[1].Bool(),
}, nil
},
})
// int equality
RegisterOperator("==", &types.FuncValue{
T: types.NewType("func(a int, b int) bool"),
V: func(input []types.Value) (types.Value, error) {
return &types.BoolValue{
V: input[0].Int() == input[1].Int(),
}, nil
},
})
// floating-point equality
RegisterOperator("==", &types.FuncValue{
T: types.NewType("func(a float, b float) bool"),
V: func(input []types.Value) (types.Value, error) {
// TODO: should we do an epsilon check?
return &types.BoolValue{
V: input[0].Float() == input[1].Float(),
}, nil
},
})
// string in-equality
RegisterOperator("!=", &types.FuncValue{
T: types.NewType("func(a str, b str) bool"),
V: func(input []types.Value) (types.Value, error) {
return &types.BoolValue{
V: input[0].Str() != input[1].Str(),
}, nil
},
})
// bool in-equality
RegisterOperator("!=", &types.FuncValue{
T: types.NewType("func(a bool, b bool) bool"),
V: func(input []types.Value) (types.Value, error) {
return &types.BoolValue{
V: input[0].Bool() != input[1].Bool(),
}, nil
},
})
// int in-equality
RegisterOperator("!=", &types.FuncValue{
T: types.NewType("func(a int, b int) bool"),
V: func(input []types.Value) (types.Value, error) {
return &types.BoolValue{
V: input[0].Int() != input[1].Int(),
}, nil
},
})
// floating-point in-equality
RegisterOperator("!=", &types.FuncValue{
T: types.NewType("func(a float, b float) bool"),
V: func(input []types.Value) (types.Value, error) {
// TODO: should we do an epsilon check?
return &types.BoolValue{
V: input[0].Float() != input[1].Float(),
}, nil
},
})
// less-than
RegisterOperator("<", &types.FuncValue{
T: types.NewType("func(a int, b int) bool"),
V: func(input []types.Value) (types.Value, error) {
return &types.BoolValue{
V: input[0].Int() < input[1].Int(),
}, nil
},
})
// floating-point less-than
RegisterOperator("<", &types.FuncValue{
T: types.NewType("func(a float, b float) bool"),
V: func(input []types.Value) (types.Value, error) {
// TODO: should we do an epsilon check?
return &types.BoolValue{
V: input[0].Float() < input[1].Float(),
}, nil
},
})
// greater-than
RegisterOperator(">", &types.FuncValue{
T: types.NewType("func(a int, b int) bool"),
V: func(input []types.Value) (types.Value, error) {
return &types.BoolValue{
V: input[0].Int() > input[1].Int(),
}, nil
},
})
// floating-point greater-than
RegisterOperator(">", &types.FuncValue{
T: types.NewType("func(a float, b float) bool"),
V: func(input []types.Value) (types.Value, error) {
// TODO: should we do an epsilon check?
return &types.BoolValue{
V: input[0].Float() > input[1].Float(),
}, nil
},
})
// less-than-equal
RegisterOperator("<=", &types.FuncValue{
T: types.NewType("func(a int, b int) bool"),
V: func(input []types.Value) (types.Value, error) {
return &types.BoolValue{
V: input[0].Int() <= input[1].Int(),
}, nil
},
})
// floating-point less-than-equal
RegisterOperator("<=", &types.FuncValue{
T: types.NewType("func(a float, b float) bool"),
V: func(input []types.Value) (types.Value, error) {
// TODO: should we do an epsilon check?
return &types.BoolValue{
V: input[0].Float() <= input[1].Float(),
}, nil
},
})
// greater-than-equal
RegisterOperator(">=", &types.FuncValue{
T: types.NewType("func(a int, b int) bool"),
V: func(input []types.Value) (types.Value, error) {
return &types.BoolValue{
V: input[0].Int() >= input[1].Int(),
}, nil
},
})
// floating-point greater-than-equal
RegisterOperator(">=", &types.FuncValue{
T: types.NewType("func(a float, b float) bool"),
V: func(input []types.Value) (types.Value, error) {
// TODO: should we do an epsilon check?
return &types.BoolValue{
V: input[0].Float() >= input[1].Float(),
}, nil
},
})
// logical and
// TODO: is there a way for the engine to have
// short-circuit operators, and does it matter?
