It was wrongly named func instead of call, although this doesn't actually matter in terms of code execution.
5986 lines
195 KiB
Go
5986 lines
195 KiB
Go
// Mgmt
|
|
// Copyright (C) 2013-2019+ James Shubin and the project contributors
|
|
// Written by James Shubin <james@shubin.ca> and the project contributors
|
|
//
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
package lang // TODO: move this into a sub package of lang/$name?
|
|
|
|
import (
|
|
"bytes"
|
|
"fmt"
|
|
"reflect"
|
|
"sort"
|
|
"strconv"
|
|
"strings"
|
|
|
|
"github.com/purpleidea/mgmt/engine"
|
|
engineUtil "github.com/purpleidea/mgmt/engine/util"
|
|
"github.com/purpleidea/mgmt/lang/funcs"
|
|
"github.com/purpleidea/mgmt/lang/funcs/bindata"
|
|
"github.com/purpleidea/mgmt/lang/funcs/structs"
|
|
"github.com/purpleidea/mgmt/lang/interfaces"
|
|
"github.com/purpleidea/mgmt/lang/types"
|
|
"github.com/purpleidea/mgmt/lang/unification"
|
|
"github.com/purpleidea/mgmt/pgraph"
|
|
"github.com/purpleidea/mgmt/util"
|
|
"github.com/purpleidea/mgmt/util/errwrap"
|
|
|
|
"golang.org/x/time/rate"
|
|
)
|
|
|
|
const (
|
|
// EdgeNotify declares an edge a -> b, such that a notification occurs.
|
|
// This is most similar to "notify" in Puppet.
|
|
EdgeNotify = "notify"
|
|
|
|
// EdgeBefore declares an edge a -> b, such that no notification occurs.
|
|
// This is most similar to "before" in Puppet.
|
|
EdgeBefore = "before"
|
|
|
|
// EdgeListen declares an edge a <- b, such that a notification occurs.
|
|
// This is most similar to "subscribe" in Puppet.
|
|
EdgeListen = "listen"
|
|
|
|
// EdgeDepend declares an edge a <- b, such that no notification occurs.
|
|
// This is most similar to "require" in Puppet.
|
|
EdgeDepend = "depend"
|
|
|
|
// MetaField is the prefix used to specify a meta parameter for the res.
|
|
MetaField = "meta"
|
|
|
|
// AllowUserDefinedPolyFunc specifies if we allow user-defined
|
|
// polymorphic functions or not. At the moment this is not implemented.
|
|
// XXX: not implemented
|
|
AllowUserDefinedPolyFunc = false
|
|
|
|
// RequireStrictModulePath can be set to true if you wish to ignore any
|
|
// of the metadata parent path searching. By default that is allowed,
|
|
// unless it is disabled per module with ParentPathBlock. This option is
|
|
// here in case we decide that the parent module searching is confusing.
|
|
RequireStrictModulePath = false
|
|
)
|
|
|
|
// StmtBind is a representation of an assignment, which binds a variable to an
|
|
// expression.
|
|
type StmtBind struct {
|
|
Ident string
|
|
Value interfaces.Expr
|
|
}
|
|
|
|
// Apply is a general purpose iterator method that operates on any AST node. It
|
|
// is not used as the primary AST traversal function because it is less readable
|
|
// and easy to reason about than manually implementing traversal for each node.
|
|
// Nevertheless, it is a useful facility for operations that might only apply to
|
|
// a select number of node types, since they won't need extra noop iterators...
|
|
func (obj *StmtBind) Apply(fn func(interfaces.Node) error) error {
|
|
if err := obj.Value.Apply(fn); err != nil {
|
|
return err
|
|
}
|
|
return fn(obj)
|
|
}
|
|
|
|
// String returns a short representation of this statement.
|
|
func (obj *StmtBind) String() string {
|
|
return fmt.Sprintf("bind(%s)", obj.Ident)
|
|
}
|
|
|
|
// Init initializes this branch of the AST, and returns an error if it fails to
|
|
// validate.
|
|
func (obj *StmtBind) Init(data *interfaces.Data) error {
|
|
return obj.Value.Init(data)
|
|
}
|
|
|
|
// Interpolate returns a new node (aka a copy) once it has been expanded. This
|
|
// generally increases the size of the AST when it is used. It calls Interpolate
|
|
// on any child elements and builds the new node with those new node contents.
|
|
func (obj *StmtBind) Interpolate() (interfaces.Stmt, error) {
|
|
interpolated, err := obj.Value.Interpolate()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return &StmtBind{
|
|
Ident: obj.Ident,
|
|
Value: interpolated,
|
|
}, nil
|
|
}
|
|
|
|
// SetScope sets the scope of the child expression bound to it. It seems this is
|
|
// necessary in order to reach this, in particular in situations when a bound
|
|
// expression points to a previously bound expression.
|
|
func (obj *StmtBind) SetScope(scope *interfaces.Scope) error {
|
|
return obj.Value.SetScope(scope)
|
|
}
|
|
|
|
// Unify returns the list of invariants that this node produces. It recursively
|
|
// calls Unify on any children elements that exist in the AST, and returns the
|
|
// collection to the caller.
|
|
func (obj *StmtBind) Unify() ([]interfaces.Invariant, error) {
|
|
var invariants []interfaces.Invariant
|
|
|
|
invars, err := obj.Value.Unify()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
invariants = append(invariants, invars...)
|
|
|
|
return invariants, nil
|
|
}
|
|
|
|
// Graph returns the reactive function graph which is expressed by this node. It
|
|
// includes any vertices produced by this node, and the appropriate edges to any
|
|
// vertices that are produced by its children. Nodes which fulfill the Expr
|
|
// interface directly produce vertices (and possible children) where as nodes
|
|
// that fulfill the Stmt interface do not produces vertices, where as their
|
|
// children might. This particular bind statement adds its linked expression to
|
|
// the graph. It is not logically done in the ExprVar since that could exist
|
|
// multiple times for the single binding operation done here.
|
|
func (obj *StmtBind) Graph() (*pgraph.Graph, error) {
|
|
return obj.Value.Graph()
|
|
}
|
|
|
|
// Output for the bind statement produces no output. Any values of interest come
|
|
// from the use of the var which this binds the expression to.
|
|
func (obj *StmtBind) Output() (*interfaces.Output, error) {
|
|
return interfaces.EmptyOutput(), nil
|
|
}
|
|
|
|
// StmtRes is a representation of a resource and possibly some edges. The `Name`
|
|
// value can be a single string or a list of strings. The former will produce a
|
|
// single resource, the latter produces a list of resources. Using this list
|
|
// mechanism is a safe alternative to traditional flow control like `for` loops.
|
|
// TODO: Consider expanding Name to have this return a list of Res's in the
|
|
// Output function if it is a map[name]struct{}, or even a map[[]name]struct{}.
|
|
type StmtRes struct {
|
|
data *interfaces.Data
|
|
|
|
Kind string // kind of resource, eg: pkg, file, svc, etc...
|
|
Name interfaces.Expr // unique name for the res of this kind
|
|
Contents []StmtResContents // list of fields/edges in parsed order
|
|
}
|
|
|
|
// Apply is a general purpose iterator method that operates on any AST node. It
|
|
// is not used as the primary AST traversal function because it is less readable
|
|
// and easy to reason about than manually implementing traversal for each node.
|
|
// Nevertheless, it is a useful facility for operations that might only apply to
|
|
// a select number of node types, since they won't need extra noop iterators...
|
|
func (obj *StmtRes) Apply(fn func(interfaces.Node) error) error {
|
|
if err := obj.Name.Apply(fn); err != nil {
|
|
return err
|
|
}
|
|
for _, x := range obj.Contents {
|
|
if err := x.Apply(fn); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return fn(obj)
|
|
}
|
|
|
|
// String returns a short representation of this statement.
|
|
func (obj *StmtRes) String() string {
|
|
return fmt.Sprintf("res(%s)", obj.Kind)
|
|
}
|
|
|
|
// Init initializes this branch of the AST, and returns an error if it fails to
|
|
// validate.
|
|
func (obj *StmtRes) Init(data *interfaces.Data) error {
|
|
if strings.Contains(obj.Kind, "_") {
|
|
return fmt.Errorf("kind must not contain underscores")
|
|
}
|
|
|
|
obj.data = data
|
|
if err := obj.Name.Init(data); err != nil {
|
|
return err
|
|
}
|
|
for _, x := range obj.Contents {
|
|
if err := x.Init(data); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Interpolate returns a new node (aka a copy) once it has been expanded. This
|
|
// generally increases the size of the AST when it is used. It calls Interpolate
|
|
// on any child elements and builds the new node with those new node contents.
|
|
func (obj *StmtRes) Interpolate() (interfaces.Stmt, error) {
|
|
name, err := obj.Name.Interpolate()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
contents := []StmtResContents{}
|
|
for _, x := range obj.Contents { // make sure we preserve ordering...
|
|
interpolated, err := x.Interpolate()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
contents = append(contents, interpolated)
|
|
}
|
|
|
|
return &StmtRes{
|
|
data: obj.data,
|
|
Kind: obj.Kind,
|
|
Name: name,
|
|
Contents: contents,
|
|
}, nil
|
|
}
|
|
|
|
// SetScope stores the scope for later use in this resource and it's children,
|
|
// which it propagates this downwards to.
|
|
func (obj *StmtRes) SetScope(scope *interfaces.Scope) error {
|
|
if err := obj.Name.SetScope(scope); err != nil {
|
|
return err
|
|
}
|
|
for _, x := range obj.Contents {
|
|
if err := x.SetScope(scope); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Unify returns the list of invariants that this node produces. It recursively
|
|
// calls Unify on any children elements that exist in the AST, and returns the
|
|
// collection to the caller.
|
|
func (obj *StmtRes) Unify() ([]interfaces.Invariant, error) {
|
|
var invariants []interfaces.Invariant
|
|
|
|
invars, err := obj.Name.Unify()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
invariants = append(invariants, invars...)
|
|
|
|
// name must be a string or a list
|
|
ors := []interfaces.Invariant{}
|
|
|
|
invarStr := &unification.EqualsInvariant{
|
|
Expr: obj.Name,
|
|
Type: types.TypeStr,
|
|
}
|
|
ors = append(ors, invarStr)
|
|
|
|
invarListStr := &unification.EqualsInvariant{
|
|
Expr: obj.Name,
|
|
Type: types.NewType("[]str"),
|
|
}
|
|
ors = append(ors, invarListStr)
|
|
|
|
invar := &unification.ExclusiveInvariant{
|
|
Invariants: ors, // one and only one of these should be true
|
|
}
|
|
invariants = append(invariants, invar)
|
|
|
|
// collect all the invariants of each field and edge
|
|
for _, x := range obj.Contents {
|
|
invars, err := x.Unify(obj.Kind) // pass in the resource kind
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
invariants = append(invariants, invars...)
|
|
}
|
|
|
|
return invariants, nil
|
|
}
|
|
|
|
// Graph returns the reactive function graph which is expressed by this node. It
|
|
// includes any vertices produced by this node, and the appropriate edges to any
|
|
// vertices that are produced by its children. Nodes which fulfill the Expr
|
|
// interface directly produce vertices (and possible children) where as nodes
|
|
// that fulfill the Stmt interface do not produces vertices, where as their
|
|
// children might. It is interesting to note that nothing directly adds an edge
|
|
// to the resources created, but rather, once all the values (expressions) with
|
|
// no outgoing edges have produced at least a single value, then the resources
|
|
// know they're able to be built.
|
|
func (obj *StmtRes) Graph() (*pgraph.Graph, error) {
|
|
graph, err := pgraph.NewGraph("res")
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "could not create graph")
|
|
}
|
|
|
|
g, err := obj.Name.Graph()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
graph.AddGraph(g)
|
|
|
|
for _, x := range obj.Contents {
|
|
g, err := x.Graph()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
graph.AddGraph(g)
|
|
}
|
|
|
|
return graph, nil
|
|
}
|
|
|
|
// Output returns the output that this "program" produces. This output is what
|
|
// is used to build the output graph. This only exists for statements. The
|
|
// analogous function for expressions is Value. Those Value functions might get
|
|
// called by this Output function if they are needed to produce the output. In
|
|
// the case of this resource statement, this is definitely the case.
|
|
func (obj *StmtRes) Output() (*interfaces.Output, error) {
|
|
nameValue, err := obj.Name.Value()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
names := []string{} // list of names to build
|
|
switch {
|
|
case types.TypeStr.Cmp(nameValue.Type()) == nil:
|
|
name := nameValue.Str() // must not panic
|
|
names = append(names, name)
|
|
|
|
case types.NewType("[]str").Cmp(nameValue.Type()) == nil:
|
|
for _, x := range nameValue.List() { // must not panic
|
|
name := x.Str() // must not panic
|
|
names = append(names, name)
|
|
}
|
|
|
|
default:
|
|
// programming error
|
|
return nil, fmt.Errorf("unhandled resource name type: %+v", nameValue.Type())
|
|
}
|
|
|
|
resources := []engine.Res{}
|
|
edges := []*interfaces.Edge{}
|
|
for _, name := range names {
|
|
res, err := obj.resource(name)
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "error building resource")
|
|
}
|
|
|
|
edgeList, err := obj.edges(name)
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "error building edges")
|
|
}
|
|
edges = append(edges, edgeList...)
|
|
|
|
if err := obj.metaparams(res); err != nil { // set metaparams
|
|
return nil, errwrap.Wrapf(err, "error building meta params")
|
|
}
|
|
resources = append(resources, res)
|
|
}
|
|
|
|
return &interfaces.Output{
|
|
Resources: resources,
|
|
Edges: edges,
|
|
}, nil
|
|
}
|
|
|
|
// resource is a helper function to generate the res that comes from this.
|
|
// TODO: it could memoize some of the work to avoid re-computation when looped
|
|
func (obj *StmtRes) resource(resName string) (engine.Res, error) {
|
|
res, err := engine.NewNamedResource(obj.Kind, resName)
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "cannot create resource kind `%s` with named `%s`", obj.Kind, resName)
|
|
}
|
|
|
|
s := reflect.ValueOf(res).Elem() // pointer to struct, then struct
|
|
if k := s.Kind(); k != reflect.Struct {
|
|
panic(fmt.Sprintf("expected struct, got: %s", k))
|
|
}
|
|
|
|
mapping, err := engineUtil.LangFieldNameToStructFieldName(obj.Kind)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
ts := reflect.TypeOf(res).Elem() // pointer to struct, then struct
|
|
|
|
// FIXME: we could probably simplify this code...
|
|
for _, line := range obj.Contents {
|
|
x, ok := line.(*StmtResField)
|
|
if !ok {
|
|
continue
|
|
}
|
|
|
|
if x.Condition != nil {
|
|
b, err := x.Condition.Value()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
if !b.Bool() { // if value exists, and is false, skip it
|
|
continue
|
|
}
|
|
}
|
|
|
|
typ, err := x.Value.Type()
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "resource field `%s` did not return a type", x.Field)
|
|
}
|
|
|
|
fieldValue, err := x.Value.Value() // Value method on Expr
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
val := fieldValue.Value() // get interface value
|
|
|
|
name, exists := mapping[x.Field] // lookup recommended field name
|
|
if !exists {
|
|
return nil, fmt.Errorf("field `%s` does not exist", x.Field) // user made a typo?
|
|
}
|
|
|
|
f := s.FieldByName(name) // exported field
|
|
if !f.IsValid() || !f.CanSet() {
|
|
return nil, fmt.Errorf("field `%s` cannot be set", name) // field is broken?
|
|
}
|
|
|
|
tf, exists := ts.FieldByName(name) // exported field type
|
|
if !exists { // illogical because of above check?
|
|
return nil, fmt.Errorf("field `%s` type does not exist", x.Field)
|
|
}
|
|
|
|
// is expr type compatible with expected field type?
|
|
t, err := types.TypeOf(tf.Type)
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "resource field `%s` has no compatible type", x.Field)
|
|
}
|
|
if err := t.Cmp(typ); err != nil {
|
|
return nil, errwrap.Wrapf(err, "resource field `%s` of type `%+v`, cannot take type `%+v", x.Field, t, typ)
|
|
}
|
|
|
|
// user `pestle` on #go-nuts irc wrongly insisted that it wasn't
|
|
// right to use reflect to do all of this. what is a better way?
|
|
|
|
// first iterate through the raw pointers to the underlying type
|
|
ttt := tf.Type // ttt is field expected type
|
|
tkk := ttt.Kind()
|
|
for tkk == reflect.Ptr {
|
|
ttt = ttt.Elem() // un-nest one pointer
|
|
tkk = ttt.Kind()
|
|
}
|
|
|
|
// all our int's are src kind == reflect.Int64 in our language!
|
|
if obj.data.Debug {
|
|
obj.data.Logf("field `%s`: type(%+v), expected(%+v)", x.Field, typ, tkk)
|
|
}
|
|
|
|
// overflow check
|
|
switch tkk { // match on destination field kind
|
|
case reflect.Int, reflect.Int64, reflect.Int32, reflect.Int16, reflect.Int8:
|
|
ff := reflect.Zero(ttt) // test on a non-ptr equivalent
|
|
if ff.OverflowInt(val.(int64)) { // this is valid!
|
|
return nil, fmt.Errorf("field `%s` is an `%s`, and value `%d` will overflow it", x.Field, f.Kind(), val)
|
|
}
|
|
|
|
case reflect.Uint, reflect.Uint64, reflect.Uint32, reflect.Uint16, reflect.Uint8:
|
|
ff := reflect.Zero(ttt)
|
|
if ff.OverflowUint(uint64(val.(int64))) { // TODO: is this correct?
|
|
return nil, fmt.Errorf("field `%s` is an `%s`, and value `%d` will overflow it", x.Field, f.Kind(), val)
|
|
}
|
|
|
|
case reflect.Float64, reflect.Float32:
|
|
ff := reflect.Zero(ttt)
|
|
if ff.OverflowFloat(val.(float64)) {
|
|
return nil, fmt.Errorf("field `%s` is an `%s`, and value `%d` will overflow it", x.Field, f.Kind(), val)
|
|
}
|
|
}
|
|
|
|
value := reflect.ValueOf(val) // raw value
|
|
value = value.Convert(ttt) // now convert our raw value properly
|
|
|
|
// finally build a new value to set
|
|
tt := tf.Type
|
|
kk := tt.Kind()
|
|
if obj.data.Debug {
|
|
obj.data.Logf("field `%s`: start(%v)->kind(%v)", x.Field, tt, kk)
|
|
}
|
|
//fmt.Printf("start: %v || %+v\n", tt, kk)
|
|
for kk == reflect.Ptr {
|
|
tt = tt.Elem() // un-nest one pointer
|
|
kk = tt.Kind()
|
|
if obj.data.Debug {
|
|
obj.data.Logf("field `%s`:\tloop(%v)->kind(%v)", x.Field, tt, kk)
|
|
}
|
|
// wrap in ptr by one level
|
|
valof := reflect.ValueOf(value.Interface())
|
|
value = reflect.New(valof.Type())
|
|
value.Elem().Set(valof)
|
|
}
|
|
f.Set(value) // set it !
|
|
}
|
|
|
|
return res, nil
|
|
}
|
|
|
|
// edges is a helper function to generate the edges that come from the resource.
|
|
func (obj *StmtRes) edges(resName string) ([]*interfaces.Edge, error) {
|
|
edges := []*interfaces.Edge{}
|
|
|
|
// to and from self, map of kind, name, notify
|
|
var to = make(map[string]map[string]bool) // to this from self
|
|
var from = make(map[string]map[string]bool) // from this to self
|
|
|
|
for _, line := range obj.Contents {
|
|
x, ok := line.(*StmtResEdge)
|
|
if !ok {
|
|
continue
|
|
}
|
|
|
|
if x.Condition != nil {
|
|
b, err := x.Condition.Value()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
if !b.Bool() { // if value exists, and is false, skip it
|
|
continue
|
|
}
|
|
}
|
|
|
|
nameValue, err := x.EdgeHalf.Name.Value()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// the edge name can be a single string or a list of strings...
