Files
mgmt/pgraph/pgraph_test.go
James Shubin 58607e2ca0 pgraph: Filter graph should not include unfiltered vertices
This adds a test for another sneaky aspect of filter graph: It should
not pull in a vertex because another across the edge was included. If we
want this behaviour, then we need a different function or a config
option for this filter function.
2024-01-07 18:24:56 -05:00

1077 lines
22 KiB
Go

// Mgmt
// Copyright (C) 2013-2023+ James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//go:build !root
package pgraph
import (
"reflect"
"testing"
)
func TestCount1(t *testing.T) {
G := &Graph{}
if i := G.NumVertices(); i != 0 {
t.Errorf("should have 0 vertices instead of: %d", i)
}
if i := G.NumEdges(); i != 0 {
t.Errorf("should have 0 edges instead of: %d", i)
}
v1 := NV("v1")
v2 := NV("v2")
e1 := NE("e1")
G.AddEdge(v1, v2, e1)
if i := G.NumVertices(); i != 2 {
t.Errorf("should have 2 vertices instead of: %d", i)
}
if i := G.NumEdges(); i != 1 {
t.Errorf("should have 1 edges instead of: %d", i)
}
}
func TestAddVertex1(t *testing.T) {
G := &Graph{Name: "g2"}
v1 := NV("v1")
v2 := NV("v2")
v3 := NV("v3")
v4 := NV("v4")
v5 := NV("v5")
v6 := NV("v6")
e1 := NE("e1")
e2 := NE("e2")
e3 := NE("e3")
e4 := NE("e4")
e5 := NE("e5")
//e6 := NE("e6")
G.AddEdge(v1, v2, e1)
G.AddEdge(v2, v3, e2)
G.AddEdge(v3, v1, e3)
G.AddEdge(v4, v5, e4)
G.AddEdge(v5, v6, e5)
if i := G.NumVertices(); i != 6 {
t.Errorf("should have 6 vertices instead of: %d", i)
}
}
func TestAddEdge1(t *testing.T) {
g, _ := NewGraph("g")
v1 := NV("v1")
v2 := NV("v2")
g.AddVertex(v1)
g.AddVertex(v2)
if i := g.NumEdges(); i != 0 {
t.Errorf("should have 0 edges but got %d", i)
}
e1 := NE("e1")
g.AddEdge(v1, v2, e1)
if i := g.NumEdges(); i != 1 {
t.Errorf("should have 1 edge but got %d", i)
}
}
func TestDFS1(t *testing.T) {
G, _ := NewGraph("g3")
v1 := NV("v1")
v2 := NV("v2")
v3 := NV("v3")
v4 := NV("v4")
v5 := NV("v5")
v6 := NV("v6")
e1 := NE("e1")
e2 := NE("e2")
e3 := NE("e3")
e4 := NE("e4")
e5 := NE("e5")
//e6 := NE("e6")
G.AddEdge(v1, v2, e1)
G.AddEdge(v2, v3, e2)
G.AddEdge(v3, v1, e3)
G.AddEdge(v4, v5, e4)
G.AddEdge(v5, v6, e5)
//G.AddEdge(v6, v4, e6)
out1 := G.DFS(v1)
if i := len(out1); i != 3 {
t.Errorf("should have 3 vertices instead of: %d", i)
t.Errorf("found: %v", out1)
for _, v := range out1 {
t.Errorf("value: %s", v)
}
}
out2 := G.DFS(v4)
if i := len(out2); i != 3 {
t.Errorf("should have 3 vertices instead of: %d", i)
t.Errorf("found: %v", out1)
for _, v := range out1 {
t.Errorf("value: %s", v)
}
}
}
func TestDFS2(t *testing.T) {
G, _ := NewGraph("g4")
v1 := NV("v1")
v2 := NV("v2")
v3 := NV("v3")
e1 := NE("e1")
e2 := NE("e2")
e3 := NE("e3")
G.AddEdge(v1, v2, e1)
G.AddEdge(v2, v3, e2)
G.AddEdge(v3, v1, e3)
out := G.DFS(v1)
if i := len(out); i != 3 {
t.Errorf("should have 3 vertices instead of: %d", i)
t.Errorf("found: %v", out)