RegisterOperator("&&", &types.FuncValue{
T: types.NewType("func(a bool, b bool) bool"),
V: func(input []types.Value) (types.Value, error) {
return &types.BoolValue{
V: input[0].Bool() && input[1].Bool(),
}, nil
},
})
// logical or
RegisterOperator("||", &types.FuncValue{
T: types.NewType("func(a bool, b bool) bool"),
V: func(input []types.Value) (types.Value, error) {
return &types.BoolValue{
V: input[0].Bool() || input[1].Bool(),
}, nil
},
})
// logical not (unary operator)
RegisterOperator("!", &types.FuncValue{
T: types.NewType("func(a bool) bool"),
V: func(input []types.Value) (types.Value, error) {
return &types.BoolValue{
V: !input[0].Bool(),
}, nil
},
})
// pi operator (this is an easter egg to demo a zero arg operator)
RegisterOperator("π", &types.FuncValue{
T: types.NewType("func() float"),
V: func(input []types.Value) (types.Value, error) {
return &types.FloatValue{
V: math.Pi,
}, nil
},
})
Register(OperatorFuncName, func() interfaces.Func { return &OperatorPolyFunc{} }) // must register the func and name
}
// OperatorFuncs maps an operator to a list of callable function values.
var OperatorFuncs = make(map[string][]*types.FuncValue) // must initialize
// RegisterOperator registers the given string operator and function value
// implementation with the mini-database for this generalized, static,
// polymorphic operator implementation.
func RegisterOperator(operator string, fn *types.FuncValue) {
if _, exists := OperatorFuncs[operator]; !exists {
OperatorFuncs[operator] = []*types.FuncValue{} // init
}
for _, f := range OperatorFuncs[operator] {
if err := f.T.Cmp(fn.T); err == nil {
panic(fmt.Sprintf("operator %s already has an implementation for %+v", operator, f.T))
}
}
for i, x := range fn.T.Ord {
if x == operatorArgName {
panic(fmt.Sprintf("can't use `%s` as an argName for operator `%s` with type `%+v`", x, operator, fn.T))
}
// yes this limits the arg max to 24 (`x`) including operator
// if the operator is `x`...
if s := util.NumToAlpha(i); x != s {
panic(fmt.Sprintf("arg for operator `%s` (index `%d`) should be named `%s`, not `%s`", operator, i, s, x))
}
}
OperatorFuncs[operator] = append(OperatorFuncs[operator], fn)
}
// LookupOperator returns a list of type strings for each operator. An empty
// operator string means return everything. If you specify a size that is less
// than zero, we don't filter by arg length, otherwise we only return signatures
// which have an arg length equal to size.
func LookupOperator(operator string, size int) ([]*types.Type, error) {
fns, exists := OperatorFuncs[operator]
if !exists && operator != "" {
return nil, fmt.Errorf("operator not found")
}
results := []*types.Type{}
if operator == "" {
var keys []string
for k := range OperatorFuncs {
keys = append(keys, k)
}
sort.Strings(keys)
for _, a := range keys {
fns = append(fns, OperatorFuncs[a]...)