|
|
|
|
names := []string{} // list of names to build
|
|
switch {
|
|
case types.TypeStr.Cmp(nameValue.Type()) == nil:
|
|
name := nameValue.Str() // must not panic
|
|
names = append(names, name)
|
|
|
|
case types.NewType("[]str").Cmp(nameValue.Type()) == nil:
|
|
for _, x := range nameValue.List() { // must not panic
|
|
name := x.Str() // must not panic
|
|
names = append(names, name)
|
|
}
|
|
|
|
default:
|
|
// programming error
|
|
return nil, fmt.Errorf("unhandled resource name type: %+v", nameValue.Type())
|
|
}
|
|
|
|
kind := x.EdgeHalf.Kind
|
|
for _, name := range names {
|
|
var notify bool
|
|
|
|
switch p := x.Property; p {
|
|
// a -> b
|
|
// a notify b
|
|
// a before b
|
|
case EdgeNotify:
|
|
notify = true
|
|
fallthrough
|
|
case EdgeBefore:
|
|
if m, exists := to[kind]; !exists {
|
|
to[kind] = make(map[string]bool)
|
|
} else if n, exists := m[name]; exists {
|
|
notify = notify || n // collate
|
|
}
|
|
to[kind][name] = notify // to this from self
|
|
|
|
// b -> a
|
|
// b listen a
|
|
// b depend a
|
|
case EdgeListen:
|
|
notify = true
|
|
fallthrough
|
|
case EdgeDepend:
|
|
if m, exists := from[kind]; !exists {
|
|
from[kind] = make(map[string]bool)
|
|
} else if n, exists := m[name]; exists {
|
|
notify = notify || n // collate
|
|
}
|
|
from[kind][name] = notify // from this to self
|
|
|
|
default:
|
|
return nil, fmt.Errorf("unknown property: %s", p)
|
|
}
|
|
}
|
|
}
|
|
|
|
// TODO: we could detect simple loops here (if `from` and `to` have the
|
|
// same entry) but we can leave this to the proper dag checker later on
|
|
|
|
for kind, x := range to { // to this from self
|
|
for name, notify := range x {
|
|
edge := &interfaces.Edge{
|
|
Kind1: obj.Kind,
|
|
Name1: resName, // self
|
|
//Send: "",
|
|
|
|
Kind2: kind,
|
|
Name2: name,
|
|
//Recv: "",
|
|
|
|
Notify: notify,
|
|
}
|
|
edges = append(edges, edge)
|
|
}
|
|
}
|
|
for kind, x := range from { // from this to self
|
|
for name, notify := range x {
|
|
edge := &interfaces.Edge{
|
|
Kind1: kind,
|
|
Name1: name,
|
|
//Send: "",
|
|
|
|
Kind2: obj.Kind,
|
|
Name2: resName, // self
|
|
//Recv: "",
|
|
|
|
Notify: notify,
|
|
}
|
|
edges = append(edges, edge)
|
|
}
|
|
}
|
|
|
|
return edges, nil
|
|
}
|
|
|
|
// metaparams is a helper function to set the metaparams that come from the
|
|
// resource on to the individual resource we're working on.
|
|
func (obj *StmtRes) metaparams(res engine.Res) error {
|
|
meta := engine.DefaultMetaParams.Copy() // defaults
|
|
|
|
var rm *engine.ReversibleMeta
|
|
if r, ok := res.(engine.ReversibleRes); ok {
|
|
rm = r.ReversibleMeta() // get a struct with the defaults
|
|
}
|
|
var aem *engine.AutoEdgeMeta
|
|
if r, ok := res.(engine.EdgeableRes); ok {
|
|
aem = r.AutoEdgeMeta() // get a struct with the defaults
|
|
}
|
|
var agm *engine.AutoGroupMeta
|
|
if r, ok := res.(engine.GroupableRes); ok {
|
|
agm = r.AutoGroupMeta() // get a struct with the defaults
|
|
}
|
|
|
|
for _, line := range obj.Contents {
|
|
x, ok := line.(*StmtResMeta)
|
|
if !ok {
|
|
continue
|
|
}
|
|
|
|
if x.Condition != nil {
|
|
b, err := x.Condition.Value()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
if !b.Bool() { // if value exists, and is false, skip it
|
|
continue
|
|
}
|
|
}
|
|
|
|
v, err := x.MetaExpr.Value()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
switch p := strings.ToLower(x.Property); p {
|
|
// TODO: we could add these fields dynamically if we were fancy!
|
|
case "noop":
|
|
meta.Noop = v.Bool() // must not panic
|
|
|
|
case "retry":
|
|
x := v.Int() // must not panic
|
|
// TODO: check that it doesn't overflow
|
|
meta.Retry = int16(x)
|
|
|
|
case "delay":
|
|
x := v.Int() // must not panic
|
|
// TODO: check that it isn't signed
|
|
meta.Delay = uint64(x)
|
|
|
|
case "poll":
|
|
x := v.Int() // must not panic
|
|
// TODO: check that it doesn't overflow and isn't signed
|
|
meta.Poll = uint32(x)
|
|
|
|
case "limit": // rate.Limit
|
|
x := v.Float() // must not panic
|
|
meta.Limit = rate.Limit(x)
|
|
|
|
case "burst":
|
|
x := v.Int() // must not panic
|
|
// TODO: check that it doesn't overflow
|
|
meta.Burst = int(x)
|
|
|
|
case "sema": // []string
|
|
values := []string{}
|
|
for _, x := range v.List() { // must not panic
|
|
s := x.Str() // must not panic
|
|
values = append(values, s)
|
|
}
|
|
meta.Sema = values
|
|
|
|
case "rewatch":
|
|
meta.Rewatch = v.Bool() // must not panic
|
|
|
|
case "realize":
|
|
meta.Realize = v.Bool() // must not panic
|
|
|
|
case "reverse":
|
|
if v.Type().Cmp(types.TypeBool) == nil {
|
|
if rm != nil {
|
|
rm.Disabled = !v.Bool() // must not panic
|
|
}
|
|
} else {
|
|
// TODO: read values from struct into rm.XXX
|
|
}
|
|
|
|
case "autoedge":
|
|
if aem != nil {
|
|
aem.Disabled = !v.Bool() // must not panic
|
|
}
|
|
|
|
case "autogroup":
|
|
if agm != nil {
|
|
agm.Disabled = !v.Bool() // must not panic
|
|
}
|
|
|
|
case MetaField:
|
|
if val, exists := v.Struct()["noop"]; exists {
|
|
meta.Noop = val.Bool() // must not panic
|
|
}
|
|
if val, exists := v.Struct()["retry"]; exists {
|
|
x := val.Int() // must not panic
|
|
// TODO: check that it doesn't overflow
|
|
meta.Retry = int16(x)
|
|
}
|
|
if val, exists := v.Struct()["delay"]; exists {
|
|
x := val.Int() // must not panic
|
|
// TODO: check that it isn't signed
|
|
meta.Delay = uint64(x)
|
|
}
|
|
if val, exists := v.Struct()["poll"]; exists {
|
|
x := val.Int() // must not panic
|
|
// TODO: check that it doesn't overflow and isn't signed
|
|
meta.Poll = uint32(x)
|
|
}
|
|
if val, exists := v.Struct()["limit"]; exists {
|
|
x := val.Float() // must not panic
|
|
meta.Limit = rate.Limit(x)
|
|
}
|
|
if val, exists := v.Struct()["burst"]; exists {
|
|
x := val.Int() // must not panic
|
|
// TODO: check that it doesn't overflow
|
|
meta.Burst = int(x)
|
|
}
|
|
if val, exists := v.Struct()["sema"]; exists {
|
|
values := []string{}
|
|
for _, x := range val.List() { // must not panic
|
|
s := x.Str() // must not panic
|
|
values = append(values, s)
|
|
}
|
|
meta.Sema = values
|
|
}
|
|
if val, exists := v.Struct()["rewatch"]; exists {
|
|
meta.Rewatch = val.Bool() // must not panic
|
|
}
|
|
if val, exists := v.Struct()["realize"]; exists {
|
|
meta.Realize = val.Bool() // must not panic
|
|
}
|
|
if val, exists := v.Struct()["reverse"]; exists && rm != nil {
|
|
if val.Type().Cmp(types.TypeBool) == nil {
|
|
rm.Disabled = !val.Bool() // must not panic
|
|
} else {
|
|
// TODO: read values from struct into rm.XXX
|
|
}
|
|
}
|
|
if val, exists := v.Struct()["autoedge"]; exists && aem != nil {
|
|
aem.Disabled = !val.Bool() // must not panic
|
|
}
|
|
if val, exists := v.Struct()["autogroup"]; exists && agm != nil {
|
|
agm.Disabled = !val.Bool() // must not panic
|
|
}
|
|
|
|
default:
|
|
return fmt.Errorf("unknown property: %s", p)
|
|
}
|
|
}
|
|
|
|
res.SetMetaParams(meta) // set it!
|
|
if r, ok := res.(engine.ReversibleRes); ok {
|
|
r.SetReversibleMeta(rm) // set
|
|
}
|
|
if r, ok := res.(engine.EdgeableRes); ok {
|
|
r.SetAutoEdgeMeta(aem) // set
|
|
}
|
|
if r, ok := res.(engine.GroupableRes); ok {
|
|
r.SetAutoGroupMeta(agm) // set
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// StmtResContents is the interface that is met by the resource contents. Look
|
|
// closely for while it is similar to the Stmt interface, it is quite different.
|
|
type StmtResContents interface {
|
|
interfaces.Node
|
|
Init(*interfaces.Data) error
|
|
Interpolate() (StmtResContents, error) // different!
|
|
SetScope(*interfaces.Scope) error
|
|
Unify(kind string) ([]interfaces.Invariant, error) // different!
|
|
Graph() (*pgraph.Graph, error)
|
|
}
|
|
|
|
// StmtResField represents a single field in the parsed resource representation.
|
|
// This does not satisfy the Stmt interface.
|
|
type StmtResField struct {
|
|
Field string
|
|
Value interfaces.Expr
|
|
Condition interfaces.Expr // the value will be used if nil or true
|
|
}
|
|
|
|
// Apply is a general purpose iterator method that operates on any AST node. It
|
|
// is not used as the primary AST traversal function because it is less readable
|
|
// and easy to reason about than manually implementing traversal for each node.
|
|
// Nevertheless, it is a useful facility for operations that might only apply to
|
|
// a select number of node types, since they won't need extra noop iterators...
|
|
func (obj *StmtResField) Apply(fn func(interfaces.Node) error) error {
|
|
if obj.Condition != nil {
|
|
if err := obj.Condition.Apply(fn); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
if err := obj.Value.Apply(fn); err != nil {
|
|
return err
|
|
}
|
|
return fn(obj)
|
|
}
|
|
|
|
// Init initializes this branch of the AST, and returns an error if it fails to
|
|
// validate.
|
|
func (obj *StmtResField) Init(data *interfaces.Data) error {
|
|
if obj.Condition != nil {
|
|
if err := obj.Condition.Init(data); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return obj.Value.Init(data)
|
|
}
|
|
|
|
// Interpolate returns a new node (aka a copy) once it has been expanded. This
|
|
// generally increases the size of the AST when it is used. It calls Interpolate
|
|
// on any child elements and builds the new node with those new node contents.
|
|
// This interpolate is different It is different from the interpolate found in
|
|
// the Expr and Stmt interfaces because it returns a different type as output.
|
|
func (obj *StmtResField) Interpolate() (StmtResContents, error) {
|
|
interpolated, err := obj.Value.Interpolate()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
var condition interfaces.Expr
|
|
if obj.Condition != nil {
|
|
condition, err = obj.Condition.Interpolate()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
return &StmtResField{
|
|
Field: obj.Field,
|
|
Value: interpolated,
|
|
Condition: condition,
|
|
}, nil
|
|
}
|
|
|
|
// SetScope stores the scope for later use in this resource and it's children,
|
|
// which it propagates this downwards to.
|
|
func (obj *StmtResField) SetScope(scope *interfaces.Scope) error {
|
|
if err := obj.Value.SetScope(scope); err != nil {
|
|
return err
|
|
}
|
|
if obj.Condition != nil {
|
|
if err := obj.Condition.SetScope(scope); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Unify returns the list of invariants that this node produces. It recursively
|
|
// calls Unify on any children elements that exist in the AST, and returns the
|
|
// collection to the caller. It is different from the Unify found in the Expr
|
|
// and Stmt interfaces because it adds an input parameter.
|
|
func (obj *StmtResField) Unify(kind string) ([]interfaces.Invariant, error) {
|
|
var invariants []interfaces.Invariant
|
|
|
|
invars, err := obj.Value.Unify()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
invariants = append(invariants, invars...)
|
|
|
|
// conditional expression might have some children invariants to share
|
|
if obj.Condition != nil {
|
|
condition, err := obj.Condition.Unify()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
invariants = append(invariants, condition...)
|
|
|
|
// the condition must ultimately be a boolean
|
|
conditionInvar := &unification.EqualsInvariant{
|
|
Expr: obj.Condition,
|
|
Type: types.TypeBool,
|
|
}
|
|
invariants = append(invariants, conditionInvar)
|
|
}
|
|
|
|
// TODO: unfortunately this gets called separately for each field... if
|
|
// we could cache this, it might be worth looking into for performance!
|
|
typMap, err := engineUtil.LangFieldNameToStructType(kind)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
field := strings.TrimSpace(obj.Field)
|
|
if len(field) != len(obj.Field) {
|
|
return nil, fmt.Errorf("field was wrapped in whitespace")
|
|
}
|
|
if len(strings.Fields(field)) != 1 {
|
|
return nil, fmt.Errorf("field was empty or contained spaces")
|
|
}
|
|
|
|
typ, exists := typMap[obj.Field]
|
|
if !exists {
|
|
return nil, fmt.Errorf("could not determine type for `%s` field of `%s`", obj.Field, kind)
|
|
}
|
|
invar := &unification.EqualsInvariant{
|
|
Expr: obj.Value,
|
|
Type: typ,
|
|
}
|
|
invariants = append(invariants, invar)
|
|
|
|
return invariants, nil
|
|
}
|
|
|
|
// Graph returns the reactive function graph which is expressed by this node. It
|
|
// includes any vertices produced by this node, and the appropriate edges to any
|
|
// vertices that are produced by its children. Nodes which fulfill the Expr
|
|
// interface directly produce vertices (and possible children) where as nodes
|
|
// that fulfill the Stmt interface do not produces vertices, where as their
|
|
// children might. It is interesting to note that nothing directly adds an edge
|
|
// to the resources created, but rather, once all the values (expressions) with
|
|
// no outgoing edges have produced at least a single value, then the resources
|
|
// know they're able to be built.
|
|
func (obj *StmtResField) Graph() (*pgraph.Graph, error) {
|
|
graph, err := pgraph.NewGraph("resfield")
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "could not create graph")
|
|
}
|
|
|
|
g, err := obj.Value.Graph()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
graph.AddGraph(g)
|
|
|
|
if obj.Condition != nil {
|
|
g, err := obj.Condition.Graph()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
graph.AddGraph(g)
|
|
}
|
|
|
|
return graph, nil
|
|
}
|
|
|
|
// StmtResEdge represents a single edge property in the parsed resource
|
|
// representation. This does not satisfy the Stmt interface.
|
|
type StmtResEdge struct {
|
|
Property string // TODO: iota constant instead?
|
|
EdgeHalf *StmtEdgeHalf
|
|
Condition interfaces.Expr // the value will be used if nil or true
|
|
}
|
|
|
|
// Apply is a general purpose iterator method that operates on any AST node. It
|
|
// is not used as the primary AST traversal function because it is less readable
|
|
// and easy to reason about than manually implementing traversal for each node.
|
|
// Nevertheless, it is a useful facility for operations that might only apply to
|
|
// a select number of node types, since they won't need extra noop iterators...
|
|
func (obj *StmtResEdge) Apply(fn func(interfaces.Node) error) error {
|
|
if obj.Condition != nil {
|
|
if err := obj.Condition.Apply(fn); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
if err := obj.EdgeHalf.Apply(fn); err != nil {
|
|
return err
|
|
}
|
|
return fn(obj)
|
|
}
|
|
|
|
// Init initializes this branch of the AST, and returns an error if it fails to
|
|
// validate.
|
|
func (obj *StmtResEdge) Init(data *interfaces.Data) error {
|
|
if obj.Property == "" {
|
|
return fmt.Errorf("empty property")
|
|
}
|
|
if obj.Property != EdgeNotify && obj.Property != EdgeBefore && obj.Property != EdgeListen && obj.Property != EdgeDepend {
|
|
return fmt.Errorf("invalid property: `%s`", obj.Property)
|
|
}
|
|
|
|
if obj.Condition != nil {
|
|
if err := obj.Condition.Init(data); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return obj.EdgeHalf.Init(data)
|
|
}
|
|
|
|
// Interpolate returns a new node (aka a copy) once it has been expanded. This
|
|
// generally increases the size of the AST when it is used. It calls Interpolate
|
|
// on any child elements and builds the new node with those new node contents.
|
|
// This interpolate is different It is different from the interpolate found in
|
|
// the Expr and Stmt interfaces because it returns a different type as output.
|
|
func (obj *StmtResEdge) Interpolate() (StmtResContents, error) {
|
|
interpolated, err := obj.EdgeHalf.Interpolate()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
var condition interfaces.Expr
|
|
if obj.Condition != nil {
|
|
condition, err = obj.Condition.Interpolate()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
return &StmtResEdge{
|
|
Property: obj.Property,
|
|
EdgeHalf: interpolated,
|
|
Condition: condition,
|
|
}, nil
|
|
}
|
|
|
|
// SetScope stores the scope for later use in this resource and it's children,
|
|
// which it propagates this downwards to.
|
|
func (obj *StmtResEdge) SetScope(scope *interfaces.Scope) error {
|
|
if err := obj.EdgeHalf.SetScope(scope); err != nil {
|
|
return err
|
|
}
|
|
if obj.Condition != nil {
|
|
if err := obj.Condition.SetScope(scope); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Unify returns the list of invariants that this node produces. It recursively
|
|
// calls Unify on any children elements that exist in the AST, and returns the
|
|
// collection to the caller. It is different from the Unify found in the Expr
|
|
// and Stmt interfaces because it adds an input parameter.
|
|
func (obj *StmtResEdge) Unify(kind string) ([]interfaces.Invariant, error) {
|
|
var invariants []interfaces.Invariant
|
|
|
|
invars, err := obj.EdgeHalf.Unify()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
invariants = append(invariants, invars...)
|
|
|
|
// conditional expression might have some children invariants to share
|
|
if obj.Condition != nil {
|
|
condition, err := obj.Condition.Unify()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
invariants = append(invariants, condition...)
|
|
|
|
// the condition must ultimately be a boolean
|
|
conditionInvar := &unification.EqualsInvariant{
|
|
Expr: obj.Condition,
|
|
Type: types.TypeBool,
|
|
}
|
|
invariants = append(invariants, conditionInvar)
|
|
}
|
|
|
|
return invariants, nil
|
|
}
|
|
|
|
// Graph returns the reactive function graph which is expressed by this node. It
|
|
// includes any vertices produced by this node, and the appropriate edges to any
|
|
// vertices that are produced by its children. Nodes which fulfill the Expr
|
|
// interface directly produce vertices (and possible children) where as nodes
|
|
// that fulfill the Stmt interface do not produces vertices, where as their
|
|
// children might. It is interesting to note that nothing directly adds an edge
|
|
// to the resources created, but rather, once all the values (expressions) with
|
|
// no outgoing edges have produced at least a single value, then the resources
|
|
// know they're able to be built.
|
|
func (obj *StmtResEdge) Graph() (*pgraph.Graph, error) {
|
|
graph, err := pgraph.NewGraph("resedge")
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "could not create graph")
|
|
}
|
|
|
|
g, err := obj.EdgeHalf.Graph()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
graph.AddGraph(g)
|
|
|
|
if obj.Condition != nil {
|
|
g, err := obj.Condition.Graph()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
graph.AddGraph(g)
|
|
}
|
|
|
|
return graph, nil
|
|
}
|
|
|
|
// StmtResMeta represents a single meta value in the parsed resource
|
|
// representation. It can also contain a struct that contains one or more meta
|
|
// parameters. If it contains such a struct, then the `Property` field contains
|
|
// the string found in the MetaField constant, otherwise this field will
|
|
// correspond to the particular meta parameter specified. This does not satisfy
|
|
// the Stmt interface.
|
|
type StmtResMeta struct {
|
|
Property string // TODO: iota constant instead?
|
|
MetaExpr interfaces.Expr
|
|
Condition interfaces.Expr // the value will be used if nil or true
|
|
}
|
|
|
|
// Apply is a general purpose iterator method that operates on any AST node. It
|
|
// is not used as the primary AST traversal function because it is less readable
|
|
// and easy to reason about than manually implementing traversal for each node.
|
|
// Nevertheless, it is a useful facility for operations that might only apply to
|
|
// a select number of node types, since they won't need extra noop iterators...
|
|
func (obj *StmtResMeta) Apply(fn func(interfaces.Node) error) error {
|
|
if obj.Condition != nil {
|
|
if err := obj.Condition.Apply(fn); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
if err := obj.MetaExpr.Apply(fn); err != nil {
|
|
return err
|
|
}
|
|
return fn(obj)
|
|
}
|
|
|
|
// Init initializes this branch of the AST, and returns an error if it fails to
|
|
// validate.
|
|
func (obj *StmtResMeta) Init(data *interfaces.Data) error {
|
|
if obj.Property == "" {
|
|
return fmt.Errorf("empty property")
|
|
}
|
|
|
|
switch p := strings.ToLower(obj.Property); p {
|
|
// TODO: we could add these fields dynamically if we were fancy!
|
|
case "noop":
|
|
case "retry":
|
|
case "delay":
|
|
case "poll":
|
|
case "limit":
|
|
case "burst":
|
|
case "sema":
|
|
case "rewatch":
|
|
case "realize":
|
|
case "reverse":
|
|
case "autoedge":
|
|
case "autogroup":
|
|
case MetaField:
|
|
|
|
default:
|
|
return fmt.Errorf("invalid property: `%s`", obj.Property)
|
|
}
|
|
|
|
if obj.Condition != nil {
|
|
if err := obj.Condition.Init(data); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return obj.MetaExpr.Init(data)
|
|
}
|
|
|
|
// Interpolate returns a new node (aka a copy) once it has been expanded. This
|
|
// generally increases the size of the AST when it is used. It calls Interpolate
|
|
// on any child elements and builds the new node with those new node contents.
|
|
// This interpolate is different It is different from the interpolate found in
|
|
// the Expr and Stmt interfaces because it returns a different type as output.
|
|
func (obj *StmtResMeta) Interpolate() (StmtResContents, error) {
|
|
interpolated, err := obj.MetaExpr.Interpolate()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
var condition interfaces.Expr
|
|
if obj.Condition != nil {
|
|
condition, err = obj.Condition.Interpolate()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
return &StmtResMeta{
|
|
Property: obj.Property,
|
|
MetaExpr: interpolated,
|
|
Condition: condition,
|
|
}, nil
|
|
}
|
|
|
|
// SetScope stores the scope for later use in this resource and it's children,
|
|
// which it propagates this downwards to.
