Files
mgmt/lang/funcs/core/iter/map_func.go
James Shubin 5d664855de lang: interfaces, funcs: Implement fmt.Stringer for functions
This adds the requirement that all function implementations provider a
String() string method so that these can be used as vertices in the
pgraph library. If we eventually move to generics for the pgraph DAG,
then this might not matter, but it's not bad that these have names
either.
2023-03-03 14:12:09 -05:00

635 lines
20 KiB
Go

// Mgmt
// Copyright (C) 2013-2022+ James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
package coreiter
import (
"fmt"
"github.com/purpleidea/mgmt/lang/funcs"
"github.com/purpleidea/mgmt/lang/interfaces"
"github.com/purpleidea/mgmt/lang/types"
"github.com/purpleidea/mgmt/util"
"github.com/purpleidea/mgmt/util/errwrap"
)
const (
// MapFuncName is the name this function is registered as.
// XXX: rename to map once our parser sees a function name and not a type
MapFuncName = "xmap"
)
func init() {
funcs.ModuleRegister(ModuleName, MapFuncName, func() interfaces.Func { return &MapFunc{} }) // must register the func and name
}
const (
argNameInputs = "inputs"
argNameFunction = "function"
)
// MapFunc is the standard map iterator function that applies a function to each
// element in a list. It returns a list with the same number of elements as the
// input list. There is no requirement that the element output type be the same
// as the input element type. This implements the signature: `func(inputs []T1,
// function func(T1) T2) []T2` instead of the alternate with the two input args
// swapped, because while the latter is more common with languages that support
// partial function application, the former variant that we implemented is much
// more readable when using an inline lambda.
// TODO: should we extend this to support iterating over map's and structs, or
// should that be a different function? I think a different function is best.
type MapFunc struct {
Type *types.Type // this is the type of the elements in our input list
RType *types.Type // this is the type of the elements in our output list
init *interfaces.Init
last types.Value // last value received to use for diff
inputs types.Value
function func([]types.Value) (types.Value, error)
result types.Value // last calculated output
closeChan chan struct{}
}
// String returns a simple name for this function. This is needed so this struct
// can satisfy the pgraph.Vertex interface.
func (obj *MapFunc) String() string {
return MapFuncName
}
// ArgGen returns the Nth arg name for this function.
func (obj *MapFunc) ArgGen(index int) (string, error) {
seq := []string{argNameInputs, argNameFunction} // inverted for pretty!
if l := len(seq); index >= l {
return "", fmt.Errorf("index %d exceeds arg length of %d", index, l)
}
return seq[index], nil
}
// Unify returns the list of invariants that this func produces.
func (obj *MapFunc) Unify(expr interfaces.Expr) ([]interfaces.Invariant, error) {
var invariants []interfaces.Invariant
var invar interfaces.Invariant
// func(inputs []T1, function func(T1) T2) []T2
inputsName, err := obj.ArgGen(0)
if err != nil {
return nil, err
}
functionName, err := obj.ArgGen(1)
if err != nil {
return nil, err
}
dummyArgList := &interfaces.ExprAny{} // corresponds to the input list
dummyArgFunc := &interfaces.ExprAny{} // corresponds to the input func
dummyOutList := &interfaces.ExprAny{} // corresponds to the output list
t1Expr := &interfaces.ExprAny{} // corresponds to the t1 type
t2Expr := &interfaces.ExprAny{} // corresponds to the t2 type
invar = &interfaces.EqualityWrapListInvariant{
Expr1: dummyArgList,
Expr2Val: t1Expr,
}
invariants = append(invariants, invar)
invar = &interfaces.EqualityWrapListInvariant{
Expr1: dummyOutList,
Expr2Val: t2Expr,
}
invariants = append(invariants, invar)
// full function
mapped := make(map[string]interfaces.Expr)
ordered := []string{inputsName, functionName}
mapped[inputsName] = dummyArgList
mapped[functionName] = dummyArgFunc
invar = &interfaces.EqualityWrapFuncInvariant{
Expr1: expr, // maps directly to us!