}
}
for _, fn := range fns {
typ := addOperatorArg(fn.T) // add in the `operatorArgName` arg
if size >= 0 && len(typ.Ord) != size {
continue
}
results = append(results, typ)
}
return results, nil
}
// LookupOperatorShort is similar to LookupOperator except that it returns the
// "short" (standalone) types of the direct functions that are attached to each
// operator. IOW, if you specify "+" and 2, you'll get the sigs for "a" + "b"
// and 1 + 2, without the third "op" as the first argument.
func LookupOperatorShort(operator string, size int) ([]*types.Type, error) {
fns, exists := OperatorFuncs[operator]
if !exists && operator != "" {
return nil, fmt.Errorf("operator not found")
}
results := []*types.Type{}
for _, fn := range fns {
typ := fn.T
if len(typ.Ord) != size {
continue
}
results = append(results, typ)
}
return results, nil
}
// OperatorPolyFunc is an operator function that performs an operation on N
// values.
type OperatorPolyFunc struct {
Type *types.Type // Kind == Function, including operator arg
init *interfaces.Init
last types.Value // last value received to use for diff
result types.Value // last calculated output
closeChan chan struct{}
}
// String returns a simple name for this function. This is needed so this struct
// can satisfy the pgraph.Vertex interface.
func (obj *OperatorPolyFunc) String() string {
// TODO: return the exact operator if we can guarantee it doesn't change
return OperatorFuncName
}
// argNames returns the maximum list of possible argNames. This can be truncated
// if needed. The first arg name is the operator.
func (obj *OperatorPolyFunc) argNames() ([]string, error) {
// we could just do this statically, but i did it dynamically so that I
// wouldn't ever have to remember to update this list...
max := 0
for _, fns := range OperatorFuncs {
for _, fn := range fns {
l := len(fn.T.Ord)
if l > max {
max = l
}
}
}
//if length >= 0 && length < max {
// max = length
//}
args := []string{operatorArgName}
for i := 0; i < max; i++ {
s := util.NumToAlpha(i)
if s == operatorArgName {
return nil, fmt.Errorf("can't use `%s` as arg name", operatorArgName)
}
args = append(args, s)
}
return args, nil
}
// findFunc tries to find the first available registered operator function that
// matches the Operator/Type pattern requested. If none is found it returns nil.
func (obj *OperatorPolyFunc) findFunc(operator string) *types.FuncValue {
fns, exists := OperatorFuncs[operator]
if !exists {
return nil
}
typ := removeOperatorArg(obj.Type) // remove operator so we can match...
for _, fn := range fns {
if err := fn.Type().Cmp(typ); err == nil { // found one!
return fn
}
}
return nil
}
// ArgGen returns the Nth arg name for this function.
func (obj *OperatorPolyFunc) ArgGen(index int) (string, error) {
seq, err := obj.argNames()
if err != nil {
return "", err
}
if l := len(seq); index >= l {
return "", fmt.Errorf("index %d exceeds arg length of %d", index, l)
}
return seq[index], nil
}
// Unify returns the list of invariants that this func produces.
func (obj *OperatorPolyFunc) Unify(expr interfaces.Expr) ([]interfaces.Invariant, error) {
var invariants []interfaces.Invariant
var invar interfaces.Invariant
// func(operator string, args... variant) string
operatorName, err := obj.ArgGen(0)
if err != nil {
return nil, err
}
dummyOperator := &interfaces.ExprAny{} // corresponds to the format type
dummyOut := &interfaces.ExprAny{} // corresponds to the out type
// operator arg type of string
invar = &interfaces.EqualsInvariant{
Expr: dummyOperator,
Type: types.TypeStr,
}
invariants = append(invariants, invar)
// return type is currently unknown
invar = &interfaces.AnyInvariant{
Expr: dummyOut, // make sure to include it so we know it solves
}
invariants = append(invariants, invar)
// generator function
fn := func(fnInvariants []interfaces.Invariant, solved map[interfaces.Expr]*types.Type) ([]interfaces.Invariant, error) {
for _, invariant := range fnInvariants {
// search for this special type of invariant
cfavInvar, ok := invariant.(*interfaces.CallFuncArgsValueInvariant)
if !ok {
continue
}
// did we find the mapping from us to ExprCall ?
if cfavInvar.Func != expr {
continue
}
// cfavInvar.Expr is the ExprCall! (the return pointer)
// cfavInvar.Args are the args that ExprCall uses!