|
|
func (obj *StmtResMeta) SetScope(scope *interfaces.Scope) error {
|
|
if err := obj.MetaExpr.SetScope(scope); err != nil {
|
|
return err
|
|
}
|
|
if obj.Condition != nil {
|
|
if err := obj.Condition.SetScope(scope); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Unify returns the list of invariants that this node produces. It recursively
|
|
// calls Unify on any children elements that exist in the AST, and returns the
|
|
// collection to the caller. It is different from the Unify found in the Expr
|
|
// and Stmt interfaces because it adds an input parameter.
|
|
// XXX: Allow specifying partial meta param structs and unify the subset type.
|
|
// XXX: The resource fields have the same limitation with field structs.
|
|
func (obj *StmtResMeta) Unify(kind string) ([]interfaces.Invariant, error) {
|
|
var invariants []interfaces.Invariant
|
|
|
|
invars, err := obj.MetaExpr.Unify()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
invariants = append(invariants, invars...)
|
|
|
|
// conditional expression might have some children invariants to share
|
|
if obj.Condition != nil {
|
|
condition, err := obj.Condition.Unify()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
invariants = append(invariants, condition...)
|
|
|
|
// the condition must ultimately be a boolean
|
|
conditionInvar := &unification.EqualsInvariant{
|
|
Expr: obj.Condition,
|
|
Type: types.TypeBool,
|
|
}
|
|
invariants = append(invariants, conditionInvar)
|
|
}
|
|
|
|
// add additional invariants based on what's in obj.Property !!!
|
|
var invar interfaces.Invariant
|
|
static := func(typ *types.Type) interfaces.Invariant {
|
|
return &unification.EqualsInvariant{
|
|
Expr: obj.MetaExpr,
|
|
Type: typ,
|
|
}
|
|
}
|
|
switch p := strings.ToLower(obj.Property); p {
|
|
// TODO: we could add these fields dynamically if we were fancy!
|
|
case "noop":
|
|
invar = static(types.TypeBool)
|
|
|
|
case "retry":
|
|
invar = static(types.TypeInt)
|
|
|
|
case "delay":
|
|
invar = static(types.TypeInt)
|
|
|
|
case "poll":
|
|
invar = static(types.TypeInt)
|
|
|
|
case "limit": // rate.Limit
|
|
invar = static(types.TypeFloat)
|
|
|
|
case "burst":
|
|
invar = static(types.TypeInt)
|
|
|
|
case "sema":
|
|
invar = static(types.NewType("[]str"))
|
|
|
|
case "rewatch":
|
|
invar = static(types.TypeBool)
|
|
|
|
case "realize":
|
|
invar = static(types.TypeBool)
|
|
|
|
case "reverse":
|
|
ors := []interfaces.Invariant{}
|
|
|
|
invarBool := static(types.TypeBool)
|
|
ors = append(ors, invarBool)
|
|
|
|
// TODO: decide what fields we might want here
|
|
//invarStruct := static(types.NewType("struct{edges str}"))
|
|
//ors = append(ors, invarStruct)
|
|
|
|
invar = &unification.ExclusiveInvariant{
|
|
Invariants: ors, // one and only one of these should be true
|
|
}
|
|
|
|
case "autoedge":
|
|
invar = static(types.TypeBool)
|
|
|
|
case "autogroup":
|
|
invar = static(types.TypeBool)
|
|
|
|
// autoedge and autogroup aren't part of the `MetaRes` interface, but we
|
|
// can merge them in here for simplicity in the public user interface...
|
|
case MetaField:
|
|
// FIXME: allow partial subsets of this struct, and in any order
|
|
// FIXME: we might need an updated unification engine to do this
|
|
wrap := func(reverse *types.Type) *types.Type {
|
|
return types.NewType(fmt.Sprintf("struct{noop bool; retry int; delay int; poll int; limit float; burst int; sema []str; rewatch bool; realize bool; reverse %s; autoedge bool; autogroup bool}", reverse.String()))
|
|
}
|
|
ors := []interfaces.Invariant{}
|
|
invarBool := static(wrap(types.TypeBool))
|
|
ors = append(ors, invarBool)
|
|
// TODO: decide what fields we might want here
|
|
//invarStruct := static(wrap(types.NewType("struct{edges str}")))
|
|
//ors = append(ors, invarStruct)
|
|
invar = &unification.ExclusiveInvariant{
|
|
Invariants: ors, // one and only one of these should be true
|
|
}
|
|
|
|
default:
|
|
return nil, fmt.Errorf("unknown property: %s", p)
|
|
}
|
|
invariants = append(invariants, invar)
|
|
|
|
return invariants, nil
|
|
}
|
|
|
|
// Graph returns the reactive function graph which is expressed by this node. It
|
|
// includes any vertices produced by this node, and the appropriate edges to any
|
|
// vertices that are produced by its children. Nodes which fulfill the Expr
|
|
// interface directly produce vertices (and possible children) where as nodes
|
|
// that fulfill the Stmt interface do not produces vertices, where as their
|
|
// children might. It is interesting to note that nothing directly adds an edge
|
|
// to the resources created, but rather, once all the values (expressions) with
|
|
// no outgoing edges have produced at least a single value, then the resources
|
|
// know they're able to be built.
|
|
func (obj *StmtResMeta) Graph() (*pgraph.Graph, error) {
|
|
graph, err := pgraph.NewGraph("resmeta")
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "could not create graph")
|
|
}
|
|
|
|
g, err := obj.MetaExpr.Graph()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
graph.AddGraph(g)
|
|
|
|
if obj.Condition != nil {
|
|
g, err := obj.Condition.Graph()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
graph.AddGraph(g)
|
|
}
|
|
|
|
return graph, nil
|
|
}
|
|
|
|
// StmtEdge is a representation of a dependency. It also supports send/recv.
|
|
// Edges represents that the first resource (Kind/Name) listed in the
|
|
// EdgeHalfList should happen in the resource graph *before* the next resource
|
|
// in the list. If there are multiple StmtEdgeHalf structs listed, then they
|
|
// should represent a chain, eg: a->b->c, should compile into a->b & b->c. If
|
|
// specified, values are sent and received along these edges if the Send/Recv
|
|
// names are compatible and listed. In this case of Send/Recv, only lists of
|
|
// length two are legal.
|
|
type StmtEdge struct {
|
|
EdgeHalfList []*StmtEdgeHalf // represents a chain of edges
|
|
|
|
// TODO: should notify be an Expr?
|
|
Notify bool // specifies that this edge sends a notification as well
|
|
}
|
|
|
|
// Apply is a general purpose iterator method that operates on any AST node. It
|
|
// is not used as the primary AST traversal function because it is less readable
|
|
// and easy to reason about than manually implementing traversal for each node.
|
|
// Nevertheless, it is a useful facility for operations that might only apply to
|
|
// a select number of node types, since they won't need extra noop iterators...
|
|
func (obj *StmtEdge) Apply(fn func(interfaces.Node) error) error {
|
|
for _, x := range obj.EdgeHalfList {
|
|
if err := x.Apply(fn); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return fn(obj)
|
|
}
|
|
|
|
// String returns a short representation of this statement.
|
|
func (obj *StmtEdge) String() string {
|
|
return "edge" // TODO: improve this
|
|
}
|
|
|
|
// Init initializes this branch of the AST, and returns an error if it fails to
|
|
// validate.
|
|
func (obj *StmtEdge) Init(data *interfaces.Data) error {
|
|
for _, x := range obj.EdgeHalfList {
|
|
if err := x.Init(data); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Interpolate returns a new node (aka a copy) once it has been expanded. This
|
|
// generally increases the size of the AST when it is used. It calls Interpolate
|
|
// on any child elements and builds the new node with those new node contents.
|
|
// TODO: could we expand the Name's from the EdgeHalf (if they're lists) to have
|
|
// them return a list of Edges's ?
|
|
// XXX: type check the kind1:send -> kind2:recv fields are compatible!
|
|
// XXX: we won't know the names yet, but it's okay.
|
|
func (obj *StmtEdge) Interpolate() (interfaces.Stmt, error) {
|
|
edgeHalfList := []*StmtEdgeHalf{}
|
|
for _, x := range obj.EdgeHalfList {
|
|
edgeHalf, err := x.Interpolate()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
edgeHalfList = append(edgeHalfList, edgeHalf)
|
|
}
|
|
|
|
return &StmtEdge{
|
|
EdgeHalfList: edgeHalfList,
|
|
Notify: obj.Notify,
|
|
}, nil
|
|
}
|
|
|
|
// SetScope stores the scope for later use in this resource and it's children,
|
|
// which it propagates this downwards to.
|
|
func (obj *StmtEdge) SetScope(scope *interfaces.Scope) error {
|
|
for _, x := range obj.EdgeHalfList {
|
|
if err := x.SetScope(scope); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Unify returns the list of invariants that this node produces. It recursively
|
|
// calls Unify on any children elements that exist in the AST, and returns the
|
|
// collection to the caller.
|
|
func (obj *StmtEdge) Unify() ([]interfaces.Invariant, error) {
|
|
var invariants []interfaces.Invariant
|
|
|
|
// TODO: this sort of sideloaded validation could happen in a dedicated
|
|
// Validate() function, but for now is here for lack of a better place!
|
|
if len(obj.EdgeHalfList) == 1 {
|
|
return nil, fmt.Errorf("can't create an edge with only one half")
|
|
}
|
|
if len(obj.EdgeHalfList) == 2 {
|
|
sr1 := obj.EdgeHalfList[0].SendRecv
|
|
sr2 := obj.EdgeHalfList[1].SendRecv
|
|
if (sr1 == "") != (sr2 == "") { // xor
|
|
return nil, fmt.Errorf("you must specify both send/recv fields or neither")
|
|
}
|
|
|
|
if sr1 != "" && sr2 != "" {
|
|
k1 := obj.EdgeHalfList[0].Kind
|
|
k2 := obj.EdgeHalfList[1].Kind
|
|
|
|
r1, err := engine.NewResource(k1)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
r2, err := engine.NewResource(k2)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
res1, ok := r1.(engine.SendableRes)
|
|
if !ok {
|
|
return nil, fmt.Errorf("cannot send from resource of kind: %s", k1)
|
|
}
|
|
res2, ok := r2.(engine.RecvableRes)
|
|
if !ok {
|
|
return nil, fmt.Errorf("cannot recv to resource of kind: %s", k2)
|
|
}
|
|
|
|
// Check that the kind1:send -> kind2:recv fields are type
|
|
// compatible! We won't know the names yet, but it's okay.
|
|
if err := engineUtil.StructFieldCompat(res1.Sends(), sr1, res2, sr2); err != nil {
|
|
p1 := k1 // print defaults
|
|
p2 := k2
|
|
if v, err := obj.EdgeHalfList[0].Name.Value(); err == nil { // statically known
|
|
// display something nicer
|
|
if v.Type().Kind == types.KindStr {
|
|
p1 = engine.Repr(k1, v.Str())
|
|
} else if v.Type().Cmp(types.NewType("[]str")) == nil {
|
|
p1 = engine.Repr(k1, v.String())
|
|
}
|
|
}
|
|
if v, err := obj.EdgeHalfList[1].Name.Value(); err == nil {
|
|
if v.Type().Kind == types.KindStr {
|
|
p2 = engine.Repr(k2, v.Str())
|
|
} else if v.Type().Cmp(types.NewType("[]str")) == nil {
|
|
p2 = engine.Repr(k2, v.String())
|
|
}
|
|
}
|
|
return nil, errwrap.Wrapf(err, "cannot send/recv from %s.%s to %s.%s", p1, sr1, p2, sr2)
|
|
}
|
|
}
|
|
}
|
|
|
|
for _, x := range obj.EdgeHalfList {
|
|
if x.SendRecv != "" && len(obj.EdgeHalfList) != 2 {
|
|
return nil, fmt.Errorf("send/recv edges must come in pairs")
|
|
}
|
|
|
|
invars, err := x.Unify()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
invariants = append(invariants, invars...)
|
|
}
|
|
|
|
return invariants, nil
|
|
}
|
|
|
|
// Graph returns the reactive function graph which is expressed by this node. It
|
|
// includes any vertices produced by this node, and the appropriate edges to any
|
|
// vertices that are produced by its children. Nodes which fulfill the Expr
|
|
// interface directly produce vertices (and possible children) where as nodes
|
|
// that fulfill the Stmt interface do not produces vertices, where as their
|
|
// children might. It is interesting to note that nothing directly adds an edge
|
|
// to the edges created, but rather, once all the values (expressions) with no
|
|
// outgoing function graph edges have produced at least a single value, then the
|
|
// edges know they're able to be built.
|
|
func (obj *StmtEdge) Graph() (*pgraph.Graph, error) {
|
|
graph, err := pgraph.NewGraph("edge")
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "could not create graph")
|
|
}
|
|
|
|
for _, x := range obj.EdgeHalfList {
|
|
g, err := x.Graph()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
graph.AddGraph(g)
|
|
}
|
|
|
|
return graph, nil
|
|
}
|
|
|
|
// Output returns the output that this "program" produces. This output is what
|
|
// is used to build the output graph. This only exists for statements. The
|
|
// analogous function for expressions is Value. Those Value functions might get
|
|
// called by this Output function if they are needed to produce the output. In
|
|
// the case of this edge statement, this is definitely the case. This edge stmt
|
|
// returns output consisting of edges.
|
|
func (obj *StmtEdge) Output() (*interfaces.Output, error) {
|
|
edges := []*interfaces.Edge{}
|
|
|
|
for i := 0; i < len(obj.EdgeHalfList)-1; i++ {
|
|
nameValue1, err := obj.EdgeHalfList[i].Name.Value()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// the edge name can be a single string or a list of strings...
|
|
|
|
names1 := []string{} // list of names to build
|
|
switch {
|
|
case types.TypeStr.Cmp(nameValue1.Type()) == nil:
|
|
name := nameValue1.Str() // must not panic
|
|
names1 = append(names1, name)
|
|
|
|
case types.NewType("[]str").Cmp(nameValue1.Type()) == nil:
|
|
for _, x := range nameValue1.List() { // must not panic
|
|
name := x.Str() // must not panic
|
|
names1 = append(names1, name)
|
|
}
|
|
|
|
default:
|
|
// programming error
|
|
return nil, fmt.Errorf("unhandled resource name type: %+v", nameValue1.Type())
|
|
}
|
|
|
|
nameValue2, err := obj.EdgeHalfList[i+1].Name.Value()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
names2 := []string{} // list of names to build
|
|
switch {
|
|
case types.TypeStr.Cmp(nameValue2.Type()) == nil:
|
|
name := nameValue2.Str() // must not panic
|
|
names2 = append(names2, name)
|
|
|
|
case types.NewType("[]str").Cmp(nameValue2.Type()) == nil:
|
|
for _, x := range nameValue2.List() { // must not panic
|
|
name := x.Str() // must not panic
|
|
names2 = append(names2, name)
|
|
}
|
|
|
|
default:
|
|
// programming error
|
|
return nil, fmt.Errorf("unhandled resource name type: %+v", nameValue2.Type())
|
|
}
|
|
|
|
for _, name1 := range names1 {
|
|
for _, name2 := range names2 {
|
|
edge := &interfaces.Edge{
|
|
Kind1: obj.EdgeHalfList[i].Kind,
|
|
Name1: name1,
|
|
Send: obj.EdgeHalfList[i].SendRecv,
|
|
|
|
Kind2: obj.EdgeHalfList[i+1].Kind,
|
|
Name2: name2,
|
|
Recv: obj.EdgeHalfList[i+1].SendRecv,
|
|
|
|
Notify: obj.Notify,
|
|
}
|
|
edges = append(edges, edge)
|
|
}
|
|
}
|
|
}
|
|
|
|
return &interfaces.Output{
|
|
Edges: edges,
|
|
}, nil
|
|
}
|
|
|
|
// StmtEdgeHalf represents half of an edge in the parsed edge representation.
|
|
// This does not satisfy the Stmt interface.
|
|
type StmtEdgeHalf struct {
|
|
Kind string // kind of resource, eg: pkg, file, svc, etc...
|
|
Name interfaces.Expr // unique name for the res of this kind
|
|
SendRecv string // name of field to send/recv from/to, empty to ignore
|
|
}
|
|
|
|
// Apply is a general purpose iterator method that operates on any AST node. It
|
|
// is not used as the primary AST traversal function because it is less readable
|
|
// and easy to reason about than manually implementing traversal for each node.
|
|
// Nevertheless, it is a useful facility for operations that might only apply to
|
|
// a select number of node types, since they won't need extra noop iterators...
|
|
func (obj *StmtEdgeHalf) Apply(fn func(interfaces.Node) error) error {
|
|
if err := obj.Name.Apply(fn); err != nil {
|
|
return err
|
|
}
|
|
return fn(obj)
|
|
}
|
|
|
|
// Init initializes this branch of the AST, and returns an error if it fails to
|
|
// validate.
|
|
func (obj *StmtEdgeHalf) Init(data *interfaces.Data) error {
|
|
if strings.Contains(obj.Kind, "_") {
|
|
return fmt.Errorf("kind must not contain underscores")
|
|
}
|
|
|
|
return obj.Name.Init(data)
|
|
}
|
|
|
|
// Interpolate returns a new node (aka a copy) once it has been expanded. This
|
|
// generally increases the size of the AST when it is used. It calls Interpolate
|
|
// on any child elements and builds the new node with those new node contents.
|
|
// This interpolate is different It is different from the interpolate found in
|
|
// the Expr and Stmt interfaces because it returns a different type as output.
|
|
func (obj *StmtEdgeHalf) Interpolate() (*StmtEdgeHalf, error) {
|
|
name, err := obj.Name.Interpolate()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return &StmtEdgeHalf{
|
|
Kind: obj.Kind,
|
|
Name: name,
|
|
SendRecv: obj.SendRecv,
|
|
}, nil
|
|
}
|
|
|
|
// SetScope stores the scope for later use in this resource and it's children,
|
|
// which it propagates this downwards to.
|
|
func (obj *StmtEdgeHalf) SetScope(scope *interfaces.Scope) error {
|
|
return obj.Name.SetScope(scope)
|
|
}
|
|
|
|
// Unify returns the list of invariants that this node produces. It recursively
|
|
// calls Unify on any children elements that exist in the AST, and returns the
|
|
// collection to the caller.
|
|
func (obj *StmtEdgeHalf) Unify() ([]interfaces.Invariant, error) {
|
|
var invariants []interfaces.Invariant
|
|
|
|
if obj.Kind == "" {
|
|
return nil, fmt.Errorf("missing resource kind in edge")
|
|
}
|
|
|
|
if obj.SendRecv != "" {
|
|
// FIXME: write this function (get expected type of field)
|
|
//invar, err := StructFieldInvariant(obj.Kind, obj.SendRecv)
|
|
//if err != nil {
|
|
// return nil, err
|
|
//}
|
|
//invariants = append(invariants, invar...)
|
|
}
|
|
|
|
invars, err := obj.Name.Unify()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
invariants = append(invariants, invars...)
|
|
|
|
// name must be a string or a list
|
|
ors := []interfaces.Invariant{}
|
|
|
|
invarStr := &unification.EqualsInvariant{
|
|
Expr: obj.Name,
|
|
Type: types.TypeStr,
|
|
}
|
|
ors = append(ors, invarStr)
|
|
|
|
invarListStr := &unification.EqualsInvariant{
|
|
Expr: obj.Name,
|
|
Type: types.NewType("[]str"),
|
|
}
|
|
ors = append(ors, invarListStr)
|
|
|
|
invar := &unification.ExclusiveInvariant{
|
|
Invariants: ors, // one and only one of these should be true
|
|
}
|
|
invariants = append(invariants, invar)
|
|
|
|
return invariants, nil
|
|
}
|
|
|
|
// Graph returns the reactive function graph which is expressed by this node. It
|
|
// includes any vertices produced by this node, and the appropriate edges to any
|
|
// vertices that are produced by its children. Nodes which fulfill the Expr
|
|
// interface directly produce vertices (and possible children) where as nodes
|
|
// that fulfill the Stmt interface do not produces vertices, where as their
|
|
// children might. It is interesting to note that nothing directly adds an edge
|
|
// to the resources created, but rather, once all the values (expressions) with
|
|
// no outgoing edges have produced at least a single value, then the resources
|
|
// know they're able to be built.
|
|
func (obj *StmtEdgeHalf) Graph() (*pgraph.Graph, error) {
|
|
return obj.Name.Graph()
|
|
}
|
|
|
|
// StmtIf represents an if condition that contains between one and two branches
|
|
// of statements to be executed based on the evaluation of the boolean condition
|
|
// over time. In particular, this is different from an ExprIf which returns a
|
|
// value, where as this produces some Output. Normally if one of the branches is
|
|
// optional, it is the else branch, although this struct allows either to be
|
|
// optional, even if it is not commonly used.
|
|
type StmtIf struct {
|
|
Condition interfaces.Expr
|
|
ThenBranch interfaces.Stmt // optional, but usually present
|
|
ElseBranch interfaces.Stmt // optional
|
|
}
|
|
|
|
// Apply is a general purpose iterator method that operates on any AST node. It
|
|
// is not used as the primary AST traversal function because it is less readable
|
|
// and easy to reason about than manually implementing traversal for each node.