for _, v := range out {
t.Errorf("value: %s", v)
}
}
}
func TestFilterGraph1(t *testing.T) {
G, _ := NewGraph("g5")
v1 := NV("v1")
v2 := NV("v2")
v3 := NV("v3")
v4 := NV("v4")
v5 := NV("v5")
v6 := NV("v6")
e1 := NE("e1")
e2 := NE("e2")
e3 := NE("e3")
e4 := NE("e4")
e5 := NE("e5")
//e6 := NE("e6")
G.AddEdge(v1, v2, e1)
G.AddEdge(v2, v3, e2)
G.AddEdge(v3, v1, e3)
G.AddEdge(v4, v5, e4)
G.AddEdge(v5, v6, e5)
//G.AddEdge(v6, v4, e6)
save := []Vertex{v1, v2, v3}
out, err := G.FilterGraph("new g5", save)
if err != nil {
t.Errorf("failed with: %v", err)
}
if i := out.NumVertices(); i != 3 {
t.Errorf("should have 3 vertices instead of: %d", i)
}
}
func TestFilterGraph2(t *testing.T) {
G, _ := NewGraph("g5")
v1 := NV("v1")
v2 := NV("v2")
v3 := NV("v3")
v4 := NV("v4")
e1 := NE("e1")
G.AddEdge(v1, v2, e1)
G.AddVertex(v3)
G.AddVertex(v4)
save := []Vertex{v1, v2, v3}
out, err := G.FilterGraph("new g5", save)
if err != nil {
t.Errorf("failed with: %v", err)
}
if c, i := len(save), out.NumVertices(); c != i {
t.Errorf("should have %d vertices instead of: %d", c, i)
}
}
func TestFilterGraph3(t *testing.T) {
G, _ := NewGraph("g5")
v1 := NV("v1")
v2 := NV("v2")
v3 := NV("v3")
v4 := NV("v4")
v5 := NV("v5")
e1 := NE("e1")
e2 := NE("e2")
G.AddEdge(v1, v2, e1)
G.AddEdge(v3, v4, e2)
G.AddVertex(v5)
save := []Vertex{v1, v2, v3}
out, err := G.FilterGraph("new g5", save)
if err != nil {
t.Errorf("failed with: %v", err)
}
if c, i := len(save), out.NumVertices(); c != i {
t.Errorf("should have %d vertices instead of: %d", c, i)
}
if c, i := 1, out.NumEdges(); c != i {
t.Errorf("should have %d edges instead of: %d", c, i)
}
}
func TestDisconnectedGraphs1(t *testing.T) {
G, _ := NewGraph("g6")
v1 := NV("v1")
v2 := NV("v2")
v3 := NV("v3")
v4 := NV("v4")
v5 := NV("v5")
v6 := NV("v6")
e1 := NE("e1")
e2 := NE("e2")
e3 := NE("e3")
e4 := NE("e4")
e5 := NE("e5")
//e6 := NE("e6")
G.AddEdge(v1, v2, e1)
G.AddEdge(v2, v3, e2)
G.AddEdge(v3, v1, e3)
G.AddEdge(v4, v5, e4)
G.AddEdge(v5, v6, e5)
//G.AddEdge(v6, v4, e6)
graphs, err := G.DisconnectedGraphs()
if err != nil {
t.Errorf("failed with: %v", err)
}
if i := len(graphs); i != 2 {
t.Errorf("should have 2 graphs instead of: %d", i)
}
}
func TestDeleteVertex1(t *testing.T) {
G, _ := NewGraph("g7")
v1 := NV("v1")
v2 := NV("v2")
v3 := NV("v3")
e1 := NE("e1")
e2 := NE("e2")
e3 := NE("e3")
G.AddEdge(v1, v2, e1)
G.AddEdge(v2, v3, e2)
G.AddEdge(v3, v1, e3)
if i := G.NumVertices(); i != 3 {
t.Errorf("should have 3 vertices instead of: %d", i)
}
G.DeleteVertex(v2)
if i := G.NumVertices(); i != 2 {
t.Errorf("should have 2 vertices instead of: %d", i)
}
G.DeleteVertex(v1)
if i := G.NumVertices(); i != 1 {
t.Errorf("should have 1 vertices instead of: %d", i)
}
G.DeleteVertex(v3)
if i := G.NumVertices(); i != 0 {
t.Errorf("should have 0 vertices instead of: %d", i)
}
G.DeleteVertex(v2) // duplicate deletes don't error...