if len(cfavInvar.Args) == 0 {
return nil, fmt.Errorf("unable to build function with no args")
}
// our operator is the 0th arg, but that's the minimum!
var invariants []interfaces.Invariant
var invar interfaces.Invariant
// add the relationship to the returned value
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Expr,
Expr2: dummyOut,
}
invariants = append(invariants, invar)
// add the relationships to the called args
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Args[0],
Expr2: dummyOperator,
}
invariants = append(invariants, invar)
// first arg must be a string
invar = &interfaces.EqualsInvariant{
Expr: cfavInvar.Args[0],
Type: types.TypeStr,
}
invariants = append(invariants, invar)
value, err := cfavInvar.Args[0].Value() // is it known?
if err != nil {
return nil, fmt.Errorf("operator string is not known statically")
}
if k := value.Type().Kind; k != types.KindStr {
return nil, fmt.Errorf("unable to build function with 0th arg of kind: %s", k)
}
op := value.Str() // must not panic
if op == "" {
return nil, fmt.Errorf("unable to build function with empty op")
}
size := len(cfavInvar.Args) - 1 // -1 to remove the op
// since built-in functions have their signatures
// explicitly defined, we can add easy invariants
// between in/out args and their expected types.
results, err := LookupOperatorShort(op, size)
if err != nil {
return nil, errwrap.Wrapf(err, "error finding signatures for operator `%s`", op)
}
if len(results) == 0 {
return nil, fmt.Errorf("no matching signatures for operator `%s` could be found", op)
}
// helper function to build our complex func invariants
buildInvar := func(typ *types.Type) ([]interfaces.Invariant, error) {
var invariants []interfaces.Invariant
var invar interfaces.Invariant
// full function
mapped := make(map[string]interfaces.Expr)
ordered := []string{operatorName}
mapped[operatorName] = dummyOperator
// assume this is a types.KindFunc
for i, x := range typ.Ord {
t := typ.Map[x]
if t == nil {
// programming error
return nil, fmt.Errorf("unexpected func nil arg (%d) type", i)
}
argName, err := obj.ArgGen(i + 1) // skip 0th
if err != nil {
return nil, err
}
if argName == operatorArgName {
return nil, fmt.Errorf("could not build function with %d args", i+1) // +1 for op arg
}
dummyArg := &interfaces.ExprAny{}
invar = &interfaces.EqualsInvariant{
Expr: dummyArg,
Type: t,
}
invariants = append(invariants, invar)
invar = &interfaces.EqualityInvariant{
Expr1: dummyArg,
Expr2: cfavInvar.Args[i+1],
}
invariants = append(invariants, invar)
mapped[argName] = dummyArg
ordered = append(ordered, argName)
}
invar = &interfaces.EqualityWrapFuncInvariant{
Expr1: expr, // maps directly to us!
Expr2Map: mapped,
Expr2Ord: ordered,
Expr2Out: dummyOut,
}
invariants = append(invariants, invar)
if typ.Out == nil {
// programming error
return nil, fmt.Errorf("unexpected func nil return type")
}
// remember to add the relationship to the
// return type of the functions as well...
invar = &interfaces.EqualsInvariant{
Expr: dummyOut,
Type: typ.Out,
}
invariants = append(invariants, invar)
return invariants, nil
}
// argCmp trims down the list of possible types...
// this makes our exclusive invariants smaller, and
// easier to solve without combinatorial slow recursion
argCmp := func(typ *types.Type) bool {
if len(cfavInvar.Args)-1 != len(typ.Ord) {
return false // arg length differs
}
for i, x := range cfavInvar.Args[1:] {
if t, err := x.Type(); err == nil {
if t.Cmp(typ.Map[typ.Ord[i]]) != nil {
return false // impossible!
}
}
// is the type already known as solved?
if t, exists := solved[x]; exists { // alternate way to lookup type
if t.Cmp(typ.Map[typ.Ord[i]]) != nil {
return false // impossible!