|
|
// Nevertheless, it is a useful facility for operations that might only apply to
|
|
// a select number of node types, since they won't need extra noop iterators...
|
|
func (obj *StmtIf) Apply(fn func(interfaces.Node) error) error {
|
|
if err := obj.Condition.Apply(fn); err != nil {
|
|
return err
|
|
}
|
|
if obj.ThenBranch != nil {
|
|
if err := obj.ThenBranch.Apply(fn); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
if obj.ElseBranch != nil {
|
|
if err := obj.ElseBranch.Apply(fn); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return fn(obj)
|
|
}
|
|
|
|
// String returns a short representation of this statement.
|
|
func (obj *StmtIf) String() string {
|
|
return "if" // TODO: improve this
|
|
}
|
|
|
|
// Init initializes this branch of the AST, and returns an error if it fails to
|
|
// validate.
|
|
func (obj *StmtIf) Init(data *interfaces.Data) error {
|
|
if err := obj.Condition.Init(data); err != nil {
|
|
return err
|
|
}
|
|
if obj.ThenBranch != nil {
|
|
if err := obj.ThenBranch.Init(data); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
if obj.ElseBranch != nil {
|
|
if err := obj.ElseBranch.Init(data); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Interpolate returns a new node (aka a copy) once it has been expanded. This
|
|
// generally increases the size of the AST when it is used. It calls Interpolate
|
|
// on any child elements and builds the new node with those new node contents.
|
|
func (obj *StmtIf) Interpolate() (interfaces.Stmt, error) {
|
|
condition, err := obj.Condition.Interpolate()
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "could not interpolate Condition")
|
|
}
|
|
var thenBranch interfaces.Stmt
|
|
if obj.ThenBranch != nil {
|
|
thenBranch, err = obj.ThenBranch.Interpolate()
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "could not interpolate ThenBranch")
|
|
}
|
|
}
|
|
var elseBranch interfaces.Stmt
|
|
if obj.ElseBranch != nil {
|
|
elseBranch, err = obj.ElseBranch.Interpolate()
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "could not interpolate ElseBranch")
|
|
}
|
|
}
|
|
return &StmtIf{
|
|
Condition: condition,
|
|
ThenBranch: thenBranch,
|
|
ElseBranch: elseBranch,
|
|
}, nil
|
|
}
|
|
|
|
// SetScope stores the scope for later use in this resource and it's children,
|
|
// which it propagates this downwards to.
|
|
func (obj *StmtIf) SetScope(scope *interfaces.Scope) error {
|
|
if err := obj.Condition.SetScope(scope); err != nil {
|
|
return err
|
|
}
|
|
if obj.ThenBranch != nil {
|
|
if err := obj.ThenBranch.SetScope(scope); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
if obj.ElseBranch != nil {
|
|
if err := obj.ElseBranch.SetScope(scope); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Unify returns the list of invariants that this node produces. It recursively
|
|
// calls Unify on any children elements that exist in the AST, and returns the
|
|
// collection to the caller.
|
|
func (obj *StmtIf) Unify() ([]interfaces.Invariant, error) {
|
|
var invariants []interfaces.Invariant
|
|
|
|
// conditional expression might have some children invariants to share
|
|
condition, err := obj.Condition.Unify()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
invariants = append(invariants, condition...)
|
|
|
|
// the condition must ultimately be a boolean
|
|
conditionInvar := &unification.EqualsInvariant{
|
|
Expr: obj.Condition,
|
|
Type: types.TypeBool,
|
|
}
|
|
invariants = append(invariants, conditionInvar)
|
|
|
|
// recurse into the two branches
|
|
if obj.ThenBranch != nil {
|
|
thenBranch, err := obj.ThenBranch.Unify()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
invariants = append(invariants, thenBranch...)
|
|
}
|
|
|
|
if obj.ElseBranch != nil {
|
|
elseBranch, err := obj.ElseBranch.Unify()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
invariants = append(invariants, elseBranch...)
|
|
}
|
|
|
|
return invariants, nil
|
|
}
|
|
|
|
// Graph returns the reactive function graph which is expressed by this node. It
|
|
// includes any vertices produced by this node, and the appropriate edges to any
|
|
// vertices that are produced by its children. Nodes which fulfill the Expr
|
|
// interface directly produce vertices (and possible children) where as nodes
|
|
// that fulfill the Stmt interface do not produces vertices, where as their
|
|
// children might. This particular if statement doesn't do anything clever here
|
|
// other than adding in both branches of the graph. Since we're functional, this
|
|
// shouldn't have any ill effects.
|
|
// XXX: is this completely true if we're running technically impure, but safe
|
|
// built-in functions on both branches? Can we turn off half of this?
|
|
func (obj *StmtIf) Graph() (*pgraph.Graph, error) {
|
|
graph, err := pgraph.NewGraph("if")
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "could not create graph")
|
|
}
|
|
|
|
g, err := obj.Condition.Graph()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
graph.AddGraph(g)
|
|
|
|
for _, x := range []interfaces.Stmt{obj.ThenBranch, obj.ElseBranch} {
|
|
if x == nil {
|
|
continue
|
|
}
|
|
g, err := x.Graph()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
graph.AddGraph(g)
|
|
}
|
|
|
|
return graph, nil
|
|
}
|
|
|
|
// Output returns the output that this "program" produces. This output is what
|
|
// is used to build the output graph. This only exists for statements. The
|
|
// analogous function for expressions is Value. Those Value functions might get
|
|
// called by this Output function if they are needed to produce the output.
|
|
func (obj *StmtIf) Output() (*interfaces.Output, error) {
|
|
b, err := obj.Condition.Value()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
var output *interfaces.Output
|
|
if b.Bool() { // must not panic!
|
|
if obj.ThenBranch != nil { // logically then branch is optional
|
|
output, err = obj.ThenBranch.Output()
|
|
}
|
|
} else {
|
|
if obj.ElseBranch != nil { // else branch is optional
|
|
output, err = obj.ElseBranch.Output()
|
|
}
|
|
}
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
resources := []engine.Res{}
|
|
edges := []*interfaces.Edge{}
|
|
if output != nil {
|
|
resources = append(resources, output.Resources...)
|
|
edges = append(edges, output.Edges...)
|
|
}
|
|
|
|
return &interfaces.Output{
|
|
Resources: resources,
|
|
Edges: edges,
|
|
}, nil
|
|
}
|
|
|
|
// StmtProg represents a list of stmt's. This usually occurs at the top-level of
|
|
// any program, and often within an if stmt. It also contains the logic so that
|
|
// the bind statement's are correctly applied in this scope, and irrespective of
|
|
// their order of definition.
|
|
type StmtProg struct {
|
|
data *interfaces.Data
|
|
scope *interfaces.Scope // store for use by imports
|
|
|
|
// TODO: should this be a map? if so, how would we sort it to loop it?
|
|
importProgs []*StmtProg // list of child programs after running SetScope
|
|
importFiles []string // list of files seen during the SetScope import
|
|
|
|
Prog []interfaces.Stmt
|
|
}
|
|
|
|
// Apply is a general purpose iterator method that operates on any AST node. It
|
|
// is not used as the primary AST traversal function because it is less readable
|
|
// and easy to reason about than manually implementing traversal for each node.
|
|
// Nevertheless, it is a useful facility for operations that might only apply to
|
|
// a select number of node types, since they won't need extra noop iterators...
|
|
func (obj *StmtProg) Apply(fn func(interfaces.Node) error) error {
|
|
for _, x := range obj.Prog {
|
|
if err := x.Apply(fn); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
// might as well Apply on these too, to make file collection easier, etc
|
|
for _, x := range obj.importProgs {
|
|
if err := x.Apply(fn); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return fn(obj)
|
|
}
|
|
|
|
// String returns a short representation of this statement.
|
|
func (obj *StmtProg) String() string {
|
|
return "prog" // TODO: improve this
|
|
}
|
|
|
|
// Init initializes this branch of the AST, and returns an error if it fails to
|
|
// validate.
|
|
func (obj *StmtProg) Init(data *interfaces.Data) error {
|
|
obj.data = data
|
|
obj.importProgs = []*StmtProg{}
|
|
obj.importFiles = []string{}
|
|
for _, x := range obj.Prog {
|
|
if err := x.Init(data); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Interpolate returns a new node (aka a copy) once it has been expanded. This
|
|
// generally increases the size of the AST when it is used. It calls Interpolate
|
|
// on any child elements and builds the new node with those new node contents.
|
|
func (obj *StmtProg) Interpolate() (interfaces.Stmt, error) {
|
|
prog := []interfaces.Stmt{}
|
|
for _, x := range obj.Prog {
|
|
interpolated, err := x.Interpolate()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
prog = append(prog, interpolated)
|
|
}
|
|
return &StmtProg{
|
|
data: obj.data,
|
|
scope: obj.scope,
|
|
importProgs: obj.importProgs, // TODO: do we even need this here?
|
|
importFiles: obj.importFiles,
|
|
Prog: prog,
|
|
}, nil
|
|
}
|
|
|
|
// importScope is a helper function called from SetScope. If it can't find a
|
|
// particular scope, then it can also run the downloader if it is available.
|
|
func (obj *StmtProg) importScope(info *interfaces.ImportData, scope *interfaces.Scope) (*interfaces.Scope, error) {
|
|
if obj.data.Debug {
|
|
obj.data.Logf("import: %s", info.Name)
|
|
}
|
|
// the abs file path that we started actively running SetScope on is:
|
|
// obj.data.Base + obj.data.Metadata.Main
|
|
// but recursive imports mean this is not always the active file...
|
|
|
|
if info.IsSystem { // system imports are the exact name, eg "fmt"
|
|
systemScope, err := obj.importSystemScope(info.Name)
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "system import of `%s` failed", info.Name)
|
|
}
|
|
return systemScope, nil
|
|
}
|
|
|
|
// graph-based recursion detection
|
|
// TODO: is this suffiently unique, but not incorrectly unique?
|
|
// TODO: do we need to clean uvid for consistency so the compare works?
|
|
uvid := obj.data.Base + ";" + info.Name // unique vertex id
|
|
importVertex := obj.data.Imports // parent vertex
|
|
if importVertex == nil {
|
|
return nil, fmt.Errorf("programming error: missing import vertex")
|
|
}
|
|
importGraph := importVertex.Graph // existing graph (ptr stored within)
|
|
nextVertex := &pgraph.SelfVertex{ // new vertex (if one doesn't already exist)
|
|
Name: uvid, // import name
|
|
Graph: importGraph, // store a reference to ourself
|
|
}
|
|
for _, v := range importGraph.VerticesSorted() { // search for one first
|
|
gv, ok := v.(*pgraph.SelfVertex)
|
|
if !ok { // someone misused the vertex
|
|
return nil, fmt.Errorf("programming error: unexpected vertex type")
|
|
}
|
|
if gv.Name == uvid {
|
|
nextVertex = gv // found the same name (use this instead!)
|
|
// this doesn't necessarily mean a cycle. a dag is okay
|
|
break
|
|
}
|
|
}
|
|
|
|
// add an edge
|
|
edge := &pgraph.SimpleEdge{Name: ""} // TODO: name me?
|
|
importGraph.AddEdge(importVertex, nextVertex, edge)
|
|
if _, err := importGraph.TopologicalSort(); err != nil {
|
|
// TODO: print the cycle in a prettier way (with file names?)
|
|
obj.data.Logf("import: not a dag:\n%s", importGraph.Sprint())
|
|
return nil, errwrap.Wrapf(err, "recursive import of: `%s`", info.Name)
|
|
}
|
|
|
|
if info.IsLocal {
|
|
// append the relative addition of where the running code is, on
|
|
// to the base path that the metadata file (data) is relative to
|
|
// if the main code file has no additional directory, then it is
|
|
// okay, because Dirname collapses down to the empty string here
|
|
importFilePath := obj.data.Base + util.Dirname(obj.data.Metadata.Main) + info.Path
|
|
if obj.data.Debug {
|
|
obj.data.Logf("import: file: %s", importFilePath)
|
|
}
|
|
// don't do this collection here, it has moved elsewhere...
|
|
//obj.importFiles = append(obj.importFiles, importFilePath) // save for CollectFiles
|
|
|
|
localScope, err := obj.importScopeWithInputs(importFilePath, scope, nextVertex)
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "local import of `%s` failed", info.Name)
|
|
}
|
|
return localScope, nil
|
|
}
|
|
|
|
// Now, info.IsLocal is false... we're dealing with a remote import!
|
|
|
|
// This takes the current metadata as input so it can use the Path
|
|
// directory to search upwards if we wanted to look in parent paths.
|
|
// Since this is an fqdn import, it must contain a metadata file...
|
|
modulesPath, err := interfaces.FindModulesPath(obj.data.Metadata, obj.data.Base, obj.data.Modules)
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "module path error")
|
|
}
|
|
importFilePath := modulesPath + info.Path + interfaces.MetadataFilename
|
|
|
|
if !RequireStrictModulePath { // look upwards
|
|
modulesPathList, err := interfaces.FindModulesPathList(obj.data.Metadata, obj.data.Base, obj.data.Modules)
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "module path list error")
|
|
}
|
|
for _, mp := range modulesPathList { // first one to find a file
|
|
x := mp + info.Path + interfaces.MetadataFilename
|
|
if _, err := obj.data.Fs.Stat(x); err == nil {
|
|
// found a valid location, so keep using it!
|
|
modulesPath = mp
|
|
importFilePath = x
|
|
break
|
|
}
|
|
}
|
|
// If we get here, and we didn't find anything, then we use the
|
|
// originally decided, most "precise" location... The reason we
|
|
// do that is if the sysadmin wishes to require all the modules
|
|
// to come from their top-level (or higher-level) directory, it
|
|
// can be done by adding the code there, so that it is found in
|
|
// the above upwards search. Otherwise, we just do what the mod
|
|
// asked for and use the path/ directory if it wants its own...
|
|
}
|
|
if obj.data.Debug {
|
|
obj.data.Logf("import: modules path: %s", modulesPath)
|
|
obj.data.Logf("import: file: %s", importFilePath)
|
|
}
|
|
// don't do this collection here, it has moved elsewhere...
|
|
//obj.importFiles = append(obj.importFiles, importFilePath) // save for CollectFiles
|
|
|
|
// invoke the download when a path is missing, if the downloader exists
|
|
// we need to invoke the recursive checker before we run this download!
|
|
// this should cleverly deal with skipping modules that are up-to-date!
|
|
if obj.data.Downloader != nil {
|
|
// run downloader stuff first
|
|
if err := obj.data.Downloader.Get(info, modulesPath); err != nil {
|
|
return nil, errwrap.Wrapf(err, "download of `%s` failed", info.Name)
|
|
}
|
|
}
|
|
|
|
// takes the full absolute path to the metadata.yaml file
|
|
remoteScope, err := obj.importScopeWithInputs(importFilePath, scope, nextVertex)
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "remote import of `%s` failed", info.Name)
|
|
}
|
|
return remoteScope, nil
|
|
}
|
|
|
|
// importSystemScope takes the name of a built-in system scope (eg: "fmt") and
|
|
// returns the scope struct for that built-in. This function is slightly less
|
|
// trivial than expected, because the scope is built from both native mcl code
|
|
// and golang code as well. The native mcl code is compiled in as bindata.
|
|
// TODO: can we memoize?
|
|
func (obj *StmtProg) importSystemScope(name string) (*interfaces.Scope, error) {
|
|
// this basically loop through the registeredFuncs and includes
|
|
// everything that starts with the name prefix and a period, and then
|
|
// lexes and parses the compiled in code, and adds that on top of the
|
|
// scope. we error if there's a duplicate!
|
|
|
|
isEmpty := true // assume empty (which should cause an error)
|
|
|
|
funcs := funcs.LookupPrefix(name)
|
|
if len(funcs) > 0 {
|
|
isEmpty = false
|
|
}
|
|
|
|
// initial scope, built from core golang code
|
|
scope := &interfaces.Scope{
|
|
// TODO: we could add core API's for variables and classes too!
|
|
//Variables: make(map[string]interfaces.Expr),
|
|
Functions: funcs, // map[string]func() interfaces.Func
|
|
//Classes: make(map[string]interfaces.Stmt),
|
|
}
|
|
|
|
// TODO: the obj.data.Fs filesystem handle is unused for now, but might
|
|
// be useful if we ever ship all the specific versions of system modules
|
|
// to the remote machines as well, and we want to load off of it...
|
|
|
|
// now add any compiled-in mcl code
|
|
paths := bindata.AssetNames()
|
|
// results are not sorted by default (ascertained by reading the code!)
|
|
sort.Strings(paths)
|
|
newScope := interfaces.EmptyScope()
|
|
// XXX: consider using a virtual `append *` statement to combine these instead.
|
|
for _, p := range paths {
|
|
// we only want code from this prefix
|
|
prefix := CoreDir + name + "/"
|
|
if !strings.HasPrefix(p, prefix) {
|
|
continue
|
|
}
|
|
// we only want code from this directory level, so skip children
|
|
// heuristically, a child mcl file will contain a path separator
|
|
if strings.Contains(p[len(prefix):], "/") {
|
|
continue
|
|
}
|
|
|
|
b, err := bindata.Asset(p)
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "can't read asset: `%s`", p)
|
|
}
|
|
|
|
// to combine multiple *.mcl files from the same directory, we
|
|
// lex and parse each one individually, which each produces a
|
|
// scope struct. we then merge the scope structs, while making
|
|
// sure we don't overwrite any values. (this logic is only valid
|
|
// for modules, as top-level code combines the output values
|
|
// instead.)
|
|
|
|
reader := bytes.NewReader(b) // wrap the byte stream
|
|
|
|
// now run the lexer/parser to do the import
|
|
ast, err := LexParse(reader)
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "could not generate AST from import `%s`", name)
|
|
}
|
|
if obj.data.Debug {
|
|
obj.data.Logf("behold, the AST: %+v", ast)
|
|
}
|
|
|
|
obj.data.Logf("init...")
|
|
// init and validate the structure of the AST
|
|
// some of this might happen *after* interpolate in SetScope or Unify...
|
|
if err := ast.Init(obj.data); err != nil {
|
|
return nil, errwrap.Wrapf(err, "could not init and validate AST")
|
|
}
|
|
|
|
obj.data.Logf("interpolating...")
|
|
// interpolate strings and other expansionable nodes in AST
|
|
interpolated, err := ast.Interpolate()
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "could not interpolate AST from import `%s`", name)
|
|
}
|
|
|
|
obj.data.Logf("building scope...")
|
|
// propagate the scope down through the AST...
|
|
// most importantly, we ensure that the child imports will run!
|
|
// we pass in *our* parent scope, which will include the globals
|
|
if err := interpolated.SetScope(scope); err != nil {
|
|
return nil, errwrap.Wrapf(err, "could not set scope from import `%s`", name)
|
|
}
|
|
|
|
// is the root of our ast a program?
|
|
prog, ok := interpolated.(*StmtProg)
|
|
if !ok {
|
|
return nil, fmt.Errorf("import `%s` did not return a program", name)
|
|
}
|
|
|
|
if prog.scope == nil { // pull out the result
|
|
continue // nothing to do here, continue with the next!
|
|
}
|
|
|
|
// check for unwanted top-level elements in this module/scope
|
|
// XXX: add a test case to test for this in our core modules!
|
|
if err := prog.IsModuleUnsafe(); err != nil {
|
|
return nil, errwrap.Wrapf(err, "module contains unused statements")
|
|
}
|
|
|
|
if !prog.scope.IsEmpty() {
|
|
isEmpty = false // this module/scope isn't empty
|
|
}
|
|
|
|
// save a reference to the prog for future usage in Unify/Graph/Etc...
|
|
// XXX: we don't need to do this if we can combine with Append!
|
|
obj.importProgs = append(obj.importProgs, prog)
|
|
|
|
// attempt to merge
|
|
// XXX: test for duplicate var/func/class elements in a test!
|
|
if err := newScope.Merge(prog.scope); err != nil { // errors if something was overwritten
|
|
return nil, errwrap.Wrapf(err, "duplicate scope element(s) in module found")
|
|
}
|
|
}
|
|
|
|
if err := scope.Merge(newScope); err != nil { // errors if something was overwritten
|
|
return nil, errwrap.Wrapf(err, "duplicate scope element(s) found")
|
|
}
|
|
|
|
// when importing a system scope, we only error if there are zero class,
|
|
// function, or variable statements in the scope. We error in this case,
|
|
// because it is non-sensical to import such a scope.
|
|
if isEmpty {
|
|
return nil, fmt.Errorf("could not find any non-empty scope named: %s", name)
|
|
}
|
|
|
|
return scope, nil
|
|
}
|
|
|
|
// importScopeWithInputs returns a local or remote scope from an inputs string.
|
|
// The inputs string is the common frontend for a lot of our parsing decisions.
|
|
func (obj *StmtProg) importScopeWithInputs(s string, scope *interfaces.Scope, parentVertex *pgraph.SelfVertex) (*interfaces.Scope, error) {
|
|
output, err := parseInput(s, obj.data.Fs)
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "could not activate an input parser")
|
|
}
|
|
|
|
// TODO: rm this old, and incorrect, linear file duplicate checking...
|
|
// recursion detection (i guess following the imports has to be a dag!)
|
|
// run recursion detection by checking for duplicates in the seen files
|
|
// TODO: do the paths need to be cleaned for "../", etc before compare?