Expr2Map: mapped,
Expr2Ord: ordered,
Expr2Out: dummyOutList,
}
invariants = append(invariants, invar)
// relationship between t1 and t2
argName := util.NumToAlpha(0) // XXX: does the arg name matter?
invar = &interfaces.EqualityWrapFuncInvariant{
Expr1: dummyArgFunc,
Expr2Map: map[string]interfaces.Expr{
argName: t1Expr,
},
Expr2Ord: []string{argName},
Expr2Out: t2Expr,
}
invariants = append(invariants, invar)
// generator function
fn := func(fnInvariants []interfaces.Invariant, solved map[interfaces.Expr]*types.Type) ([]interfaces.Invariant, error) {
for _, invariant := range fnInvariants {
// search for this special type of invariant
cfavInvar, ok := invariant.(*interfaces.CallFuncArgsValueInvariant)
if !ok {
continue
}
// did we find the mapping from us to ExprCall ?
if cfavInvar.Func != expr {
continue
}
// cfavInvar.Expr is the ExprCall! (the return pointer)
// cfavInvar.Args are the args that ExprCall uses!
if l := len(cfavInvar.Args); l != 2 {
return nil, fmt.Errorf("unable to build function with %d args", l)
}
// we must have exactly two args
var invariants []interfaces.Invariant
var invar interfaces.Invariant
// add the relationship to the returned value
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Expr,
Expr2: dummyOutList,
}
invariants = append(invariants, invar)
// add the relationships to the called args
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Args[0],
Expr2: dummyArgList,
}
invariants = append(invariants, invar)
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Args[1],
Expr2: dummyArgFunc,
}
invariants = append(invariants, invar)
invar = &interfaces.EqualityWrapListInvariant{
Expr1: cfavInvar.Args[0],
Expr2Val: t1Expr,
}
invariants = append(invariants, invar)
invar = &interfaces.EqualityWrapListInvariant{
Expr1: cfavInvar.Expr,
Expr2Val: t2Expr,
}
invariants = append(invariants, invar)
var t1, t2 *types.Type // as seen in our sig's
var foundArgName string = util.NumToAlpha(0) // XXX: is this a hack?
// validateArg0 checks: inputs []T1
validateArg0 := func(typ *types.Type) error {
if typ == nil { // unknown so far
return nil
}
if typ.Kind != types.KindList {
return fmt.Errorf("input type must be of kind list")
}
if typ.Val == nil { // TODO: is this okay to add?
return nil // unknown so far
}
if t1 == nil { // t1 is not yet known, so done!
t1 = typ.Val // learn!
return nil
}
//if err := typ.Val.Cmp(t1); err != nil {
// return errwrap.Wrapf(err, "input type was inconsistent")
//}
//return nil
return errwrap.Wrapf(typ.Val.Cmp(t1), "input type was inconsistent")
}
// validateArg1 checks: func(T1) T2
validateArg1 := func(typ *types.Type) error {
if typ == nil { // unknown so far
return nil
}
if typ.Kind != types.KindFunc {
return fmt.Errorf("input type must be of kind func")
}
if len(typ.Map) != 1 || len(typ.Ord) != 1 {
return fmt.Errorf("input type func must have only one input arg")
}
arg, exists := typ.Map[typ.Ord[0]]
if !exists {
// programming error
return fmt.Errorf("input type func first arg is missing")
}
if t1 != nil {
if err := arg.Cmp(t1); err != nil {
return errwrap.Wrapf(err, "input type func arg was inconsistent")
}
}
if t2 != nil {
if err := typ.Out.Cmp(t2); err != nil {
return errwrap.Wrapf(err, "input type func output was inconsistent")
}
}
// in case they weren't set already
t1 = arg
t2 = typ.Out
foundArgName = typ.Ord[0] // we found a name!
return nil
}
if typ, err := cfavInvar.Args[0].Type(); err == nil { // is it known?