}
}
}
return true // possible
}
// TODO: do we return this relationship with ExprCall?
invar = &interfaces.EqualityWrapCallInvariant{
// TODO: should Expr1 and Expr2 be reversed???
Expr1: cfavInvar.Expr,
//Expr2Func: cfavInvar.Func, // same as below
Expr2Func: expr,
}
invariants = append(invariants, invar)
ors := []interfaces.Invariant{} // solve only one from this list
for _, typ := range results { // operator func types
if typ.Kind != types.KindFunc {
// programming error
return nil, fmt.Errorf("type must be a kind of func")
}
if !argCmp(typ) { // filter out impossible types
continue // not a possible match
}
invars, err := buildInvar(typ)
if err != nil {
return nil, err
}
// all of these need to be true together
and := &interfaces.ConjunctionInvariant{
Invariants: invars,
}
ors = append(ors, and) // one solution added!
}
if len(ors) == 0 {
return nil, fmt.Errorf("no matching signatures for operator `%s` could be found", op)
}
invar = &interfaces.ExclusiveInvariant{
Invariants: ors, // one and only one of these should be true
}
if len(ors) == 1 {
invar = ors[0] // there should only be one
}
invariants = append(invariants, invar)
// TODO: are there any other invariants we should build?
return invariants, nil // generator return
}
// We couldn't tell the solver anything it didn't already know!
return nil, fmt.Errorf("couldn't generate new invariants")
}
invar = &interfaces.GeneratorInvariant{
Func: fn,
}
invariants = append(invariants, invar)
return invariants, nil
}
// Polymorphisms returns the list of possible function signatures available for
// this static polymorphic function. It relies on type and value hints to limit
// the number of returned possibilities.
func (obj *OperatorPolyFunc) Polymorphisms(partialType *types.Type, partialValues []types.Value) ([]*types.Type, error) {
var op string
var size = -1
// optimization: if operator happens to already be known statically,
// then we can return a much smaller subset of possible signatures...
if partialType != nil && partialType.Ord != nil {
ord := partialType.Ord
if len(ord) == 0 {
return nil, fmt.Errorf("must have at least one arg in operator func")
}
// optimization: since we know arg length, we can limit the
// signatures that we return...
size = len(ord) // we know size!
if partialType.Map != nil {
if t, exists := partialType.Map[ord[0]]; exists && t != nil {
if t.Cmp(types.TypeStr) != nil {
return nil, fmt.Errorf("first arg for operator func must be an str")
}
if len(partialValues) > 0 && partialValues[0] != nil {
op = partialValues[0].Str() // known str
}
}
}
}
// since built-in functions have their signatures explicitly defined, we
// can add easy invariants between in/out args and their expected types.
results, err := LookupOperator(op, size)
if err != nil {
return nil, errwrap.Wrapf(err, "error finding signatures for operator `%s`", op)
}
// TODO: we can add additional results filtering here if we'd like...
if len(results) == 0 {
return nil, fmt.Errorf("no matching signatures for operator `%s` could be found", op)
}
return results, nil
}
// Build is run to turn the polymorphic, undetermined function, into the
// specific statically typed version. It is usually run after Unify completes,
// and must be run before Info() and any of the other Func interface methods are
// used. This function is idempotent, as long as the arg isn't changed between
// runs.
func (obj *OperatorPolyFunc) Build(typ *types.Type) error {
// typ is the KindFunc signature we're trying to build...
if len(typ.Ord) < 1 {
return fmt.Errorf("the operator function needs at least 1 arg")
}
if typ.Out == nil {
return fmt.Errorf("return type of function must be specified")
}
obj.Type = typ // func type
return nil
}
// Validate tells us if the input struct takes a valid form.