|
|
//for _, name := range obj.data.Files { // existing seen files
|
|
// if util.StrInList(name, output.Files) {
|
|
// return nil, fmt.Errorf("recursive import of: `%s`", name)
|
|
// }
|
|
//}
|
|
|
|
reader := bytes.NewReader(output.Main)
|
|
|
|
// nested logger
|
|
logf := func(format string, v ...interface{}) {
|
|
obj.data.Logf("import: "+format, v...)
|
|
}
|
|
|
|
// build new list of files
|
|
files := []string{}
|
|
files = append(files, output.Files...)
|
|
files = append(files, obj.data.Files...)
|
|
|
|
// store a reference to the parent metadata
|
|
metadata := output.Metadata
|
|
metadata.Metadata = obj.data.Metadata
|
|
|
|
// now run the lexer/parser to do the import
|
|
ast, err := LexParse(reader)
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "could not generate AST from import")
|
|
}
|
|
if obj.data.Debug {
|
|
logf("behold, the AST: %+v", ast)
|
|
}
|
|
|
|
logf("init...")
|
|
// init and validate the structure of the AST
|
|
data := &interfaces.Data{
|
|
Fs: obj.data.Fs,
|
|
Base: output.Base, // new base dir (absolute path)
|
|
Files: files,
|
|
Imports: parentVertex, // the parent vertex that imported me
|
|
Metadata: metadata,
|
|
Modules: obj.data.Modules,
|
|
Downloader: obj.data.Downloader,
|
|
//World: obj.data.World,
|
|
|
|
//Prefix: obj.Prefix, // TODO: add a path on?
|
|
Debug: obj.data.Debug,
|
|
Logf: logf,
|
|
}
|
|
// some of this might happen *after* interpolate in SetScope or Unify...
|
|
if err := ast.Init(data); err != nil {
|
|
return nil, errwrap.Wrapf(err, "could not init and validate AST")
|
|
}
|
|
|
|
logf("interpolating...")
|
|
// interpolate strings and other expansionable nodes in AST
|
|
interpolated, err := ast.Interpolate()
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "could not interpolate AST from import")
|
|
}
|
|
|
|
logf("building scope...")
|
|
// propagate the scope down through the AST...
|
|
// most importantly, we ensure that the child imports will run!
|
|
// we pass in *our* parent scope, which will include the globals
|
|
if err := interpolated.SetScope(scope); err != nil {
|
|
return nil, errwrap.Wrapf(err, "could not set scope from import")
|
|
}
|
|
|
|
// we DON'T do this here anymore, since Apply() digs into the children!
|
|
//// this nested ast needs to pass the data up into the parent!
|
|
//fileList, err := CollectFiles(interpolated)
|
|
//if err != nil {
|
|
// return nil, errwrap.Wrapf(err, "could not collect files")
|
|
//}
|
|
//obj.importFiles = append(obj.importFiles, fileList...) // save for CollectFiles
|
|
|
|
// is the root of our ast a program?
|
|
prog, ok := interpolated.(*StmtProg)
|
|
if !ok {
|
|
return nil, fmt.Errorf("import did not return a program")
|
|
}
|
|
|
|
// check for unwanted top-level elements in this module/scope
|
|
// XXX: add a test case to test for this in our core modules!
|
|
if err := prog.IsModuleUnsafe(); err != nil {
|
|
return nil, errwrap.Wrapf(err, "module contains unused statements")
|
|
}
|
|
|
|
// when importing a system scope, we only error if there are zero class,
|
|
// function, or variable statements in the scope. We error in this case,
|
|
// because it is non-sensical to import such a scope.
|
|
if prog.scope.IsEmpty() {
|
|
return nil, fmt.Errorf("could not find any non-empty scope")
|
|
}
|
|
|
|
// save a reference to the prog for future usage in Unify/Graph/Etc...
|
|
obj.importProgs = append(obj.importProgs, prog)
|
|
|
|
// collecting these here is more elegant (and possibly more efficient!)
|
|
obj.importFiles = append(obj.importFiles, output.Files...) // save for CollectFiles
|
|
|
|
return prog.scope, nil
|
|
}
|
|
|
|
// SetScope propagates the scope into its list of statements. It does so
|
|
// cleverly by first collecting all bind and func statements and adding those
|
|
// into the scope after checking for any collisions. Finally it pushes the new
|
|
// scope downwards to all child statements. If we support user defined function
|
|
// polymorphism via multiple function definition, then these are built together
|
|
// here. This SetScope is the one which follows the import statements. If it
|
|
// can't follow one (perhaps it wasn't downloaded yet, and is missing) then it
|
|
// leaves some information about these missing imports in the AST and errors, so
|
|
// that a subsequent AST traversal (usually via Apply) can collect this detailed
|
|
// information to be used by the downloader. When it propagates the scope
|
|
// downwards, it first pushes it into all the classes, and then into everything
|
|
// else (including the include stmt's) because the include statements require
|
|
// that the scope already be known so that it can be combined with the include
|
|
// args.
|
|
func (obj *StmtProg) SetScope(scope *interfaces.Scope) error {
|
|
newScope := scope.Copy()
|
|
|
|
// start by looking for any `import` statements to pull into the scope!
|
|
// this will run child lexing/parsing, interpolation, and scope setting
|
|
imports := make(map[string]struct{})
|
|
aliases := make(map[string]struct{})
|
|
|
|
// keep track of new imports, to ensure they don't overwrite each other!
|
|
// this is different from scope shadowing which is allowed in new scopes
|
|
newVariables := make(map[string]string)
|
|
newFunctions := make(map[string]string)
|
|
newClasses := make(map[string]string)
|
|
for _, x := range obj.Prog {
|
|
imp, ok := x.(*StmtImport)
|
|
if !ok {
|
|
continue
|
|
}
|
|
// check for duplicates *in this scope*
|
|
if _, exists := imports[imp.Name]; exists {
|
|
return fmt.Errorf("import `%s` already exists in this scope", imp.Name)
|
|
}
|
|
|
|
result, err := ParseImportName(imp.Name)
|
|
if err != nil {
|
|
return errwrap.Wrapf(err, "import `%s` is not valid", imp.Name)
|
|
}
|
|
alias := result.Alias // this is what we normally call the import
|
|
|
|
if imp.Alias != "" { // this is what the user decided as the name
|
|
alias = imp.Alias // use alias if specified
|
|
}
|
|
if _, exists := aliases[alias]; exists {
|
|
return fmt.Errorf("import alias `%s` already exists in this scope", alias)
|
|
}
|
|
|
|
// run the scope importer...
|
|
importedScope, err := obj.importScope(result, scope)
|
|
if err != nil {
|
|
return errwrap.Wrapf(err, "import scope `%s` failed", imp.Name)
|
|
}
|
|
|
|
// read from stored scope which was previously saved in SetScope
|
|
// add to scope, (overwriting, aka shadowing is ok)
|
|
// rename scope values, adding the alias prefix
|
|
// check that we don't overwrite a new value from another import
|
|
// TODO: do this in a deterministic (sorted) order
|
|
for name, x := range importedScope.Variables {
|
|
newName := alias + interfaces.ModuleSep + name
|
|
if alias == "*" {
|
|
newName = name
|
|
}
|
|
if previous, exists := newVariables[newName]; exists {
|
|
// don't overwrite in same scope
|
|
return fmt.Errorf("can't squash variable `%s` from `%s` by import of `%s`", newName, previous, imp.Name)
|
|
}
|
|
newVariables[newName] = imp.Name
|
|
newScope.Variables[newName] = x // merge
|
|
}
|
|
for name, x := range importedScope.Functions {
|
|
newName := alias + interfaces.ModuleSep + name
|
|
if alias == "*" {
|
|
newName = name
|
|
}
|
|
if previous, exists := newFunctions[newName]; exists {
|
|
// don't overwrite in same scope
|
|
return fmt.Errorf("can't squash function `%s` from `%s` by import of `%s`", newName, previous, imp.Name)
|
|
}
|
|
newFunctions[newName] = imp.Name
|
|
newScope.Functions[newName] = x
|
|
}
|
|
for name, x := range importedScope.Classes {
|
|
newName := alias + interfaces.ModuleSep + name
|
|
if alias == "*" {
|
|
newName = name
|
|
}
|
|
if previous, exists := newClasses[newName]; exists {
|
|
// don't overwrite in same scope
|
|
return fmt.Errorf("can't squash class `%s` from `%s` by import of `%s`", newName, previous, imp.Name)
|
|
}
|
|
newClasses[newName] = imp.Name
|
|
newScope.Classes[newName] = x
|
|
}
|
|
|
|
// everything has been merged, move on to next import...
|
|
imports[imp.Name] = struct{}{} // mark as found in scope
|
|
aliases[alias] = struct{}{}
|
|
}
|
|
|
|
// collect all the bind statements in the first pass
|
|
// this allows them to appear out of order in this scope
|
|
binds := make(map[string]struct{}) // bind existence in this scope
|
|
for _, x := range obj.Prog {
|
|
bind, ok := x.(*StmtBind)
|
|
if !ok {
|
|
continue
|
|
}
|
|
// check for duplicates *in this scope*
|
|
if _, exists := binds[bind.Ident]; exists {
|
|
return fmt.Errorf("var `%s` already exists in this scope", bind.Ident)
|
|
}
|
|
|
|
binds[bind.Ident] = struct{}{} // mark as found in scope
|
|
// add to scope, (overwriting, aka shadowing is ok)
|
|
newScope.Variables[bind.Ident] = bind.Value
|
|
}
|
|
|
|
// now collect all the functions, and group by name (if polyfunc is ok)
|
|
funcs := make(map[string][]*StmtFunc)
|
|
for _, x := range obj.Prog {
|
|
fn, ok := x.(*StmtFunc)
|
|
if !ok {
|
|
continue
|
|
}
|
|
|
|
_, exists := funcs[fn.Name]
|
|
if !exists {
|
|
funcs[fn.Name] = []*StmtFunc{} // initialize
|
|
}
|
|
|
|
// check for duplicates *in this scope*
|
|
if exists && !AllowUserDefinedPolyFunc {
|
|
return fmt.Errorf("func `%s` already exists in this scope", fn.Name)
|
|
}
|
|
|
|
// collect funcs (if multiple, this is a polyfunc)
|
|
funcs[fn.Name] = append(funcs[fn.Name], fn)
|
|
}
|
|
|
|
for name, fnList := range funcs {
|
|
// add to scope, (overwriting, aka shadowing is ok)
|
|
if len(fnList) == 1 {
|
|
fn := fnList[0].Func // local reference to avoid changing it in the loop...
|
|
f, err := fn.Func()
|
|
if err != nil {
|
|
return errwrap.Wrapf(err, "could not build func from: %s", fnList[0].Name)
|
|
}
|
|
newScope.Functions[name] = func() interfaces.Func { return f }
|
|
continue
|
|
}
|
|
|
|
// build polyfunc's
|
|
// XXX: not implemented
|
|
}
|
|
|
|
// now collect any classes
|
|
// TODO: if we ever allow poly classes, then group in lists by name
|
|
classes := make(map[string]struct{})
|
|
for _, x := range obj.Prog {
|
|
class, ok := x.(*StmtClass)
|
|
if !ok {
|
|
continue
|
|
}
|
|
// check for duplicates *in this scope*
|
|
if _, exists := classes[class.Name]; exists {
|
|
return fmt.Errorf("class `%s` already exists in this scope", class.Name)
|
|
}
|
|
|
|
classes[class.Name] = struct{}{} // mark as found in scope
|
|
// add to scope, (overwriting, aka shadowing is ok)
|
|
newScope.Classes[class.Name] = class
|
|
}
|
|
|
|
obj.scope = newScope // save a reference in case we're read by an import
|
|
|
|
// first set the scope on the classes, since it gets used in include...
|
|
for _, x := range obj.Prog {
|
|
if _, ok := x.(*StmtClass); !ok {
|
|
continue
|
|
}
|
|
if err := x.SetScope(newScope); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
// now set the child scopes (even on bind...)
|
|
for _, x := range obj.Prog {
|
|
// NOTE: We used to skip over *StmtClass here for recursion...
|
|
// Skip over *StmtClass here, since we already did it above...
|
|
if _, ok := x.(*StmtClass); ok {
|
|
continue
|
|
}
|
|
|
|
if err := x.SetScope(newScope); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// Unify returns the list of invariants that this node produces. It recursively
|
|
// calls Unify on any children elements that exist in the AST, and returns the
|
|
// collection to the caller.
|
|
func (obj *StmtProg) Unify() ([]interfaces.Invariant, error) {
|
|
var invariants []interfaces.Invariant
|
|
|
|
// collect all the invariants of each sub-expression
|
|
for _, x := range obj.Prog {
|
|
// skip over *StmtClass here
|
|
if _, ok := x.(*StmtClass); ok {
|
|
continue
|
|
}
|
|
|
|
invars, err := x.Unify()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
invariants = append(invariants, invars...)
|
|
}
|
|
|
|
// add invariants from SetScope's imported child programs
|
|
for _, x := range obj.importProgs {
|
|
invars, err := x.Unify()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
invariants = append(invariants, invars...)
|
|
}
|
|
|
|
return invariants, nil
|
|
}
|
|
|
|
// Graph returns the reactive function graph which is expressed by this node. It
|
|
// includes any vertices produced by this node, and the appropriate edges to any
|
|
// vertices that are produced by its children. Nodes which fulfill the Expr
|
|
// interface directly produce vertices (and possible children) where as nodes
|
|
// that fulfill the Stmt interface do not produces vertices, where as their
|
|
// children might.
|
|
func (obj *StmtProg) Graph() (*pgraph.Graph, error) {
|
|
graph, err := pgraph.NewGraph("prog")
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "could not create graph")
|
|
}
|
|
|
|
// collect all graphs that need to be included
|
|
for _, x := range obj.Prog {
|
|
// skip over *StmtClass here
|
|
if _, ok := x.(*StmtClass); ok {
|
|
continue
|
|
}
|
|
|
|
g, err := x.Graph()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
graph.AddGraph(g)
|
|
}
|
|
|
|
// add graphs from SetScope's imported child programs
|
|
for _, x := range obj.importProgs {
|
|
g, err := x.Graph()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
graph.AddGraph(g)
|
|
}
|
|
|
|
return graph, nil
|
|
}
|
|
|
|
// Output returns the output that this "program" produces. This output is what
|
|
// is used to build the output graph. This only exists for statements. The
|
|
// analogous function for expressions is Value. Those Value functions might get
|
|
// called by this Output function if they are needed to produce the output.
|
|
func (obj *StmtProg) Output() (*interfaces.Output, error) {
|
|
resources := []engine.Res{}
|
|
edges := []*interfaces.Edge{}
|
|
|
|
for _, stmt := range obj.Prog {
|
|
// skip over *StmtClass here so its Output method can be used...
|
|
if _, ok := stmt.(*StmtClass); ok {
|
|
// don't read output from StmtClass, it
|
|
// gets consumed by StmtInclude instead
|
|
continue
|
|
}
|
|
|
|
output, err := stmt.Output()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
if output != nil {
|
|
resources = append(resources, output.Resources...)
|
|
edges = append(edges, output.Edges...)
|
|
}
|
|
}
|
|
|
|
// nothing to add from SetScope's imported child programs
|
|
|
|
return &interfaces.Output{
|
|
Resources: resources,
|
|
Edges: edges,
|
|
}, nil
|
|
}
|
|
|
|
// IsModuleUnsafe returns whether or not this StmtProg is unsafe to consume as a
|
|
// module scope. IOW, if someone writes a module which is imported and which has
|
|
// statements other than bind, func, class or import, then it is not correct to
|
|
// import, since those other elements wouldn't be used, and might provide a
|
|
// false belief that they'll get included when mgmt imports that module.
|
|
// SetScope should be called before this is used. (TODO: verify this)
|
|
// TODO: return a multierr with all the unsafe elements, to provide better info
|
|
// TODO: technically this could be a method on Stmt, possibly using Apply...
|
|
func (obj *StmtProg) IsModuleUnsafe() error { // TODO: rename this function?
|
|
for _, x := range obj.Prog {
|
|
// stmt's allowed: import, bind, func, class
|
|
// stmt's not-allowed: if, include, res, edge
|
|
switch x.(type) {
|
|
case *StmtImport:
|
|
case *StmtBind:
|
|
case *StmtFunc:
|
|
case *StmtClass:
|
|
case *StmtComment: // possibly not even parsed
|
|
// all of these are safe
|
|
default:
|
|
// something else unsafe (unused)
|
|
return fmt.Errorf("found stmt: %s", x.String())
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// StmtFunc represents a user defined function. It binds the specified name to
|
|
// the supplied function in the current scope and irrespective of the order of
|
|
// definition.
|
|
type StmtFunc struct {
|
|
Name string
|
|
//Func *ExprFunc // TODO: should it be this instead?
|
|
Func interfaces.Expr // TODO: is this correct?
|
|
}
|
|
|
|
// Apply is a general purpose iterator method that operates on any AST node. It
|
|
// is not used as the primary AST traversal function because it is less readable
|
|
// and easy to reason about than manually implementing traversal for each node.
|
|
// Nevertheless, it is a useful facility for operations that might only apply to
|
|
// a select number of node types, since they won't need extra noop iterators...
|
|
func (obj *StmtFunc) Apply(fn func(interfaces.Node) error) error {
|
|
if err := obj.Func.Apply(fn); err != nil {
|
|
return err
|
|
}
|
|
return fn(obj)
|
|
}
|
|
|
|
// String returns a short representation of this statement.
|
|
func (obj *StmtFunc) String() string {
|
|
return fmt.Sprintf("func(%s)", obj.Name)
|
|
}
|
|
|
|
// Init initializes this branch of the AST, and returns an error if it fails to
|
|
// validate.
|
|
func (obj *StmtFunc) Init(data *interfaces.Data) error {
|
|
//obj.data = data // TODO: ???
|
|
if err := obj.Func.Init(data); err != nil {
|
|
return err
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Interpolate returns a new node (or itself) once it has been expanded. This
|
|
// generally increases the size of the AST when it is used. It calls Interpolate
|
|
// on any child elements and builds the new node with those new node contents.
|
|
func (obj *StmtFunc) Interpolate() (interfaces.Stmt, error) {
|
|
interpolated, err := obj.Func.Interpolate()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return &StmtFunc{
|
|
Name: obj.Name,
|
|
Func: interpolated,
|
|
}, nil
|
|
}
|
|
|
|
// SetScope sets the scope of the child expression bound to it. It seems this is
|
|
// necessary in order to reach this, in particular in situations when a bound
|
|
// expression points to a previously bound expression.
|
|
func (obj *StmtFunc) SetScope(scope *interfaces.Scope) error {
|
|
return obj.Func.SetScope(scope)
|
|
}
|
|
|
|
// Unify returns the list of invariants that this node produces. It recursively
|
|
// calls Unify on any children elements that exist in the AST, and returns the
|
|
// collection to the caller.
|
|
func (obj *StmtFunc) Unify() ([]interfaces.Invariant, error) {
|
|
if obj.Name == "" {
|
|
return nil, fmt.Errorf("missing function name")
|
|
}
|
|
return obj.Func.Unify()
|
|
}
|
|
|
|
// Graph returns the reactive function graph which is expressed by this node. It
|
|
// includes any vertices produced by this node, and the appropriate edges to any
|
|
// vertices that are produced by its children. Nodes which fulfill the Expr
|
|
// interface directly produce vertices (and possible children) where as nodes
|
|
// that fulfill the Stmt interface do not produces vertices, where as their
|
|
// children might. This particular func statement adds its linked expression to
|
|
// the graph.
|
|
func (obj *StmtFunc) Graph() (*pgraph.Graph, error) {
|
|
return obj.Func.Graph()
|
|
}
|
|
|
|
// Output for the func statement produces no output. Any values of interest come
|
|
// from the use of the func which this binds the function to.
|
|
func (obj *StmtFunc) Output() (*interfaces.Output, error) {
|
|
return interfaces.EmptyOutput(), nil
|
|
}
|
|
|
|
// StmtClass represents a user defined class. It's effectively a program body
|
|
// that can optionally take some parameterized inputs.
|
|
// TODO: We don't currently support defining polymorphic classes (eg: different
|
|
// signatures for the same class name) but it might be something to consider.
|
|
type StmtClass struct {
|
|
scope *interfaces.Scope // store for referencing this later
|
|
|
|
Name string
|
|
Args []*Arg
|
|
Body interfaces.Stmt // probably a *StmtProg
|
|
}
|
|
|
|
// Apply is a general purpose iterator method that operates on any AST node. It
|
|
// is not used as the primary AST traversal function because it is less readable
|
|
// and easy to reason about than manually implementing traversal for each node.
|
|
// Nevertheless, it is a useful facility for operations that might only apply to
|
|
// a select number of node types, since they won't need extra noop iterators...
|
|
func (obj *StmtClass) Apply(fn func(interfaces.Node) error) error {
|
|
if err := obj.Body.Apply(fn); err != nil {
|
|
return err
|
|
}
|
|
return fn(obj)
|
|
}
|
|
|
|
// String returns a short representation of this statement.
|
|
func (obj *StmtClass) String() string {
|
|
return fmt.Sprintf("class(%s)", obj.Name)
|
|
}
|
|
|
|
// Init initializes this branch of the AST, and returns an error if it fails to
|
|
// validate.
|
|
func (obj *StmtClass) Init(data *interfaces.Data) error {
|
|
return obj.Body.Init(data)
|
|
}
|
|
|
|
// Interpolate returns a new node (aka a copy) once it has been expanded. This
|
|
// generally increases the size of the AST when it is used. It calls Interpolate
|
|
// on any child elements and builds the new node with those new node contents.