if i := G.NumVertices(); i != 0 {
t.Errorf("should have 0 vertices instead of: %d", i)
}
}
func TestDeleteVertex2(t *testing.T) {
G := &Graph{}
v1 := NV("v1")
G.DeleteVertex(v1) // check this doesn't panic
if i := G.NumVertices(); i != 0 {
t.Errorf("should have 0 vertices instead of: %d", i)
}
}
func TestVertexContains1(t *testing.T) {
v1 := NV("v1")
v2 := NV("v2")
v3 := NV("v3")
if VertexContains(v1, []Vertex{v1, v2, v3}) != true {
t.Errorf("should be true instead of false.")
}
v4 := NV("v4")
v5 := NV("v5")
v6 := NV("v6")
if VertexContains(v4, []Vertex{v5, v6}) != false {
t.Errorf("should be false instead of true.")
}
v7 := NV("v7")
v8 := NV("v8")
v9 := NV("v9")
if VertexContains(v8, []Vertex{v7, v8, v9}) != true {
t.Errorf("should be true instead of false.")
}
v1b := NV("v1") // same value, different objects
if VertexContains(v1b, []Vertex{v1, v2, v3}) != false {
t.Errorf("should be false instead of true.")
}
}
func TestTopoSort1(t *testing.T) {
G, _ := NewGraph("g9")
v1 := NV("v1")
v2 := NV("v2")
v3 := NV("v3")
v4 := NV("v4")
v5 := NV("v5")
v6 := NV("v6")
e1 := NE("e1")
e2 := NE("e2")
e3 := NE("e3")
e4 := NE("e4")
e5 := NE("e5")
e6 := NE("e6")
G.AddEdge(v1, v2, e1)
G.AddEdge(v1, v3, e2)
G.AddEdge(v2, v4, e3)
G.AddEdge(v3, v4, e4)
G.AddEdge(v4, v5, e5)
G.AddEdge(v5, v6, e6)
indegree := G.InDegree() // map[Vertex]int
if i := indegree[v1]; i != 0 {
t.Errorf("indegree of v1 should be 0 instead of: %d", i)
}
if i := indegree[v2]; i != 1 {
t.Errorf("indegree of v2 should be 1 instead of: %d", i)
}
if i := indegree[v3]; i != 1 {
t.Errorf("indegree of v3 should be 1 instead of: %d", i)
}
if i := indegree[v4]; i != 2 {
t.Errorf("indegree of v4 should be 2 instead of: %d", i)
}
if i := indegree[v5]; i != 1 {
t.Errorf("indegree of v5 should be 1 instead of: %d", i)
}
if i := indegree[v6]; i != 1 {
t.Errorf("indegree of v6 should be 1 instead of: %d", i)
}
outdegree := G.OutDegree() // map[Vertex]int
if i := outdegree[v1]; i != 2 {
t.Errorf("outdegree of v1 should be 2 instead of: %d", i)
}
if i := outdegree[v2]; i != 1 {
t.Errorf("outdegree of v2 should be 1 instead of: %d", i)
}
if i := outdegree[v3]; i != 1 {
t.Errorf("outdegree of v3 should be 1 instead of: %d", i)
}
if i := outdegree[v4]; i != 1 {
t.Errorf("outdegree of v4 should be 1 instead of: %d", i)
}
if i := outdegree[v5]; i != 1 {
t.Errorf("outdegree of v5 should be 1 instead of: %d", i)
}
if i := outdegree[v6]; i != 0 {
t.Errorf("outdegree of v6 should be 0 instead of: %d", i)