// this sets t1 and t2 on success if it learned
if err := validateArg0(typ); err != nil {
return nil, errwrap.Wrapf(err, "first input arg type is inconsistent")
}
}
if typ, exists := solved[cfavInvar.Args[0]]; exists { // alternate way to lookup type
// this sets t1 and t2 on success if it learned
if err := validateArg0(typ); err != nil {
return nil, errwrap.Wrapf(err, "first input arg type is inconsistent")
}
}
// XXX: since we might not yet have association to this
// expression (dummyArgList) yet, we could consider
// returning some of the invariants and a new generator
// and hoping we get a hit on this one the next time.
if typ, exists := solved[dummyArgList]; exists { // alternate way to lookup type
// this sets t1 and t2 on success if it learned
if err := validateArg0(typ); err != nil {
return nil, errwrap.Wrapf(err, "first input arg type is inconsistent")
}
}
if typ, err := cfavInvar.Args[1].Type(); err == nil { // is it known?
// this sets t1 and t2 on success if it learned
if err := validateArg1(typ); err != nil {
return nil, errwrap.Wrapf(err, "second input arg type is inconsistent")
}
}
if typ, exists := solved[cfavInvar.Args[1]]; exists { // alternate way to lookup type
// this sets t1 and t2 on success if it learned
if err := validateArg1(typ); err != nil {
return nil, errwrap.Wrapf(err, "second input arg type is inconsistent")
}
}
// XXX: since we might not yet have association to this
// expression (dummyArgFunc) yet, we could consider
// returning some of the invariants and a new generator
// and hoping we get a hit on this one the next time.
if typ, exists := solved[dummyArgFunc]; exists { // alternate way to lookup type
// this sets t1 and t2 on success if it learned
if err := validateArg1(typ); err != nil {
return nil, errwrap.Wrapf(err, "second input arg type is inconsistent")
}
}
// XXX: look for t1 and t2 in other places?
if t1 != nil {
invar = &interfaces.EqualsInvariant{
Expr: t1Expr,
Type: t1,
}
invariants = append(invariants, invar)
}
if t1 != nil && t2 != nil {
// TODO: if the argName matters, do it here...
_ = foundArgName
//argName := foundArgName // XXX: is this a hack?
//mapped := make(map[string]interfaces.Expr)
//ordered := []string{argName}
//mapped[argName] = t1Expr
//invar = &interfaces.EqualityWrapFuncInvariant{
// Expr1: dummyArgFunc,
// Expr2Map: mapped,
// Expr2Ord: ordered,
// Expr2Out: t2Expr,
//}
//invariants = append(invariants, invar)
}
// note, currently, we can't learn t2 without t1
if t2 != nil {
invar = &interfaces.EqualsInvariant{
Expr: t2Expr,
Type: t2,
}
invariants = append(invariants, invar)
}
// We need to require this knowledge to continue!
if t1 == nil || t2 == nil {
return nil, fmt.Errorf("not enough known about function signature")
}
// TODO: do we return this relationship with ExprCall?
invar = &interfaces.EqualityWrapCallInvariant{
// TODO: should Expr1 and Expr2 be reversed???
Expr1: cfavInvar.Expr,
//Expr2Func: cfavInvar.Func, // same as below
Expr2Func: expr,
}
invariants = append(invariants, invar)
// TODO: are there any other invariants we should build?
return invariants, nil // generator return
}
// We couldn't tell the solver anything it didn't already know!
return nil, fmt.Errorf("couldn't generate new invariants")
}
invar = &interfaces.GeneratorInvariant{
Func: fn,
}
invariants = append(invariants, invar)
return invariants, nil
}
// Polymorphisms returns the list of possible function signatures available for
// this static polymorphic function. It relies on type and value hints to limit
// the number of returned possibilities.
func (obj *MapFunc) Polymorphisms(partialType *types.Type, partialValues []types.Value) ([]*types.Type, error) {
// XXX: double check that this works with `func([]int, func(int) str) []str` (when types change!)