|
|
func (obj *StmtClass) Interpolate() (interfaces.Stmt, error) {
|
|
interpolated, err := obj.Body.Interpolate()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
args := obj.Args
|
|
if obj.Args == nil {
|
|
args = []*Arg{}
|
|
}
|
|
|
|
return &StmtClass{
|
|
scope: obj.scope,
|
|
Name: obj.Name,
|
|
Args: args, // ensure this has length == 0 instead of nil
|
|
Body: interpolated,
|
|
}, nil
|
|
}
|
|
|
|
// SetScope sets the scope of the child expression bound to it. It seems this is
|
|
// necessary in order to reach this, in particular in situations when a bound
|
|
// expression points to a previously bound expression.
|
|
func (obj *StmtClass) SetScope(scope *interfaces.Scope) error {
|
|
obj.scope = scope // store for later
|
|
return obj.Body.SetScope(scope)
|
|
}
|
|
|
|
// Unify returns the list of invariants that this node produces. It recursively
|
|
// calls Unify on any children elements that exist in the AST, and returns the
|
|
// collection to the caller.
|
|
func (obj *StmtClass) Unify() ([]interfaces.Invariant, error) {
|
|
if obj.Name == "" {
|
|
return nil, fmt.Errorf("missing class name")
|
|
}
|
|
|
|
// TODO: do we need to add anything else here because of the obj.Args ?
|
|
return obj.Body.Unify()
|
|
}
|
|
|
|
// Graph returns the reactive function graph which is expressed by this node. It
|
|
// includes any vertices produced by this node, and the appropriate edges to any
|
|
// vertices that are produced by its children. Nodes which fulfill the Expr
|
|
// interface directly produce vertices (and possible children) where as nodes
|
|
// that fulfill the Stmt interface do not produces vertices, where as their
|
|
// children might. This particular func statement adds its linked expression to
|
|
// the graph.
|
|
func (obj *StmtClass) Graph() (*pgraph.Graph, error) {
|
|
return obj.Body.Graph()
|
|
}
|
|
|
|
// Output for the class statement produces no output. Any values of interest
|
|
// come from the use of the include which this binds the statements to. This is
|
|
// usually called from the parent in StmtProg, but it skips running it so that
|
|
// it can be called from the StmtInclude Output method.
|
|
func (obj *StmtClass) Output() (*interfaces.Output, error) {
|
|
return obj.Body.Output()
|
|
}
|
|
|
|
// StmtInclude causes a user defined class to get used. It's effectively the way
|
|
// to call a class except that it produces output instead of a value. Most of
|
|
// the interesting logic for classes happens here or in StmtProg.
|
|
type StmtInclude struct {
|
|
class *StmtClass // copy of class that we're using
|
|
orig *StmtInclude // original pointer to this
|
|
|
|
Name string
|
|
Args []interfaces.Expr
|
|
}
|
|
|
|
// Apply is a general purpose iterator method that operates on any AST node. It
|
|
// is not used as the primary AST traversal function because it is less readable
|
|
// and easy to reason about than manually implementing traversal for each node.
|
|
// Nevertheless, it is a useful facility for operations that might only apply to
|
|
// a select number of node types, since they won't need extra noop iterators...
|
|
func (obj *StmtInclude) Apply(fn func(interfaces.Node) error) error {
|
|
// If the class exists, then descend into it, because at this point, the
|
|
// copy of the original class that is stored here, is the effective
|
|
// class that we care about for type unification, and everything else...
|
|
// It's not clear if this is needed, but it's probably nor harmful atm.
|
|
if obj.class != nil {
|
|
if err := obj.class.Apply(fn); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
if obj.Args != nil {
|
|
for _, x := range obj.Args {
|
|
if err := x.Apply(fn); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
}
|
|
return fn(obj)
|
|
}
|
|
|
|
// String returns a short representation of this statement.
|
|
func (obj *StmtInclude) String() string {
|
|
return fmt.Sprintf("include(%s)", obj.Name)
|
|
}
|
|
|
|
// Init initializes this branch of the AST, and returns an error if it fails to
|
|
// validate.
|
|
func (obj *StmtInclude) Init(data *interfaces.Data) error {
|
|
if obj.Args != nil {
|
|
for _, x := range obj.Args {
|
|
if err := x.Init(data); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Interpolate returns a new node (aka a copy) once it has been expanded. This
|
|
// generally increases the size of the AST when it is used. It calls Interpolate
|
|
// on any child elements and builds the new node with those new node contents.
|
|
func (obj *StmtInclude) Interpolate() (interfaces.Stmt, error) {
|
|
args := []interfaces.Expr{}
|
|
if obj.Args != nil {
|
|
for _, x := range obj.Args {
|
|
interpolated, err := x.Interpolate()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
args = append(args, interpolated)
|
|
}
|
|
}
|
|
|
|
orig := obj
|
|
if obj.orig != nil { // preserve the original pointer (the identifier!)
|
|
orig = obj.orig
|
|
}
|
|
return &StmtInclude{
|
|
orig: orig,
|
|
Name: obj.Name,
|
|
Args: args,
|
|
}, nil
|
|
}
|
|
|
|
// SetScope stores the scope for use in this statement. Since this is the first
|
|
// location where recursion would play an important role, this also detects and
|
|
// handles the recursion scenario.
|
|
func (obj *StmtInclude) SetScope(scope *interfaces.Scope) error {
|
|
if scope == nil {
|
|
scope = interfaces.EmptyScope()
|
|
}
|
|
|
|
stmt, exists := scope.Classes[obj.Name]
|
|
if !exists {
|
|
return fmt.Errorf("class `%s` does not exist in this scope", obj.Name)
|
|
}
|
|
class, ok := stmt.(*StmtClass)
|
|
if !ok {
|
|
return fmt.Errorf("class scope of `%s` does not contain a class", obj.Name)
|
|
}
|
|
|
|
// is it even possible for the signatures to match?
|
|
if len(class.Args) != len(obj.Args) {
|
|
return fmt.Errorf("class `%s` expected %d args but got %d", obj.Name, len(class.Args), len(obj.Args))
|
|
}
|
|
|
|
if obj.class != nil {
|
|
// possible programming error
|
|
return fmt.Errorf("include already contains a class pointer")
|
|
}
|
|
|
|
// make sure to propagate the scope to our input args!
|
|
if obj.Args != nil {
|
|
for _, x := range obj.Args {
|
|
if err := x.SetScope(scope); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
}
|
|
|
|
for i := len(scope.Chain) - 1; i >= 0; i-- { // reverse order
|
|
x, ok := scope.Chain[i].(*StmtInclude)
|
|
if !ok {
|
|
continue
|
|
}
|
|
|
|
if x == obj.orig { // look for my original self
|
|
// scope chain found!
|
|
obj.class = class // same pointer, don't copy
|
|
return fmt.Errorf("recursive class `%s` found", obj.Name)
|
|
//return nil // if recursion was supported
|
|
}
|
|
}
|
|
|
|
// helper function to keep things more logical
|
|
cp := func(input *StmtClass) (*StmtClass, error) {
|
|
// TODO: should we have a dedicated copy method instead? because
|
|
// we want to copy some things, but not others like Expr I think
|
|
copied, err := input.Interpolate() // this sort of copies things
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "could not copy class")
|
|
}
|
|
class, ok := copied.(*StmtClass) // convert it back again
|
|
if !ok {
|
|
return nil, fmt.Errorf("copied class named `%s` is not a class", obj.Name)
|
|
}
|
|
return class, nil
|
|
}
|
|
|
|
copied, err := cp(class) // copy it for each use of the include
|
|
if err != nil {
|
|
return errwrap.Wrapf(err, "could not copy class")
|
|
}
|
|
obj.class = copied
|
|
|
|
// We start with the scope that the class had, and we augment it with
|
|
// our parameterized arg variables, which will be needed in that scope.
|
|
newScope := obj.class.scope.Copy()
|
|
// Add our args `include foo(42, "bar", true)` into the class scope.
|
|
for i, arg := range obj.class.Args { // copy
|
|
newScope.Variables[arg.Name] = obj.Args[i]
|
|
}
|
|
|
|
// recursion detection
|
|
newScope.Chain = append(newScope.Chain, obj.orig) // add stmt to list
|
|
newScope.Classes[obj.Name] = copied // overwrite with new pointer
|
|
|
|
// NOTE: This would overwrite the scope that was previously set here,
|
|
// which would break the scoping rules. Scopes are propagated into
|
|
// class definitions, but not into include definitions. Which is why we
|
|
// need to use the original scope of the class as it was set as the
|
|
// basis for this scope, so that we overwrite it only with the arg
|
|
// changes.
|
|
if err := obj.class.SetScope(newScope); err != nil {
|
|
return err
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// Unify returns the list of invariants that this node produces. It recursively
|
|
// calls Unify on any children elements that exist in the AST, and returns the
|
|
// collection to the caller.
|
|
func (obj *StmtInclude) Unify() ([]interfaces.Invariant, error) {
|
|
if obj.Name == "" {
|
|
return nil, fmt.Errorf("missing include name")
|
|
}
|
|
|
|
// is it even possible for the signatures to match?
|
|
if len(obj.class.Args) != len(obj.Args) {
|
|
return nil, fmt.Errorf("class `%s` expected %d args but got %d", obj.Name, len(obj.class.Args), len(obj.Args))
|
|
}
|
|
|
|
var invariants []interfaces.Invariant
|
|
|
|
// do this here because we skip doing it in the StmtProg parent
|
|
invars, err := obj.class.Unify()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
invariants = append(invariants, invars...)
|
|
|
|
// collect all the invariants of each sub-expression
|
|
for i, x := range obj.Args {
|
|
invars, err := x.Unify()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
invariants = append(invariants, invars...)
|
|
|
|
// TODO: are additional invariants required?
|
|
// add invariants between the args and the class
|
|
if typ := obj.class.Args[i].Type; typ != nil {
|
|
invar := &unification.EqualsInvariant{
|
|
Expr: obj.Args[i],
|
|
Type: typ, // type of arg
|
|
}
|
|
invariants = append(invariants, invar)
|
|
}
|
|
}
|
|
|
|
return invariants, nil
|
|
}
|
|
|
|
// Graph returns the reactive function graph which is expressed by this node. It
|
|
// includes any vertices produced by this node, and the appropriate edges to any
|
|
// vertices that are produced by its children. Nodes which fulfill the Expr
|
|
// interface directly produce vertices (and possible children) where as nodes
|
|
// that fulfill the Stmt interface do not produces vertices, where as their
|
|
// children might. This particular func statement adds its linked expression to
|
|
// the graph.
|
|
func (obj *StmtInclude) Graph() (*pgraph.Graph, error) {
|
|
graph, err := pgraph.NewGraph("include")
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "could not create graph")
|
|
}
|
|
|
|
g, err := obj.class.Graph()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
graph.AddGraph(g)
|
|
|
|
return graph, nil
|
|
}
|
|
|
|
// Output returns the output that this include produces. This output is what
|
|
// is used to build the output graph. This only exists for statements. The
|
|
// analogous function for expressions is Value. Those Value functions might get
|
|
// called by this Output function if they are needed to produce the output. The
|
|
// ultimate source of this output comes from the previously defined StmtClass
|
|
// which should be found in our scope.
|
|
func (obj *StmtInclude) Output() (*interfaces.Output, error) {
|
|
return obj.class.Output()
|
|
}
|
|
|
|
// StmtImport adds the exported scope definitions of a module into the current
|
|
// scope. It can be used anywhere a statement is allowed, and can even be nested
|
|
// inside a class definition. By convention, it is commonly used at the top of a
|
|
// file. As with any statement, it produces output, but that output is empty. To
|
|
// benefit from its inclusion, reference the scope definitions you want.
|
|
type StmtImport struct {
|
|
Name string
|
|
Alias string
|
|
}
|
|
|
|
// Apply is a general purpose iterator method that operates on any AST node. It
|
|
// is not used as the primary AST traversal function because it is less readable
|
|
// and easy to reason about than manually implementing traversal for each node.
|
|
// Nevertheless, it is a useful facility for operations that might only apply to
|
|
// a select number of node types, since they won't need extra noop iterators...
|
|
func (obj *StmtImport) Apply(fn func(interfaces.Node) error) error { return fn(obj) }
|
|
|
|
// String returns a short representation of this statement.
|
|
func (obj *StmtImport) String() string {
|
|
return fmt.Sprintf("import(%s)", obj.Name)
|
|
}
|
|
|
|
// Init initializes this branch of the AST, and returns an error if it fails to
|
|
// validate.
|
|
func (obj *StmtImport) Init(*interfaces.Data) error { return nil }
|
|
|
|
// Interpolate returns a new node (aka a copy) once it has been expanded. This
|
|
// generally increases the size of the AST when it is used. It calls Interpolate
|
|
// on any child elements and builds the new node with those new node contents.
|
|
func (obj *StmtImport) Interpolate() (interfaces.Stmt, error) {
|
|
return &StmtImport{
|
|
Name: obj.Name,
|
|
Alias: obj.Alias,
|
|
}, nil
|
|
}
|
|
|
|
// SetScope stores the scope for later use in this resource and it's children,
|
|
// which it propagates this downwards to.
|
|
func (obj *StmtImport) SetScope(*interfaces.Scope) error { return nil }
|
|
|
|
// Unify returns the list of invariants that this node produces. It recursively
|
|
// calls Unify on any children elements that exist in the AST, and returns the
|
|
// collection to the caller.
|
|
func (obj *StmtImport) Unify() ([]interfaces.Invariant, error) {
|
|
if obj.Name == "" {
|
|
return nil, fmt.Errorf("missing import name")
|
|
}
|
|
|
|
return []interfaces.Invariant{}, nil
|
|
}
|
|
|
|
// Graph returns the reactive function graph which is expressed by this node. It
|
|
// includes any vertices produced by this node, and the appropriate edges to any
|
|
// vertices that are produced by its children. Nodes which fulfill the Expr
|
|
// interface directly produce vertices (and possible children) where as nodes
|
|
// that fulfill the Stmt interface do not produces vertices, where as their
|
|
// children might. This particular statement just returns an empty graph.
|
|
func (obj *StmtImport) Graph() (*pgraph.Graph, error) {
|
|
graph, err := pgraph.NewGraph("import")
|
|
return graph, errwrap.Wrapf(err, "could not create graph")
|
|
}
|
|
|
|
// Output returns the output that this include produces. This output is what
|
|
// is used to build the output graph. This only exists for statements. The
|
|
// analogous function for expressions is Value. Those Value functions might get
|
|
// called by this Output function if they are needed to produce the output. This
|
|
// import statement itself produces no output, as it is only used to populate
|
|
// the scope so that others can use that to produce values and output.
|
|
func (obj *StmtImport) Output() (*interfaces.Output, error) {
|
|
return interfaces.EmptyOutput(), nil
|
|
}
|
|
|
|
// StmtComment is a representation of a comment. It is currently unused. It
|
|
// probably makes sense to make a third kind of Node (not a Stmt or an Expr) so
|
|
// that comments can still be part of the AST (for eventual automatic code
|
|
// formatting) but so that they can exist anywhere in the code. Currently these
|
|
// are dropped by the lexer.
|
|
type StmtComment struct {
|
|
Value string
|
|
}
|
|
|
|
// Apply is a general purpose iterator method that operates on any AST node. It
|
|
// is not used as the primary AST traversal function because it is less readable
|
|
// and easy to reason about than manually implementing traversal for each node.
|
|
// Nevertheless, it is a useful facility for operations that might only apply to
|
|
// a select number of node types, since they won't need extra noop iterators...
|
|
func (obj *StmtComment) Apply(fn func(interfaces.Node) error) error { return fn(obj) }
|
|
|
|
// String returns a short representation of this statement.
|
|
func (obj *StmtComment) String() string {
|
|
return fmt.Sprintf("comment(%s)", obj.Value)
|
|
}
|
|
|
|
// Init initializes this branch of the AST, and returns an error if it fails to
|
|
// validate.
|
|
func (obj *StmtComment) Init(*interfaces.Data) error {
|
|
return nil
|
|
}
|
|
|
|
// Interpolate returns a new node (aka a copy) once it has been expanded. This
|
|
// generally increases the size of the AST when it is used. It calls Interpolate
|
|
// on any child elements and builds the new node with those new node contents.
|
|
// Here it simply returns itself, as no interpolation is possible.
|
|
func (obj *StmtComment) Interpolate() (interfaces.Stmt, error) {
|
|
return &StmtComment{
|
|
Value: obj.Value,
|
|
}, nil
|
|
}
|
|
|
|
// SetScope does nothing for this struct, because it has no child nodes, and it
|
|
// does not need to know about the parent scope.
|
|
func (obj *StmtComment) SetScope(*interfaces.Scope) error { return nil }
|
|
|
|
// Unify returns the list of invariants that this node produces. It recursively
|
|
// calls Unify on any children elements that exist in the AST, and returns the
|
|
// collection to the caller.
|
|
func (obj *StmtComment) Unify() ([]interfaces.Invariant, error) {
|
|
return []interfaces.Invariant{}, nil
|
|
}
|
|
|
|
// Graph returns the reactive function graph which is expressed by this node. It
|
|
// includes any vertices produced by this node, and the appropriate edges to any
|
|
// vertices that are produced by its children. Nodes which fulfill the Expr
|
|
// interface directly produce vertices (and possible children) where as nodes
|
|
// that fulfill the Stmt interface do not produces vertices, where as their
|
|
// children might. This particular graph does nothing clever.
|
|
func (obj *StmtComment) Graph() (*pgraph.Graph, error) {
|
|
graph, err := pgraph.NewGraph("comment")
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "could not create graph")
|
|
}
|
|
return graph, nil
|
|
}
|
|
|
|
// Output for the comment statement produces no output.
|
|
func (obj *StmtComment) Output() (*interfaces.Output, error) {
|
|
return interfaces.EmptyOutput(), nil
|
|
}
|
|
|
|
// ExprAny is a placeholder expression that is used for type unification hacks.
|
|
type ExprAny struct {
|
|
typ *types.Type
|
|
}
|
|
|
|
// Apply is a general purpose iterator method that operates on any AST node. It
|
|
// is not used as the primary AST traversal function because it is less readable
|
|
// and easy to reason about than manually implementing traversal for each node.
|
|
// Nevertheless, it is a useful facility for operations that might only apply to
|
|
// a select number of node types, since they won't need extra noop iterators...
|
|
func (obj *ExprAny) Apply(fn func(interfaces.Node) error) error { return fn(obj) }
|
|
|
|
// String returns a short representation of this expression.
|
|
func (obj *ExprAny) String() string { return "any" }
|
|
|
|
// Init initializes this branch of the AST, and returns an error if it fails to
|
|
// validate.
|
|
func (obj *ExprAny) Init(*interfaces.Data) error { return nil }
|
|
|
|
// Interpolate returns a new node (aka a copy) once it has been expanded. This
|
|
// generally increases the size of the AST when it is used. It calls Interpolate
|
|
// on any child elements and builds the new node with those new node contents.
|
|
// Here it simply returns itself, as no interpolation is possible.
|
|
func (obj *ExprAny) Interpolate() (interfaces.Expr, error) {
|
|
return &ExprAny{
|
|
typ: obj.typ,
|
|
}, nil
|
|
}
|
|
|
|
// SetScope does nothing for this struct, because it has no child nodes, and it
|
|
// does not need to know about the parent scope.
|
|
func (obj *ExprAny) SetScope(*interfaces.Scope) error { return nil }
|
|
|
|
// SetType is used to set the type of this expression once it is known. This
|
|
// usually happens during type unification, but it can also happen during
|
|
// parsing if a type is specified explicitly. Since types are static and don't
|
|
// change on expressions, if you attempt to set a different type than what has
|
|
// previously been set (when not initially known) this will error.
|
|
func (obj *ExprAny) SetType(typ *types.Type) error {
|
|
if obj.typ != nil {
|
|
return obj.typ.Cmp(typ) // if not set, ensure it doesn't change
|
|
}
|
|
obj.typ = typ // set
|
|
return nil
|
|
}
|
|
|
|
// Type returns the type of this expression.
|
|
func (obj *ExprAny) Type() (*types.Type, error) {
|
|
if obj.typ == nil {
|
|
return nil, interfaces.ErrTypeCurrentlyUnknown
|
|
}
|
|
return obj.typ, nil
|
|
}
|
|
|
|
// Unify returns the list of invariants that this node produces. It recursively
|
|
// calls Unify on any children elements that exist in the AST, and returns the
|
|
// collection to the caller.
|
|
func (obj *ExprAny) Unify() ([]interfaces.Invariant, error) {
|
|
invariants := []interfaces.Invariant{
|
|
&unification.AnyInvariant{ // it has to be something, anything!
|
|
Expr: obj,
|
|
},
|
|
}
|
|
return invariants, nil
|
|
}
|
|
|
|
// Graph returns the reactive function graph which is expressed by this node. It
|
|
// includes any vertices produced by this node, and the appropriate edges to any
|
|
// vertices that are produced by its children. Nodes which fulfill the Expr
|
|
// interface directly produce vertices (and possible children) where as nodes
|
|
// that fulfill the Stmt interface do not produces vertices, where as their
|
|
// children might. This returns a graph with a single vertex (itself) in it, and
|
|
// the edges from all of the child graphs to this.
|
|
func (obj *ExprAny) Graph() (*pgraph.Graph, error) {
|
|
graph, err := pgraph.NewGraph("any")
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "could not create graph")
|
|
}
|
|
graph.AddVertex(obj)
|
|
return graph, nil
|
|
}
|
|
|
|
// Func returns the reactive stream of values that this expression produces.