}
s, err := G.TopologicalSort()
// either possibility is a valid toposort
match := reflect.DeepEqual(s, []Vertex{v1, v2, v3, v4, v5, v6}) || reflect.DeepEqual(s, []Vertex{v1, v3, v2, v4, v5, v6})
if err != nil || !match {
t.Errorf("topological sort failed, error: %v", err)
str := "Found:"
for _, v := range s {
str += " " + v.String()
}
t.Errorf(str)
}
}
func TestTopoSort2(t *testing.T) {
G, _ := NewGraph("g10")
v1 := NV("v1")
v2 := NV("v2")
v3 := NV("v3")
v4 := NV("v4")
v5 := NV("v5")
v6 := NV("v6")
e1 := NE("e1")
e2 := NE("e2")
e3 := NE("e3")
e4 := NE("e4")
e5 := NE("e5")
e6 := NE("e6")
G.AddEdge(v1, v2, e1)
G.AddEdge(v2, v3, e2)
G.AddEdge(v3, v4, e3)
G.AddEdge(v4, v5, e4)
G.AddEdge(v5, v6, e5)
G.AddEdge(v4, v2, e6) // cycle
if _, err := G.TopologicalSort(); err == nil {
t.Errorf("topological sort passed, but graph is cyclic")
}
}
// empty
func TestReachability0(t *testing.T) {
{
G, _ := NewGraph("g")
result, err := G.Reachability(nil, nil)
if err != nil {
t.Logf("reachability failed: %+v", err)
if result != nil {
str := "Got:"
for _, v := range result {
str += " " + v.String()
}
t.Errorf(str)
}
}
}
{
G, _ := NewGraph("g")
v1 := NV("v1")
v6 := NV("v6")
result, err := G.Reachability(v1, v6)
if err != nil {
t.Logf("reachability failed: %+v", err)
return
}
expected := []Vertex{}
if !reflect.DeepEqual(result, expected) {
t.Logf("reachability failed")
str := "Got:"
for _, v := range result {
str += " " + v.String()
}
t.Errorf(str)
}
}
{
G, _ := NewGraph("g")
v1 := NV("v1")
v2 := NV("v2")
v3 := NV("v3")
v4 := NV("v4")
v5 := NV("v5")
v6 := NV("v6")
e1 := NE("e1")
e2 := NE("e2")
e3 := NE("e3")
e4 := NE("e4")
e5 := NE("e5")
G.AddEdge(v1, v2, e1)
G.AddEdge(v2, v3, e2)
G.AddEdge(v1, v4, e3)
G.AddEdge(v3, v4, e4)
G.AddEdge(v3, v5, e5)
result, err := G.Reachability(v1, v6)
if err != nil {
t.Logf("reachability failed: %+v", err)
return
}
expected := []Vertex{}
if !reflect.DeepEqual(result, expected) {
t.Logf("reachability failed")
str := "Got:"
for _, v := range result {
str += " " + v.String()
}
t.Errorf(str)
}
}
}
// simple linear path
func TestReachability1(t *testing.T) {
G, _ := NewGraph("g")
v1 := NV("v1")
v2 := NV("v2")
v3 := NV("v3")
v4 := NV("v4")
v5 := NV("v5")
v6 := NV("v6")
e1 := NE("e1")
e2 := NE("e2")
e3 := NE("e3")
e4 := NE("e4")
e5 := NE("e5")
//e6 := NE("e6")
G.AddEdge(v1, v2, e1)
G.AddEdge(v2, v3, e2)
G.AddEdge(v3, v4, e3)
G.AddEdge(v4, v5, e4)
G.AddEdge(v5, v6, e5)
result, err := G.Reachability(v1, v6)
if err != nil {