// TODO: look at partialValues to gleam type information?
if partialType == nil {
return nil, fmt.Errorf("zero type information given")
}
if partialType.Kind != types.KindFunc {
return nil, fmt.Errorf("partial type must be of kind func")
}
// If we figure out both of these two types, we'll know the full type...
var t1 *types.Type // type
var t2 *types.Type // rtype
// Look at the returned "out" type if it's known.
if tOut := partialType.Out; tOut != nil {
if tOut.Kind != types.KindList {
return nil, fmt.Errorf("partial out type must be of kind list")
}
t2 = tOut.Val // found (if not nil)
}
ord := partialType.Ord
if partialType.Map != nil {
// TODO: is it okay to assume this?
//if len(ord) == 0 {
// return nil, fmt.Errorf("must have two args in func")
//}
if len(ord) != 2 {
return nil, fmt.Errorf("must have two args in func")
}
if tInputs, exists := partialType.Map[ord[0]]; exists && tInputs != nil {
if tInputs.Kind != types.KindList {
return nil, fmt.Errorf("first input arg must be of kind list")
}
t1 = tInputs.Val // found (if not nil)
}
if tFunction, exists := partialType.Map[ord[1]]; exists && tFunction != nil {
if tFunction.Kind != types.KindFunc {
return nil, fmt.Errorf("second input arg must be a func")
}
fOrd := tFunction.Ord
if fMap := tFunction.Map; fMap != nil {
if len(fOrd) != 1 {
return nil, fmt.Errorf("second input arg func, must have only one arg")
}
if fIn, exists := fMap[fOrd[0]]; exists && fIn != nil {
if err := fIn.Cmp(t1); t1 != nil && err != nil {
return nil, errwrap.Wrapf(err, "first arg function in type is inconsistent")
}
t1 = fIn // found
}
}
if fOut := tFunction.Out; fOut != nil {
if err := fOut.Cmp(t2); t2 != nil && err != nil {
return nil, errwrap.Wrapf(err, "second arg function out type is inconsistent")
}
t2 = fOut // found
}
}
}
if t1 == nil || t2 == nil {
return nil, fmt.Errorf("not enough type information given")
}
tI := types.NewType(fmt.Sprintf("[]%s", t1.String())) // in
tO := types.NewType(fmt.Sprintf("[]%s", t2.String())) // out
tF := types.NewType(fmt.Sprintf("func(%s) %s", t1.String(), t2.String()))
s := fmt.Sprintf("func(%s %s, %s %s) %s", argNameInputs, tI, argNameFunction, tF, tO)
typ := types.NewType(s) // yay!
// TODO: type check that the partialValues are compatible
return []*types.Type{typ}, nil // solved!
}
// Build is run to turn the polymorphic, undetermined function, into the
// specific statically typed version. It is usually run after Unify completes,
// and must be run before Info() and any of the other Func interface methods are
// used. This function is idempotent, as long as the arg isn't changed between
// runs.
func (obj *MapFunc) Build(typ *types.Type) error {
// typ is the KindFunc signature we're trying to build...
if typ.Kind != types.KindFunc {
return fmt.Errorf("input type must be of kind func")
}
if len(typ.Ord) != 2 {
return fmt.Errorf("the map needs exactly two args")
}
if typ.Map == nil {
return fmt.Errorf("the map is nil")
}
tInputs, exists := typ.Map[typ.Ord[0]]
if !exists || tInputs == nil {
return fmt.Errorf("first argument was missing")
}
tFunction, exists := typ.Map[typ.Ord[1]]
if !exists || tFunction == nil {
return fmt.Errorf("second argument was missing")
}
if tInputs.Kind != types.KindList {
return fmt.Errorf("first argument must be of kind list")
}
if tFunction.Kind != types.KindFunc {
return fmt.Errorf("second argument must be of kind func")
}
if typ.Out == nil {
return fmt.Errorf("return type must be specified")
}
if typ.Out.Kind != types.KindList {
return fmt.Errorf("return argument must be a list")
}
if len(tFunction.Ord) != 1 {
return fmt.Errorf("the functions map needs exactly one arg")
}
if tFunction.Map == nil {
return fmt.Errorf("the functions map is nil")
}
tArg, exists := tFunction.Map[tFunction.Ord[0]]
if !exists || tArg == nil {
return fmt.Errorf("the functions first argument was missing")
}
if err := tArg.Cmp(tInputs.Val); err != nil {
return errwrap.Wrapf(err, "the functions arg type must match the input list contents type")
}
if tFunction.Out == nil {
return fmt.Errorf("return type of function must be specified")
}
if err := tFunction.Out.Cmp(typ.Out.Val); err != nil {
return errwrap.Wrapf(err, "return type of function must match returned list contents type")
}
obj.Type = tInputs.Val // or tArg
obj.RType = tFunction.Out // or typ.Out.Val
return nil
}
// Validate tells us if the input struct takes a valid form.