|
|
func (obj *ExprAny) Func() (interfaces.Func, error) {
|
|
return nil, fmt.Errorf("programming error") // this should not be called
|
|
}
|
|
|
|
// SetValue here is a no-op, because algorithmically when this is called from
|
|
// the func engine, the child elements (the list elements) will have had this
|
|
// done to them first, and as such when we try and retrieve the set value from
|
|
// this expression by calling `Value`, it will build it from scratch!
|
|
func (obj *ExprAny) SetValue(value types.Value) error {
|
|
return fmt.Errorf("programming error") // this should not be called
|
|
}
|
|
|
|
// Value returns the value of this expression in our type system. This will
|
|
// usually only be valid once the engine has run and values have been produced.
|
|
// This might get called speculatively (early) during unification to learn more.
|
|
func (obj *ExprAny) Value() (types.Value, error) {
|
|
return nil, fmt.Errorf("programming error") // this should not be called
|
|
}
|
|
|
|
// ExprBool is a representation of a boolean.
|
|
type ExprBool struct {
|
|
V bool
|
|
}
|
|
|
|
// Apply is a general purpose iterator method that operates on any AST node. It
|
|
// is not used as the primary AST traversal function because it is less readable
|
|
// and easy to reason about than manually implementing traversal for each node.
|
|
// Nevertheless, it is a useful facility for operations that might only apply to
|
|
// a select number of node types, since they won't need extra noop iterators...
|
|
func (obj *ExprBool) Apply(fn func(interfaces.Node) error) error { return fn(obj) }
|
|
|
|
// String returns a short representation of this expression.
|
|
func (obj *ExprBool) String() string { return fmt.Sprintf("bool(%t)", obj.V) }
|
|
|
|
// Init initializes this branch of the AST, and returns an error if it fails to
|
|
// validate.
|
|
func (obj *ExprBool) Init(*interfaces.Data) error { return nil }
|
|
|
|
// Interpolate returns a new node (aka a copy) once it has been expanded. This
|
|
// generally increases the size of the AST when it is used. It calls Interpolate
|
|
// on any child elements and builds the new node with those new node contents.
|
|
// Here it simply returns itself, as no interpolation is possible.
|
|
func (obj *ExprBool) Interpolate() (interfaces.Expr, error) {
|
|
return &ExprBool{
|
|
V: obj.V,
|
|
}, nil
|
|
}
|
|
|
|
// SetScope does nothing for this struct, because it has no child nodes, and it
|
|
// does not need to know about the parent scope.
|
|
func (obj *ExprBool) SetScope(*interfaces.Scope) error { return nil }
|
|
|
|
// SetType will make no changes if called here. It will error if anything other
|
|
// than a Bool is passed in, and doesn't need to be called for this expr to work.
|
|
func (obj *ExprBool) SetType(typ *types.Type) error { return types.TypeBool.Cmp(typ) }
|
|
|
|
// Type returns the type of this expression. This method always returns Bool here.
|
|
func (obj *ExprBool) Type() (*types.Type, error) { return types.TypeBool, nil }
|
|
|
|
// Unify returns the list of invariants that this node produces. It recursively
|
|
// calls Unify on any children elements that exist in the AST, and returns the
|
|
// collection to the caller.
|
|
func (obj *ExprBool) Unify() ([]interfaces.Invariant, error) {
|
|
invariants := []interfaces.Invariant{
|
|
&unification.EqualsInvariant{
|
|
Expr: obj,
|
|
Type: types.TypeBool,
|
|
},
|
|
}
|
|
return invariants, nil
|
|
}
|
|
|
|
// Graph returns the reactive function graph which is expressed by this node. It
|
|
// includes any vertices produced by this node, and the appropriate edges to any
|
|
// vertices that are produced by its children. Nodes which fulfill the Expr
|
|
// interface directly produce vertices (and possible children) where as nodes
|
|
// that fulfill the Stmt interface do not produces vertices, where as their
|
|
// children might. This returns a graph with a single vertex (itself) in it.
|
|
func (obj *ExprBool) Graph() (*pgraph.Graph, error) {
|
|
graph, err := pgraph.NewGraph("bool")
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "could not create graph")
|
|
}
|
|
graph.AddVertex(obj)
|
|
return graph, nil
|
|
}
|
|
|
|
// Func returns the reactive stream of values that this expression produces.
|
|
func (obj *ExprBool) Func() (interfaces.Func, error) {
|
|
return &structs.ConstFunc{
|
|
Value: &types.BoolValue{V: obj.V},
|
|
}, nil
|
|
}
|
|
|
|
// SetValue for a bool expression is always populated statically, and does not
|
|
// ever receive any incoming values (no incoming edges) so this should never be
|
|
// called. It has been implemented for uniformity.
|
|
func (obj *ExprBool) SetValue(value types.Value) error {
|
|
if err := types.TypeBool.Cmp(value.Type()); err != nil {
|
|
return err
|
|
}
|
|
obj.V = value.Bool()
|
|
return nil
|
|
}
|
|
|
|
// Value returns the value of this expression in our type system. This will
|
|
// usually only be valid once the engine has run and values have been produced.
|
|
// This might get called speculatively (early) during unification to learn more.
|
|
// This particular value is always known since it is a constant.
|
|
func (obj *ExprBool) Value() (types.Value, error) {
|
|
return &types.BoolValue{
|
|
V: obj.V,
|
|
}, nil
|
|
}
|
|
|
|
// ExprStr is a representation of a string.
|
|
type ExprStr struct {
|
|
data *interfaces.Data
|
|
|
|
V string // value of this string
|
|
}
|
|
|
|
// Apply is a general purpose iterator method that operates on any AST node. It
|
|
// is not used as the primary AST traversal function because it is less readable
|
|
// and easy to reason about than manually implementing traversal for each node.
|
|
// Nevertheless, it is a useful facility for operations that might only apply to
|
|
// a select number of node types, since they won't need extra noop iterators...
|
|
func (obj *ExprStr) Apply(fn func(interfaces.Node) error) error { return fn(obj) }
|
|
|
|
// String returns a short representation of this expression.
|
|
func (obj *ExprStr) String() string { return fmt.Sprintf("str(%s)", strconv.Quote(obj.V)) }
|
|
|
|
// Init initializes this branch of the AST, and returns an error if it fails to
|
|
// validate.
|
|
func (obj *ExprStr) Init(data *interfaces.Data) error {
|
|
obj.data = data
|
|
return nil
|
|
}
|
|
|
|
// Interpolate returns a new node (aka a copy) once it has been expanded. This
|
|
// generally increases the size of the AST when it is used. It calls Interpolate
|
|
// on any child elements and builds the new node with those new node contents.
|
|
// Here it attempts to expand the string if there are any internal variables
|
|
// which need interpolation. If any are found, it returns a larger AST which
|
|
// has a function which returns a string as its root. Otherwise it returns
|
|
// itself.
|
|
func (obj *ExprStr) Interpolate() (interfaces.Expr, error) {
|
|
pos := &Pos{
|
|
// column/line number, starting at 1
|
|
//Column: -1, // TODO
|
|
//Line: -1, // TODO
|
|
//Filename: "", // optional source filename, if known
|
|
}
|
|
info := &InterpolateInfo{
|
|
Debug: obj.data.Debug,
|
|
Logf: func(format string, v ...interface{}) {
|
|
obj.data.Logf("interpolate: "+format, v...)
|
|
},
|
|
}
|
|
result, err := InterpolateStr(obj.V, pos, info)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
if result == nil {
|
|
return &ExprStr{
|
|
data: obj.data,
|
|
V: obj.V,
|
|
}, nil
|
|
}
|
|
// we got something, overwrite the existing static str
|
|
return result, nil // replacement
|
|
}
|
|
|
|
// SetScope does nothing for this struct, because it has no child nodes, and it
|
|
// does not need to know about the parent scope.
|
|
func (obj *ExprStr) SetScope(*interfaces.Scope) error { return nil }
|
|
|
|
// SetType will make no changes if called here. It will error if anything other
|
|
// than an Str is passed in, and doesn't need to be called for this expr to work.
|
|
func (obj *ExprStr) SetType(typ *types.Type) error { return types.TypeStr.Cmp(typ) }
|
|
|
|
// Type returns the type of this expression. This method always returns Str here.
|
|
func (obj *ExprStr) Type() (*types.Type, error) { return types.TypeStr, nil }
|
|
|
|
// Unify returns the list of invariants that this node produces. It recursively
|
|
// calls Unify on any children elements that exist in the AST, and returns the
|
|
// collection to the caller.
|
|
func (obj *ExprStr) Unify() ([]interfaces.Invariant, error) {
|
|
invariants := []interfaces.Invariant{
|
|
&unification.EqualsInvariant{
|
|
Expr: obj, // unique id for this expression (a pointer)
|
|
Type: types.TypeStr,
|
|
},
|
|
}
|
|
return invariants, nil
|
|
}
|
|
|
|
// Graph returns the reactive function graph which is expressed by this node. It
|
|
// includes any vertices produced by this node, and the appropriate edges to any
|
|
// vertices that are produced by its children. Nodes which fulfill the Expr
|
|
// interface directly produce vertices (and possible children) where as nodes
|
|
// that fulfill the Stmt interface do not produces vertices, where as their
|
|
// children might. This returns a graph with a single vertex (itself) in it.
|
|
func (obj *ExprStr) Graph() (*pgraph.Graph, error) {
|
|
graph, err := pgraph.NewGraph("str")
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "could not create graph")
|
|
}
|
|
graph.AddVertex(obj)
|
|
return graph, nil
|
|
}
|
|
|
|
// Func returns the reactive stream of values that this expression produces.
|
|
func (obj *ExprStr) Func() (interfaces.Func, error) {
|
|
return &structs.ConstFunc{
|
|
Value: &types.StrValue{V: obj.V},
|
|
}, nil
|
|
}
|
|
|
|
// SetValue for an str expression is always populated statically, and does not
|
|
// ever receive any incoming values (no incoming edges) so this should never be
|
|
// called. It has been implemented for uniformity.
|
|
func (obj *ExprStr) SetValue(value types.Value) error {
|
|
if err := types.TypeStr.Cmp(value.Type()); err != nil {
|
|
return err
|
|
}
|
|
obj.V = value.Str()
|
|
return nil
|
|
}
|
|
|
|
// Value returns the value of this expression in our type system. This will
|
|
// usually only be valid once the engine has run and values have been produced.
|
|
// This might get called speculatively (early) during unification to learn more.
|
|
// This particular value is always known since it is a constant.
|
|
func (obj *ExprStr) Value() (types.Value, error) {
|
|
return &types.StrValue{
|
|
V: obj.V,
|
|
}, nil
|
|
}
|
|
|
|
// ExprInt is a representation of an int.
|
|
type ExprInt struct {
|
|
V int64
|
|
}
|
|
|
|
// Apply is a general purpose iterator method that operates on any AST node. It
|
|
// is not used as the primary AST traversal function because it is less readable
|
|
// and easy to reason about than manually implementing traversal for each node.
|
|
// Nevertheless, it is a useful facility for operations that might only apply to
|
|
// a select number of node types, since they won't need extra noop iterators...
|
|
func (obj *ExprInt) Apply(fn func(interfaces.Node) error) error { return fn(obj) }
|
|
|
|
// String returns a short representation of this expression.
|
|
func (obj *ExprInt) String() string { return fmt.Sprintf("int(%d)", obj.V) }
|
|
|
|
// Init initializes this branch of the AST, and returns an error if it fails to
|
|
// validate.
|
|
func (obj *ExprInt) Init(*interfaces.Data) error { return nil }
|
|
|
|
// Interpolate returns a new node (aka a copy) once it has been expanded. This
|
|
// generally increases the size of the AST when it is used. It calls Interpolate
|
|
// on any child elements and builds the new node with those new node contents.
|
|
// Here it simply returns itself, as no interpolation is possible.
|
|
func (obj *ExprInt) Interpolate() (interfaces.Expr, error) {
|
|
return &ExprInt{
|
|
V: obj.V,
|
|
}, nil
|
|
}
|
|
|
|
// SetScope does nothing for this struct, because it has no child nodes, and it
|
|
// does not need to know about the parent scope.
|
|
func (obj *ExprInt) SetScope(*interfaces.Scope) error { return nil }
|
|
|
|
// SetType will make no changes if called here. It will error if anything other
|
|
// than an Int is passed in, and doesn't need to be called for this expr to work.
|
|
func (obj *ExprInt) SetType(typ *types.Type) error { return types.TypeInt.Cmp(typ) }
|
|
|
|
// Type returns the type of this expression. This method always returns Int here.
|
|
func (obj *ExprInt) Type() (*types.Type, error) { return types.TypeInt, nil }
|
|
|
|
// Unify returns the list of invariants that this node produces. It recursively
|
|
// calls Unify on any children elements that exist in the AST, and returns the
|
|
// collection to the caller.
|
|
func (obj *ExprInt) Unify() ([]interfaces.Invariant, error) {
|
|
invariants := []interfaces.Invariant{
|
|
&unification.EqualsInvariant{
|
|
Expr: obj,
|
|
Type: types.TypeInt,
|
|
},
|
|
}
|
|
return invariants, nil
|
|
}
|
|
|
|
// Graph returns the reactive function graph which is expressed by this node. It
|
|
// includes any vertices produced by this node, and the appropriate edges to any
|
|
// vertices that are produced by its children. Nodes which fulfill the Expr
|
|
// interface directly produce vertices (and possible children) where as nodes
|
|
// that fulfill the Stmt interface do not produces vertices, where as their
|
|
// children might. This returns a graph with a single vertex (itself) in it.
|
|
func (obj *ExprInt) Graph() (*pgraph.Graph, error) {
|
|
graph, err := pgraph.NewGraph("int")
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "could not create graph")
|
|
}
|
|
graph.AddVertex(obj)
|
|
return graph, nil
|
|
}
|
|
|
|
// Func returns the reactive stream of values that this expression produces.
|
|
func (obj *ExprInt) Func() (interfaces.Func, error) {
|
|
return &structs.ConstFunc{
|
|
Value: &types.IntValue{V: obj.V},
|
|
}, nil
|
|
}
|
|
|
|
// SetValue for an int expression is always populated statically, and does not
|
|
// ever receive any incoming values (no incoming edges) so this should never be
|
|
// called. It has been implemented for uniformity.
|
|
func (obj *ExprInt) SetValue(value types.Value) error {
|
|
if err := types.TypeInt.Cmp(value.Type()); err != nil {
|
|
return err
|
|
}
|
|
obj.V = value.Int()
|
|
return nil
|
|
}
|
|
|
|
// Value returns the value of this expression in our type system. This will
|
|
// usually only be valid once the engine has run and values have been produced.
|
|
// This might get called speculatively (early) during unification to learn more.
|
|
// This particular value is always known since it is a constant.
|
|
func (obj *ExprInt) Value() (types.Value, error) {
|
|
return &types.IntValue{
|
|
V: obj.V,
|
|
}, nil
|
|
}
|
|
|
|
// ExprFloat is a representation of a float.
|
|
type ExprFloat struct {
|
|
V float64
|
|
}
|
|
|
|
// Apply is a general purpose iterator method that operates on any AST node. It
|
|
// is not used as the primary AST traversal function because it is less readable
|
|
// and easy to reason about than manually implementing traversal for each node.
|
|
// Nevertheless, it is a useful facility for operations that might only apply to
|
|
// a select number of node types, since they won't need extra noop iterators...
|
|
func (obj *ExprFloat) Apply(fn func(interfaces.Node) error) error { return fn(obj) }
|
|
|
|
// String returns a short representation of this expression.
|
|
func (obj *ExprFloat) String() string {
|
|
return fmt.Sprintf("float(%g)", obj.V) // TODO: %f instead?
|
|
}
|
|
|
|
// Init initializes this branch of the AST, and returns an error if it fails to
|
|
// validate.
|
|
func (obj *ExprFloat) Init(*interfaces.Data) error { return nil }
|
|
|
|
// Interpolate returns a new node (aka a copy) once it has been expanded. This
|
|
// generally increases the size of the AST when it is used. It calls Interpolate
|
|
// on any child elements and builds the new node with those new node contents.
|
|
// Here it simply returns itself, as no interpolation is possible.
|
|
func (obj *ExprFloat) Interpolate() (interfaces.Expr, error) {
|
|
return &ExprFloat{
|
|
V: obj.V,
|
|
}, nil
|
|
}
|
|
|
|
// SetScope does nothing for this struct, because it has no child nodes, and it
|
|
// does not need to know about the parent scope.
|
|
func (obj *ExprFloat) SetScope(*interfaces.Scope) error { return nil }
|
|
|
|
// SetType will make no changes if called here. It will error if anything other
|
|
// than a Float is passed in, and doesn't need to be called for this expr to work.
|
|
func (obj *ExprFloat) SetType(typ *types.Type) error { return types.TypeFloat.Cmp(typ) }
|
|
|
|
// Type returns the type of this expression. This method always returns Float here.
|
|
func (obj *ExprFloat) Type() (*types.Type, error) { return types.TypeFloat, nil }
|
|
|
|
// Unify returns the list of invariants that this node produces. It recursively
|
|
// calls Unify on any children elements that exist in the AST, and returns the
|
|
// collection to the caller.
|
|
func (obj *ExprFloat) Unify() ([]interfaces.Invariant, error) {
|
|
invariants := []interfaces.Invariant{
|
|
&unification.EqualsInvariant{
|
|
Expr: obj,
|
|
Type: types.TypeFloat,
|
|
},
|
|
}
|
|
return invariants, nil
|
|
}
|
|
|
|
// Graph returns the reactive function graph which is expressed by this node. It
|
|
// includes any vertices produced by this node, and the appropriate edges to any
|
|
// vertices that are produced by its children. Nodes which fulfill the Expr
|
|
// interface directly produce vertices (and possible children) where as nodes
|
|
// that fulfill the Stmt interface do not produces vertices, where as their
|
|
// children might. This returns a graph with a single vertex (itself) in it.
|
|
func (obj *ExprFloat) Graph() (*pgraph.Graph, error) {
|
|
graph, err := pgraph.NewGraph("float")
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "could not create graph")
|
|
}
|
|
graph.AddVertex(obj)
|
|
return graph, nil
|
|
}
|
|
|
|
// Func returns the reactive stream of values that this expression produces.
|
|
func (obj *ExprFloat) Func() (interfaces.Func, error) {
|
|
return &structs.ConstFunc{
|
|
Value: &types.FloatValue{V: obj.V},
|
|
}, nil
|
|
}
|
|
|
|
// SetValue for a float expression is always populated statically, and does not
|
|
// ever receive any incoming values (no incoming edges) so this should never be
|
|
// called. It has been implemented for uniformity.
|
|
func (obj *ExprFloat) SetValue(value types.Value) error {
|
|
if err := types.TypeFloat.Cmp(value.Type()); err != nil {
|
|
return err
|
|
}
|
|
obj.V = value.Float()
|
|
return nil
|
|
}
|
|
|
|
// Value returns the value of this expression in our type system. This will
|
|
// usually only be valid once the engine has run and values have been produced.
|
|
// This might get called speculatively (early) during unification to learn more.
|
|
// This particular value is always known since it is a constant.
|
|
func (obj *ExprFloat) Value() (types.Value, error) {
|
|
return &types.FloatValue{
|
|
V: obj.V,
|
|
}, nil
|
|
}
|
|
|
|
// ExprList is a representation of a list.
|
|
type ExprList struct {
|
|
typ *types.Type
|
|
|
|
//Elements []*ExprListElement
|
|
Elements []interfaces.Expr
|
|
}
|
|
|
|
// Apply is a general purpose iterator method that operates on any AST node. It
|
|
// is not used as the primary AST traversal function because it is less readable
|
|
// and easy to reason about than manually implementing traversal for each node.
|
|
// Nevertheless, it is a useful facility for operations that might only apply to
|
|
// a select number of node types, since they won't need extra noop iterators...
|
|
func (obj *ExprList) Apply(fn func(interfaces.Node) error) error {
|
|
for _, x := range obj.Elements {
|
|
if err := x.Apply(fn); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return fn(obj)
|
|
}
|
|
|
|
// String returns a short representation of this expression.
|
|
func (obj *ExprList) String() string {
|
|
var s []string
|
|
for _, x := range obj.Elements {
|
|
s = append(s, x.String())
|
|
}
|
|
return fmt.Sprintf("list(%s)", strings.Join(s, ", "))
|
|
}
|
|
|
|
// Init initializes this branch of the AST, and returns an error if it fails to
|
|
// validate.
|
|
func (obj *ExprList) Init(data *interfaces.Data) error {
|
|
for _, x := range obj.Elements {
|
|
if err := x.Init(data); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Interpolate returns a new node (aka a copy) once it has been expanded. This
|
|
// generally increases the size of the AST when it is used. It calls Interpolate
|
|
// on any child elements and builds the new node with those new node contents.
|
|
func (obj *ExprList) Interpolate() (interfaces.Expr, error) {
|
|
elements := []interfaces.Expr{}
|
|
for _, x := range obj.Elements {
|
|
interpolated, err := x.Interpolate()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
elements = append(elements, interpolated)
|
|
}
|
|
return &ExprList{
|
|
typ: obj.typ,
|
|
Elements: elements,
|
|
}, nil
|
|
}
|
|
|
|
// SetScope stores the scope for later use in this resource and it's children,
|
|
// which it propagates this downwards to.