t.Logf("reachability failed: %+v", err)
return
}
expected := []Vertex{v1, v2, v3, v4, v5, v6}
if !reflect.DeepEqual(result, expected) {
t.Logf("reachability failed")
str := "Got:"
for _, v := range result {
str += " " + v.String()
}
t.Errorf(str)
}
}
// pick one of two correct paths
func TestReachability2(t *testing.T) {
G, _ := NewGraph("g")
v1 := NV("v1")
v2 := NV("v2")
v3 := NV("v3")
v4 := NV("v4")
v5 := NV("v5")
v6 := NV("v6")
e1 := NE("e1")
e2 := NE("e2")
e3 := NE("e3")
e4 := NE("e4")
e5 := NE("e5")
e6 := NE("e6")
G.AddEdge(v1, v2, e1)
G.AddEdge(v1, v3, e2)
G.AddEdge(v2, v4, e3)
G.AddEdge(v3, v4, e4)
G.AddEdge(v4, v5, e5)
G.AddEdge(v5, v6, e6)
result, err := G.Reachability(v1, v6)
if err != nil {
t.Logf("reachability failed: %+v", err)
return
}
expected1 := []Vertex{v1, v2, v4, v5, v6}
expected2 := []Vertex{v1, v3, v4, v5, v6}
// !xor test
if reflect.DeepEqual(result, expected1) == reflect.DeepEqual(result, expected2) {
t.Logf("reachability failed")
str := "Got:"
for _, v := range result {
str += " " + v.String()
}
t.Errorf(str)
}
}
// pick shortest path
func TestReachability3(t *testing.T) {
G, _ := NewGraph("g")
v1 := NV("v1")
v2 := NV("v2")
v3 := NV("v3")
v4 := NV("v4")
v5 := NV("v5")
v6 := NV("v6")
e1 := NE("e1")
e2 := NE("e2")
e3 := NE("e3")
e4 := NE("e4")
e5 := NE("e5")
e6 := NE("e6")
G.AddEdge(v1, v2, e1)
G.AddEdge(v2, v3, e2)
G.AddEdge(v3, v4, e3)
G.AddEdge(v4, v5, e4)
G.AddEdge(v1, v5, e5)
G.AddEdge(v5, v6, e6)
result, err := G.Reachability(v1, v6)
if err != nil {
t.Logf("reachability failed: %+v", err)
return
}
expected := []Vertex{v1, v5, v6}
if !reflect.DeepEqual(result, expected) {
t.Logf("reachability failed")
str := "Got:"
for _, v := range result {
str += " " + v.String()
}
t.Errorf(str)
}
}
// direct path
func TestReachability4(t *testing.T) {
G, _ := NewGraph("g")
v1 := NV("v1")
v2 := NV("v2")
v3 := NV("v3")
v4 := NV("v4")
v5 := NV("v5")
v6 := NV("v6")
e1 := NE("e1")
e2 := NE("e2")
e3 := NE("e3")
e4 := NE("e4")
e5 := NE("e5")
e6 := NE("e6")
G.AddEdge(v1, v2, e1)
G.AddEdge(v2, v3, e2)
G.AddEdge(v3, v4, e3)
G.AddEdge(v4, v5, e4)
G.AddEdge(v5, v6, e5)
G.AddEdge(v1, v6, e6)
result, err := G.Reachability(v1, v6)
if err != nil {
t.Logf("reachability failed: %+v", err)
return
}
expected := []Vertex{v1, v6}
if !reflect.DeepEqual(result, expected) {
t.Logf("reachability failed")
str := "Got:"
for _, v := range result {
str += " " + v.String()
}
t.Errorf(str)
}
}
func TestReverse1(t *testing.T) {
v1 := NV("v1")