func (obj *OperatorPolyFunc) Validate() error {
if obj.Type == nil { // build must be run first
return fmt.Errorf("type is still unspecified")
}
if obj.Type.Kind != types.KindFunc {
return fmt.Errorf("type must be a kind of func")
}
return nil
}
// Info returns some static info about itself. Build must be called before this
// will return correct data.
func (obj *OperatorPolyFunc) Info() *interfaces.Info {
return &interfaces.Info{
Pure: true,
Memo: false,
Sig: obj.Type, // func kind, which includes operator arg as input
Err: obj.Validate(),
}
}
// Init runs some startup code for this function.
func (obj *OperatorPolyFunc) Init(init *interfaces.Init) error {
obj.init = init
obj.closeChan = make(chan struct{})
return nil
}
// Stream returns the changing values that this func has over time.
func (obj *OperatorPolyFunc) Stream() error {
var op, lastOp string
var fn *types.FuncValue
defer close(obj.init.Output) // the sender closes
for {
select {
case input, ok := <-obj.init.Input:
if !ok {
return nil // can't output any more
}
//if err := input.Type().Cmp(obj.Info().Sig.Input); err != nil {
// return errwrap.Wrapf(err, "wrong function input")
//}
if obj.last != nil && input.Cmp(obj.last) == nil {
continue // value didn't change, skip it
}
obj.last = input // store for next
// build up arg list
args := []types.Value{}
for _, name := range obj.Type.Ord {
v := input.Struct()[name]
if name == operatorArgName {
op = v.Str()
continue // skip over the operator arg
}
args = append(args, v)
}
if op == "" {
return fmt.Errorf("operator cannot be empty")
}
// operator selection is dynamic now, although mostly it
// should not change... to do so is probably uncommon...
if fn == nil || op != lastOp {
fn = obj.findFunc(op)
}
if fn == nil {
return fmt.Errorf("func not found for operator `%s` with sig: `%+v`", op, obj.Type)
}
lastOp = op
var result types.Value
result, err := fn.Call(args) // run the function
if err != nil {
return errwrap.Wrapf(err, "problem running function")
}
if result == nil {
return fmt.Errorf("computed function output was nil")
}
// if previous input was `2 + 4`, but now it
// changed to `1 + 5`, the result is still the
// same, so we can skip sending an update...
if obj.result != nil && result.Cmp(obj.result) == nil {
continue // result didn't change
}
obj.result = result // store new result
case <-obj.closeChan:
return nil
}
select {
case obj.init.Output <- obj.result: // send
case <-obj.closeChan:
return nil
}
}
}
// Close runs some shutdown code for this function and turns off the stream.
func (obj *OperatorPolyFunc) Close() error {
close(obj.closeChan)
return nil
}
// removeOperatorArg returns a copy of the input KindFunc type, without the
// operator arg which specifies which operator we're using. It *is* idempotent.
func removeOperatorArg(typ *types.Type) *types.Type {
if typ == nil {
return nil
}
if _, exists := typ.Map[operatorArgName]; !exists {
return typ // pass through
}
m := make(map[string]*types.Type)
ord := []string{}
for _, s := range typ.Ord {
if s == operatorArgName {
continue // remove the operator
}
m[s] = typ.Map[s]
ord = append(ord, s)
}
return &types.Type{
Kind: types.KindFunc,
Map: m,
Ord: ord,
Out: typ.Out,
}
}
// addOperatorArg returns a copy of the input KindFunc type, with the operator
// arg which specifies which operator we're using added. This is idempotent.
func addOperatorArg(typ *types.Type) *types.Type {
if typ == nil {
return nil
}
if _, exists := typ.Map[operatorArgName]; exists {
return typ // pass through
}
m := make(map[string]*types.Type)
m[operatorArgName] = types.TypeStr // add the operator
ord := []string{operatorArgName} // add the operator
for _, s := range typ.Ord {
m[s] = typ.Map[s]
ord = append(ord, s)
}
return &types.Type{
Kind: types.KindFunc,
Map: m,
Ord: ord,
Out: typ.Out,
}
}