func (obj *MapFunc) Validate() error {
if obj.Type == nil || obj.RType == nil {
return fmt.Errorf("type is not yet known")
}
return nil
}
// Info returns some static info about itself. Build must be called before this
// will return correct data.
func (obj *MapFunc) Info() *interfaces.Info {
// TODO: what do we put if this is unknown?
tIi := types.TypeVariant
if obj.Type != nil {
tIi = obj.Type
}
tI := types.NewType(fmt.Sprintf("[]%s", tIi.String())) // type of 2nd arg
tOi := types.TypeVariant
if obj.RType != nil {
tOi = obj.RType
}
tO := types.NewType(fmt.Sprintf("[]%s", tOi.String())) // return type
// type of 1st arg (the function)
tF := types.NewType(fmt.Sprintf("func(%s) %s", tIi.String(), tOi.String()))
s := fmt.Sprintf("func(%s %s, %s %s) %s", argNameInputs, tI, argNameFunction, tF, tO)
typ := types.NewType(s) // yay!
return &interfaces.Info{
Pure: false, // TODO: what if the input function isn't pure?
Memo: false,
Sig: typ,
Err: obj.Validate(),
}
}
// Init runs some startup code for this function.
func (obj *MapFunc) Init(init *interfaces.Init) error {
obj.init = init
obj.closeChan = make(chan struct{})
return nil
}
// Stream returns the changing values that this func has over time.
func (obj *MapFunc) Stream() error {
defer close(obj.init.Output) // the sender closes
rtyp := types.NewType(fmt.Sprintf("[]%s", obj.RType.String()))
for {
select {
case input, ok := <-obj.init.Input:
if !ok {
obj.init.Input = nil // don't infinite loop back
continue // no more inputs, but don't return!
}
//if err := input.Type().Cmp(obj.Info().Sig.Input); err != nil {
// return errwrap.Wrapf(err, "wrong function input")
//}
if obj.last != nil && input.Cmp(obj.last) == nil {
continue // value didn't change, skip it
}
obj.last = input // store for next
function := input.Struct()[argNameFunction].Func() // func([]Value) (Value, error)
//if function == obj.function { // TODO: how can we cmp?
// continue // nothing changed
//}
obj.function = function
inputs := input.Struct()[argNameInputs]
if obj.inputs != nil && obj.inputs.Cmp(inputs) == nil {
continue // nothing changed
}
obj.inputs = inputs
// run the function on each index
output := []types.Value{}
for ix, v := range inputs.List() { // []Value
args := []types.Value{v} // only one input arg!
x, err := function(args)
if err != nil {
return errwrap.Wrapf(err, "error running map function on index %d", ix)
}
output = append(output, x)
}
result := &types.ListValue{
V: output,
T: rtyp,
}
if obj.result != nil && obj.result.Cmp(result) == nil {
continue // result didn't change
}
obj.result = result // store new result
case <-obj.closeChan:
return nil
}
select {
case obj.init.Output <- obj.result: // send
// pass
case <-obj.closeChan:
return nil
}
}
}
// Close runs some shutdown code for this function and turns off the stream.
func (obj *MapFunc) Close() error {
close(obj.closeChan)
return nil
}