v2 := NV("v2")
v3 := NV("v3")
v4 := NV("v4")
v5 := NV("v5")
v6 := NV("v6")
if rev := Reverse([]Vertex{}); !reflect.DeepEqual(rev, []Vertex{}) {
t.Errorf("reverse of vertex slice failed (empty)")
}
if rev := Reverse([]Vertex{v1}); !reflect.DeepEqual(rev, []Vertex{v1}) {
t.Errorf("reverse of vertex slice failed (single)")
}
if rev := Reverse([]Vertex{v1, v2, v3, v4, v5, v6}); !reflect.DeepEqual(rev, []Vertex{v6, v5, v4, v3, v2, v1}) {
t.Errorf("reverse of vertex slice failed (1..6)")
}
if rev := Reverse([]Vertex{v6, v5, v4, v3, v2, v1}); !reflect.DeepEqual(rev, []Vertex{v1, v2, v3, v4, v5, v6}) {
t.Errorf("reverse of vertex slice failed (6..1)")
}
}
func TestCopy1(t *testing.T) {
g1 := &Graph{}
g2 := g1.Copy() // check this doesn't panic
if !reflect.DeepEqual(g1.String(), g2.String()) {
t.Errorf("graph copy failed")
}
}
func TestGraphCmp1(t *testing.T) {
g1 := &Graph{}
g2 := &Graph{}
g3 := &Graph{}
g3.AddVertex(NV("v1"))
g4 := &Graph{}
g4.AddVertex(NV("v2"))
if err := g1.GraphCmp(g2, strVertexCmpFn, strEdgeCmpFn); err != nil {
t.Errorf("should have no error during GraphCmp, but got: %v", err)
}
if err := g1.GraphCmp(g3, strVertexCmpFn, strEdgeCmpFn); err == nil {
t.Errorf("should have error during GraphCmp, but got nil")
}
if err := g3.GraphCmp(g4, strVertexCmpFn, strEdgeCmpFn); err == nil {
t.Errorf("should have error during GraphCmp, but got nil")
}
}
// FIXME: i think we should allow equivalent elements in the graph to compare...
// FIXME: currently this fails :(
//func TestGraphCmp2(t *testing.T) {
// g1 := &Graph{}
// g2 := &Graph{}
// g1.AddVertex(NV("v1"), NV("v1"))
// g2.AddVertex(NV("v1"), NV("v1"))
//
// if err := g1.GraphCmp(g2, strVertexCmpFn, strEdgeCmpFn); err != nil {
// t.Errorf("should have no error during GraphCmp, but got: %v", err)
// }
//}
func TestSort0(t *testing.T) {
vs := []Vertex{}
s := Sort(vs)
if !reflect.DeepEqual(s, []Vertex{}) {
t.Errorf("sort failed!")
if s == nil {
t.Logf("output is nil!")
} else {
str := "Got:"
for _, v := range s {
str += " " + v.String()
}
t.Errorf(str)
}
}
}
func TestSort1(t *testing.T) {
v1 := NV("v1")
v2 := NV("v2")
v3 := NV("v3")
v4 := NV("v4")
v5 := NV("v5")
v6 := NV("v6")
vs := []Vertex{v3, v2, v6, v1, v5, v4}
s := Sort(vs)
if !reflect.DeepEqual(s, []Vertex{v1, v2, v3, v4, v5, v6}) {
t.Errorf("sort failed!")
str := "Got:"
for _, v := range s {
str += " " + v.String()
}
t.Errorf(str)
}
if !reflect.DeepEqual(vs, []Vertex{v3, v2, v6, v1, v5, v4}) {
t.Errorf("sort modified input!")
str := "Got:"
for _, v := range vs {
str += " " + v.String()
}
t.Errorf(str)
}
}
func TestSprint1(t *testing.T) {
g, _ := NewGraph("graph1")
v1 := NV("v1")
v2 := NV("v2")
v3 := NV("v3")
v4 := NV("v4")
v5 := NV("v5")
v6 := NV("v6")
e1 := NE("e1")
e2 := NE("e2")
e3 := NE("e3")
e4 := NE("e4")
e5 := NE("e5")
g.AddEdge(v1, v2, e1)
g.AddEdge(v2, v3, e2)
g.AddEdge(v3, v4, e3)
g.AddEdge(v4, v5, e4)
g.AddEdge(v5, v6, e5)
str := g.Sprint()
t.Logf("graph is:\n%s", str)
count := 0
for count < 100000 { // about one second
x := g.Sprint()
if str != x {
t.Errorf("graph sprint is not consistent")
return
}
count++
}
}
func TestDeleteEdge1(t *testing.T) {
g, _ := NewGraph("g")
v1 := NV("v1")
v2 := NV("v2")
v3 := NV("v3")
e1 := NE("e1")
e2 := NE("e2")
e3 := NE("e3")
e4 := NE("e4")
e5 := NE("e5")
e6 := NE("e6")
g.AddEdge(v1, v2, e1)
g.AddEdge(v2, v3, e2)
g.AddEdge(v1, v3, e3)
g.AddEdge(v2, v1, e4)
g.AddEdge(v3, v2, e5)
g.AddEdge(v3, v1, e6)
g.DeleteEdge(e1)
g.DeleteEdge(e2)
g.DeleteEdge(e3)
g.DeleteEdge(e3)
if g.NumEdges() != 3 {
t.Errorf("expected number of edges: 3, instead of: %d", g.NumEdges())
}
}
func TestDeleteEdge2(t *testing.T) {
g, _ := NewGraph("g")
v1 := NV("v1")
v2 := NV("v2")
v3 := NV("v3")
v4 := NV("v4")
e1 := NE("e1")
e2 := NE("e2")
e3 := NE("e3")
e4 := NE("e4")
e5 := NE("e5")
e6 := NE("e6")
e7 := NE("e7")
g.AddEdge(v1, v2, e1)
g.AddEdge(v1, v2, e2)
g.AddEdge(v1, v3, e3)
g.AddEdge(v1, v4, e4)
g.AddEdge(v2, v1, e5)
g.AddEdge(v3, v1, e6)
g.AddEdge(v4, v1, e7)
g.DeleteEdge(e1)
g.DeleteEdge(e2)
g.DeleteEdge(e3)
g.DeleteEdge(e5)
g.DeleteEdge(e6)
ie := g.IncomingGraphEdges(v1)
oe := g.OutgoingGraphEdges(v1)
if !reflect.DeepEqual(ie, []Edge{e7}) {
res := ""
for _, e := range ie {
res += e.String() + " "
}
t.Errorf("expected incoming graph edges for vertex v1: e7, instead of: %s", res)
}
if !reflect.DeepEqual(oe, []Edge{e4}) {
res := ""
for _, e := range oe {
res += e.String() + " "
}
t.Errorf("expected outgoing graph edges for vertex v1: e4, instead of: %s", res)
}
}
func TestFindEdge1(t *testing.T) {
g, _ := NewGraph("g")
v1 := NV("v1")
v2 := NV("v2")
v3 := NV("v3")
v4 := NV("v4")
v5 := NV("v5")
v6 := NV("v6")
v7 := NV("v7")
e1 := NE("e1")
e2 := NE("e2")
e3 := NE("e3")
e4 := NE("e4")
e5 := NE("e5")
e6 := NE("e6")
e7 := NE("e7")
e8 := NE("e8")
e9 := NE("e9")
e10 := NE("e10")
g.AddEdge(v1, v2, e1)
g.AddEdge(v1, v4, e2)
g.AddEdge(v1, v3, e3)
g.AddEdge(v2, v3, e4)
g.AddEdge(v2, v4, e5)
g.AddEdge(v2, v6, e6)
g.AddEdge(v2, v5, e7)
g.AddEdge(v3, v6, e8)
g.AddEdge(v4, v7, e9)
g.AddEdge(v5, v7, e10)
if !(g.HasVertex(v1) && g.HasVertex(v4) && g.HasVertex(v7)) {
t.Errorf("graph expected to have vertices v1, v4, and v7")
}
if g.FindEdge(v1, v4) != e2 {
t.Errorf("edge e2 was not returned")
}
if g.FindEdge(v1, v7) != nil {
t.Errorf("an edge was found although it did not exist")
}
}
func TestFindEdge2(t *testing.T) {
g, _ := NewGraph("g")
v1 := NV("v1")
v2 := NV("v2")
v3 := NV("v3")
v4 := NV("v4")
v5 := NV("v5")
v6 := NV("v6")
e1 := NE("e1")
e2 := NE("e2")
e3 := NE("e3")
g.AddEdge(v1, v4, e1)
g.AddEdge(v2, v5, e2)
g.AddEdge(v3, v6, e3)
if g.FindEdge(v1, v4) != e1 {
t.Errorf("edge e1 was not returned")
}
if g.FindEdge(v2, v5) != e2 {
t.Errorf("edge e1 was not returned")
}
if g.FindEdge(v3, v6) != e3 {
t.Errorf("edge e1 was not returned")
}
if g.FindEdge(v2, v6) != nil {
t.Errorf("an edge was found although it did not exist")
}
}
func TestLookupEdge1(t *testing.T) {
g, _ := NewGraph("g")
v1 := NV("v1")
v2 := NV("v2")
v3 := NV("v3")
v4 := NV("v4")
v5 := NV("v5")
v6 := NV("v6")
v7 := NV("v7")
e1 := NE("e1")
e2 := NE("e2")
e3 := NE("e3")
e4 := NE("e4")
e5 := NE("e5")
e6 := NE("e6")
e7 := NE("e7")
e8 := NE("e8")
e9 := NE("e9")
e10 := NE("e10")
g.AddEdge(v1, v2, e1)
g.AddEdge(v1, v4, e2)
g.AddEdge(v1, v3, e3)
g.AddEdge(v2, v3, e4)
g.AddEdge(v2, v4, e5)
g.AddEdge(v2, v6, e6)
g.AddEdge(v2, v5, e7)
g.AddEdge(v3, v6, e8)
g.AddEdge(v4, v7, e9)
g.AddEdge(v5, v7, e10)
if x, y, found := g.LookupEdge(e1); !found || x != v1 || y != v2 {
t.Errorf("vertices v1, v2 were not returned")
}
if x, y, found := g.LookupEdge(e2); !found || x != v1 || y != v4 {
t.Errorf("vertices v1, v4 were not returned")
}
if x, y, found := g.LookupEdge(e3); !found || x != v1 || y != v3 {
t.Errorf("vertices v1, v3 were not returned")
}
if x, y, found := g.LookupEdge(e4); !found || x != v2 || y != v3 {
t.Errorf("vertices v2, v3 were not returned")
}
if x, y, found := g.LookupEdge(e5); !found || x != v2 || y != v4 {
t.Errorf("vertices v2, v4 were not returned")
}
if x, y, found := g.LookupEdge(e6); !found || x != v2 || y != v6 {
t.Errorf("vertices v2, v6 were not returned")
}
if x, y, found := g.LookupEdge(e7); !found || x != v2 || y != v5 {
t.Errorf("vertices v2, v5 were not returned")
}
if x, y, found := g.LookupEdge(e8); !found || x != v3 || y != v6 {
t.Errorf("vertices v3, v6 were not returned")
}
if x, y, found := g.LookupEdge(e9); !found || x != v4 || y != v7 {
t.Errorf("vertices v4, v7 were not returned")
}
if x, y, found := g.LookupEdge(e10); !found || x != v5 || y != v7 {
t.Errorf("vertices v5, v7 were not returned")
}
e99 := NE("e99")
if _, _, found := g.LookupEdge(e99); found {
t.Errorf("unexpected vertices were found")
}
}
func TestSetValue(t *testing.T) {
g, _ := NewGraph("SetValue")
key := "k1"
value := "v1"
g.SetValue(key, value)
if g.kv[key] != value {
t.Errorf("expecting value of %s at %s position, got %v", value, key, g.kv[key])
}
if v, ok := g.Value(key); !ok {
t.Errorf("key %s doesn't exist", key)
} else if v != value {
t.Errorf("expecting value of %s at %s position, got %v", value, key, v)
}
}