|
|
func (obj *ExprList) SetScope(scope *interfaces.Scope) error {
|
|
for _, x := range obj.Elements {
|
|
if err := x.SetScope(scope); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// SetType is used to set the type of this expression once it is known. This
|
|
// usually happens during type unification, but it can also happen during
|
|
// parsing if a type is specified explicitly. Since types are static and don't
|
|
// change on expressions, if you attempt to set a different type than what has
|
|
// previously been set (when not initially known) this will error.
|
|
func (obj *ExprList) SetType(typ *types.Type) error {
|
|
// TODO: should we ensure this is set to a KindList ?
|
|
if obj.typ != nil {
|
|
return obj.typ.Cmp(typ) // if not set, ensure it doesn't change
|
|
}
|
|
obj.typ = typ // set
|
|
return nil
|
|
}
|
|
|
|
// Type returns the type of this expression.
|
|
func (obj *ExprList) Type() (*types.Type, error) {
|
|
var typ *types.Type
|
|
var err error
|
|
for i, expr := range obj.Elements {
|
|
etyp, e := expr.Type()
|
|
if e != nil {
|
|
err = errwrap.Wrapf(e, "list index `%d` did not return a type", i)
|
|
break
|
|
}
|
|
if typ == nil {
|
|
typ = etyp
|
|
}
|
|
if e := typ.Cmp(etyp); e != nil {
|
|
err = errwrap.Wrapf(e, "list elements have different types")
|
|
break
|
|
}
|
|
}
|
|
if err == nil && obj.typ == nil && len(obj.Elements) > 0 {
|
|
return &types.Type{ // speculate!
|
|
Kind: types.KindList,
|
|
Val: typ,
|
|
}, nil
|
|
}
|
|
|
|
if obj.typ == nil {
|
|
return nil, interfaces.ErrTypeCurrentlyUnknown
|
|
}
|
|
return obj.typ, nil
|
|
}
|
|
|
|
// Unify returns the list of invariants that this node produces. It recursively
|
|
// calls Unify on any children elements that exist in the AST, and returns the
|
|
// collection to the caller.
|
|
func (obj *ExprList) Unify() ([]interfaces.Invariant, error) {
|
|
var invariants []interfaces.Invariant
|
|
|
|
// if this was set explicitly by the parser
|
|
if obj.typ != nil {
|
|
invar := &unification.EqualsInvariant{
|
|
Expr: obj,
|
|
Type: obj.typ,
|
|
}
|
|
invariants = append(invariants, invar)
|
|
}
|
|
|
|
// collect all the invariants of each sub-expression
|
|
for _, x := range obj.Elements {
|
|
invars, err := x.Unify()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
invariants = append(invariants, invars...)
|
|
}
|
|
|
|
// each element must be equal to each other
|
|
if len(obj.Elements) > 1 {
|
|
invariant := &unification.EqualityInvariantList{
|
|
Exprs: obj.Elements,
|
|
}
|
|
invariants = append(invariants, invariant)
|
|
}
|
|
|
|
// we should be type list of (type of element)
|
|
if len(obj.Elements) > 0 {
|
|
invariant := &unification.EqualityWrapListInvariant{
|
|
Expr1: obj, // unique id for this expression (a pointer)
|
|
Expr2Val: obj.Elements[0],
|
|
}
|
|
invariants = append(invariants, invariant)
|
|
}
|
|
|
|
// make sure this empty list gets an element type somehow
|
|
if len(obj.Elements) == 0 {
|
|
invariant := &unification.AnyInvariant{
|
|
Expr: obj,
|
|
}
|
|
invariants = append(invariants, invariant)
|
|
|
|
// build a placeholder expr to represent a contained element...
|
|
exprAny := &ExprAny{}
|
|
invars, err := exprAny.Unify()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
invariants = append(invariants, invars...)
|
|
|
|
// FIXME: instead of using `ExprAny`, we could actually teach
|
|
// our unification engine to ensure that our expr kind is list,
|
|
// eg:
|
|
//&unification.EqualityKindInvariant{
|
|
// Expr1: obj,
|
|
// Kind: types.KindList,
|
|
//}
|
|
invar := &unification.EqualityWrapListInvariant{
|
|
Expr1: obj,
|
|
Expr2Val: exprAny, // hack
|
|
}
|
|
invariants = append(invariants, invar)
|
|
}
|
|
|
|
return invariants, nil
|
|
}
|
|
|
|
// Graph returns the reactive function graph which is expressed by this node. It
|
|
// includes any vertices produced by this node, and the appropriate edges to any
|
|
// vertices that are produced by its children. Nodes which fulfill the Expr
|
|
// interface directly produce vertices (and possible children) where as nodes
|
|
// that fulfill the Stmt interface do not produces vertices, where as their
|
|
// children might. This returns a graph with a single vertex (itself) in it, and
|
|
// the edges from all of the child graphs to this.
|
|
func (obj *ExprList) Graph() (*pgraph.Graph, error) {
|
|
graph, err := pgraph.NewGraph("list")
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "could not create graph")
|
|
}
|
|
graph.AddVertex(obj)
|
|
|
|
// each list element needs to point to the final list expression
|
|
for index, x := range obj.Elements { // list elements in order
|
|
g, err := x.Graph()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
fieldName := fmt.Sprintf("%d", index) // argNames as integers!
|
|
edge := &funcs.Edge{Args: []string{fieldName}}
|
|
|
|
var once bool
|
|
edgeGenFn := func(v1, v2 pgraph.Vertex) pgraph.Edge {
|
|
if once {
|
|
panic(fmt.Sprintf("edgeGenFn for list, index `%d` was called twice", index))
|
|
}
|
|
once = true
|
|
return edge
|
|
}
|
|
graph.AddEdgeGraphVertexLight(g, obj, edgeGenFn) // element -> list
|
|
}
|
|
|
|
return graph, nil
|
|
}
|
|
|
|
// Func returns the reactive stream of values that this expression produces.
|
|
func (obj *ExprList) Func() (interfaces.Func, error) {
|
|
typ, err := obj.Type()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// composite func (list, map, struct)
|
|
return &structs.CompositeFunc{
|
|
Type: typ,
|
|
Len: len(obj.Elements),
|
|
}, nil
|
|
}
|
|
|
|
// SetValue here is a no-op, because algorithmically when this is called from
|
|
// the func engine, the child elements (the list elements) will have had this
|
|
// done to them first, and as such when we try and retrieve the set value from
|
|
// this expression by calling `Value`, it will build it from scratch!
|
|
func (obj *ExprList) SetValue(value types.Value) error {
|
|
if err := obj.typ.Cmp(value.Type()); err != nil {
|
|
return err
|
|
}
|
|
// noop!
|
|
//obj.V = value
|
|
return nil
|
|
}
|
|
|
|
// Value returns the value of this expression in our type system. This will
|
|
// usually only be valid once the engine has run and values have been produced.
|
|
// This might get called speculatively (early) during unification to learn more.
|
|
func (obj *ExprList) Value() (types.Value, error) {
|
|
values := []types.Value{}
|
|
var typ *types.Type
|
|
|
|
for i, expr := range obj.Elements {
|
|
etyp, err := expr.Type()
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "list index `%d` did not return a type", i)
|
|
}
|
|
if typ == nil {
|
|
typ = etyp
|
|
}
|
|
if err := typ.Cmp(etyp); err != nil {
|
|
return nil, errwrap.Wrapf(err, "list elements have different types")
|
|
}
|
|
|
|
value, err := expr.Value()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
if value == nil {
|
|
return nil, fmt.Errorf("value for list index `%d` was nil", i)
|
|
}
|
|
values = append(values, value)
|
|
}
|
|
if len(obj.Elements) > 0 {
|
|
t := &types.Type{
|
|
Kind: types.KindList,
|
|
Val: typ,
|
|
}
|
|
// Run SetType to ensure type is consistent with what we found,
|
|
// which is an easy way to ensure the Cmp passes as expected...
|
|
if err := obj.SetType(t); err != nil {
|
|
return nil, errwrap.Wrapf(err, "type did not match expected!")
|
|
}
|
|
}
|
|
|
|
return &types.ListValue{
|
|
T: obj.typ,
|
|
V: values,
|
|
}, nil
|
|
}
|
|
|
|
// ExprMap is a representation of a (dictionary) map.
|
|
type ExprMap struct {
|
|
typ *types.Type
|
|
|
|
KVs []*ExprMapKV
|
|
}
|
|
|
|
// Apply is a general purpose iterator method that operates on any AST node. It
|
|
// is not used as the primary AST traversal function because it is less readable
|
|
// and easy to reason about than manually implementing traversal for each node.
|
|
// Nevertheless, it is a useful facility for operations that might only apply to
|
|
// a select number of node types, since they won't need extra noop iterators...
|
|
func (obj *ExprMap) Apply(fn func(interfaces.Node) error) error {
|
|
for _, x := range obj.KVs {
|
|
if err := x.Key.Apply(fn); err != nil {
|
|
return err
|
|
}
|
|
if err := x.Val.Apply(fn); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return fn(obj)
|
|
}
|
|
|
|
// String returns a short representation of this expression.
|
|
func (obj *ExprMap) String() string {
|
|
var s []string
|
|
for _, x := range obj.KVs {
|
|
s = append(s, fmt.Sprintf("%s: %s", x.Key.String(), x.Val.String()))
|
|
}
|
|
return fmt.Sprintf("map(%s)", strings.Join(s, ", "))
|
|
}
|
|
|
|
// Init initializes this branch of the AST, and returns an error if it fails to
|
|
// validate.
|
|
func (obj *ExprMap) Init(data *interfaces.Data) error {
|
|
for _, x := range obj.KVs {
|
|
if err := x.Key.Init(data); err != nil {
|
|
return err
|
|
}
|
|
if err := x.Val.Init(data); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Interpolate returns a new node (aka a copy) once it has been expanded. This
|
|
// generally increases the size of the AST when it is used. It calls Interpolate
|
|
// on any child elements and builds the new node with those new node contents.
|
|
func (obj *ExprMap) Interpolate() (interfaces.Expr, error) {
|
|
kvs := []*ExprMapKV{}
|
|
for _, x := range obj.KVs {
|
|
interpolatedKey, err := x.Key.Interpolate()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
interpolatedVal, err := x.Val.Interpolate()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
kv := &ExprMapKV{
|
|
Key: interpolatedKey,
|
|
Val: interpolatedVal,
|
|
}
|
|
kvs = append(kvs, kv)
|
|
}
|
|
return &ExprMap{
|
|
typ: obj.typ,
|
|
KVs: kvs,
|
|
}, nil
|
|
}
|
|
|
|
// SetScope stores the scope for later use in this resource and it's children,
|
|
// which it propagates this downwards to.
|
|
func (obj *ExprMap) SetScope(scope *interfaces.Scope) error {
|
|
for _, x := range obj.KVs {
|
|
if err := x.Key.SetScope(scope); err != nil {
|
|
return err
|
|
}
|
|
if err := x.Val.SetScope(scope); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// SetType is used to set the type of this expression once it is known. This
|
|
// usually happens during type unification, but it can also happen during
|
|
// parsing if a type is specified explicitly. Since types are static and don't
|
|
// change on expressions, if you attempt to set a different type than what has
|
|
// previously been set (when not initially known) this will error.
|
|
func (obj *ExprMap) SetType(typ *types.Type) error {
|
|
// TODO: should we ensure this is set to a KindMap ?
|
|
if obj.typ != nil {
|
|
return obj.typ.Cmp(typ) // if not set, ensure it doesn't change
|
|
}
|
|
obj.typ = typ // set
|
|
return nil
|
|
}
|
|
|
|
// Type returns the type of this expression.
|
|
func (obj *ExprMap) Type() (*types.Type, error) {
|
|
var ktyp, vtyp *types.Type
|
|
var err error
|
|
for i, x := range obj.KVs {
|
|
// keys
|
|
kt, e := x.Key.Type()
|
|
if e != nil {
|
|
err = errwrap.Wrapf(e, "map key, index `%d` did not return a type", i)
|
|
break
|
|
}
|
|
if ktyp == nil {
|
|
ktyp = kt
|
|
}
|
|
if e := ktyp.Cmp(kt); e != nil {
|
|
err = errwrap.Wrapf(e, "key elements have different types")
|
|
break
|
|
}
|
|
|
|
// vals
|
|
vt, e := x.Val.Type()
|
|
if e != nil {
|
|
err = errwrap.Wrapf(e, "map val, index `%d` did not return a type", i)
|
|
break
|
|
}
|
|
if vtyp == nil {
|
|
vtyp = vt
|
|
}
|
|
if e := vtyp.Cmp(vt); e != nil {
|
|
err = errwrap.Wrapf(e, "val elements have different types")
|
|
break
|
|
}
|
|
}
|
|
if err == nil && obj.typ == nil && len(obj.KVs) > 0 {
|
|
return &types.Type{ // speculate!
|
|
Kind: types.KindMap,
|
|
Key: ktyp,
|
|
Val: vtyp,
|
|
}, nil
|
|
}
|
|
|
|
if obj.typ == nil {
|
|
return nil, interfaces.ErrTypeCurrentlyUnknown
|
|
}
|
|
return obj.typ, nil
|
|
}
|
|
|
|
// Unify returns the list of invariants that this node produces. It recursively
|
|
// calls Unify on any children elements that exist in the AST, and returns the
|
|
// collection to the caller.
|
|
func (obj *ExprMap) Unify() ([]interfaces.Invariant, error) {
|
|
var invariants []interfaces.Invariant
|
|
|
|
// if this was set explicitly by the parser
|
|
if obj.typ != nil {
|
|
invar := &unification.EqualsInvariant{
|
|
Expr: obj,
|
|
Type: obj.typ,
|
|
}
|
|
invariants = append(invariants, invar)
|
|
}
|
|
|
|
// collect all the invariants of each sub-expression
|
|
for _, x := range obj.KVs {
|
|
keyInvars, err := x.Key.Unify()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
invariants = append(invariants, keyInvars...)
|
|
|
|
valInvars, err := x.Val.Unify()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
invariants = append(invariants, valInvars...)
|
|
}
|
|
|
|
// all keys must have the same type, all vals must have the same type
|
|
if len(obj.KVs) > 1 {
|
|
keyExprs, valExprs := []interfaces.Expr{}, []interfaces.Expr{}
|
|
for i := range obj.KVs {
|
|
keyExprs = append(keyExprs, obj.KVs[i].Key)
|
|
valExprs = append(valExprs, obj.KVs[i].Val)
|
|
}
|
|
|
|
keyInvariant := &unification.EqualityInvariantList{
|
|
Exprs: keyExprs,
|
|
}
|
|
invariants = append(invariants, keyInvariant)
|
|
|
|
valInvariant := &unification.EqualityInvariantList{
|
|
Exprs: valExprs,
|
|
}
|
|
invariants = append(invariants, valInvariant)
|
|
}
|
|
|
|
// we should be type map of (type of element)
|
|
if len(obj.KVs) > 0 {
|
|
invariant := &unification.EqualityWrapMapInvariant{
|
|
Expr1: obj, // unique id for this expression (a pointer)
|
|
Expr2Key: obj.KVs[0].Key,
|
|
Expr2Val: obj.KVs[0].Val,
|
|
}
|
|
invariants = append(invariants, invariant)
|
|
}
|
|
|
|
// make sure this empty map gets a type for its key/value somehow
|
|
if len(obj.KVs) == 0 {
|
|
invariant := &unification.AnyInvariant{
|
|
Expr: obj,
|
|
}
|
|
invariants = append(invariants, invariant)
|
|
|
|
// build a placeholder expr to represent a contained key...
|
|
exprAnyKey, exprAnyVal := &ExprAny{}, &ExprAny{}
|
|
invarsKey, err := exprAnyKey.Unify()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
invariants = append(invariants, invarsKey...)
|
|
invarsVal, err := exprAnyVal.Unify()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
invariants = append(invariants, invarsVal...)
|
|
|
|
// FIXME: instead of using `ExprAny`, we could actually teach
|
|
// our unification engine to ensure that our expr kind is list,
|
|
// eg:
|
|
//&unification.EqualityKindInvariant{
|
|
// Expr1: obj,
|
|
// Kind: types.KindMap,
|
|
//}
|
|
invar := &unification.EqualityWrapMapInvariant{
|
|
Expr1: obj,
|
|
Expr2Key: exprAnyKey, // hack
|
|
Expr2Val: exprAnyVal, // hack
|
|
}
|
|
invariants = append(invariants, invar)
|
|
}
|
|
|
|
return invariants, nil
|
|
}
|
|
|
|
// Graph returns the reactive function graph which is expressed by this node. It
|
|
// includes any vertices produced by this node, and the appropriate edges to any
|
|
// vertices that are produced by its children. Nodes which fulfill the Expr
|
|
// interface directly produce vertices (and possible children) where as nodes
|
|
// that fulfill the Stmt interface do not produces vertices, where as their
|
|
// children might. This returns a graph with a single vertex (itself) in it, and
|
|
// the edges from all of the child graphs to this.
|
|
func (obj *ExprMap) Graph() (*pgraph.Graph, error) {
|
|
graph, err := pgraph.NewGraph("map")
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "could not create graph")
|
|
}
|
|
graph.AddVertex(obj)
|
|
|
|
// each map key value pair needs to point to the final map expression
|
|
for index, x := range obj.KVs { // map fields in order
|
|
g, err := x.Key.Graph()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
// do the key names ever change? -- yes
|
|
fieldName := fmt.Sprintf("key:%d", index) // stringify map key
|
|
edge := &funcs.Edge{Args: []string{fieldName}}
|
|
|
|
var once bool
|
|
edgeGenFn := func(v1, v2 pgraph.Vertex) pgraph.Edge {
|
|
if once {
|
|
panic(fmt.Sprintf("edgeGenFn for map, key `%s` was called twice", fieldName))
|
|
}
|
|
once = true
|
|
return edge
|
|
}
|
|
graph.AddEdgeGraphVertexLight(g, obj, edgeGenFn) // key -> func
|
|
}
|
|
|
|
// each map key value pair needs to point to the final map expression
|
|
for index, x := range obj.KVs { // map fields in order
|
|
g, err := x.Val.Graph()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
fieldName := fmt.Sprintf("val:%d", index) // stringify map val
|
|
edge := &funcs.Edge{Args: []string{fieldName}}
|
|
|
|
var once bool
|
|
edgeGenFn := func(v1, v2 pgraph.Vertex) pgraph.Edge {
|
|
if once {
|
|
panic(fmt.Sprintf("edgeGenFn for map, val `%s` was called twice", fieldName))
|
|
}
|
|
once = true
|
|
return edge
|
|
}
|
|
graph.AddEdgeGraphVertexLight(g, obj, edgeGenFn) // val -> func
|
|
}
|
|
|
|
return graph, nil
|
|
}
|
|
|
|
// Func returns the reactive stream of values that this expression produces.
|
|
func (obj *ExprMap) Func() (interfaces.Func, error) {
|
|
typ, err := obj.Type()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// composite func (list, map, struct)
|
|
return &structs.CompositeFunc{
|
|
Type: typ, // the key/val types are known via this type
|
|
Len: len(obj.KVs),
|
|
}, nil
|
|
}
|
|
|
|
// SetValue here is a no-op, because algorithmically when this is called from
|
|
// the func engine, the child key/value's (the map elements) will have had this
|
|
// done to them first, and as such when we try and retrieve the set value from
|
|
// this expression by calling `Value`, it will build it from scratch!
|
|
func (obj *ExprMap) SetValue(value types.Value) error {
|
|
if err := obj.typ.Cmp(value.Type()); err != nil {
|
|
return err
|
|
}
|
|
// noop!
|
|
//obj.V = value
|
|
return nil
|
|
}
|
|
|
|
// Value returns the value of this expression in our type system. This will
|
|
// usually only be valid once the engine has run and values have been produced.
|
|
// This might get called speculatively (early) during unification to learn more.
|
|
func (obj *ExprMap) Value() (types.Value, error) {
|
|
kvs := make(map[types.Value]types.Value)
|
|
var ktyp, vtyp *types.Type
|
|
|
|
for i, x := range obj.KVs {
|
|
// keys
|
|
kt, err := x.Key.Type()
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "map key, index `%d` did not return a type", i)
|
|
}
|
|
if ktyp == nil {
|
|
ktyp = kt
|
|
}
|
|
if err := ktyp.Cmp(kt); err != nil {
|
|
return nil, errwrap.Wrapf(err, "key elements have different types")
|
|
}
|
|
|
|
key, err := x.Key.Value()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
if key == nil {
|
|
return nil, fmt.Errorf("key for map index `%d` was nil", i)
|
|
}
|
|
|
|
// vals
|
|
vt, err := x.Val.Type()
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "map val, index `%d` did not return a type", i)
|
|
}
|
|
if vtyp == nil {
|
|
vtyp = vt
|
|
}
|
|
if err := vtyp.Cmp(vt); err != nil {
|
|
return nil, errwrap.Wrapf(err, "val elements have different types")
|
|
}
|
|
|
|
val, err := x.Val.Value()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
if val == nil {
|
|
return nil, fmt.Errorf("val for map index `%d` was nil", i)
|
|
}
|
|
|
|
kvs[key] = val // add to map
|
|
}
|
|
if len(obj.KVs) > 0 {
|
|
t := &types.Type{
|
|
Kind: types.KindMap,
|
|
Key: ktyp,
|
|
Val: vtyp,
|
|
}
|
|
// Run SetType to ensure type is consistent with what we found,
|
|
// which is an easy way to ensure the Cmp passes as expected...
|
|
if err := obj.SetType(t); err != nil {
|
|
return nil, errwrap.Wrapf(err, "type did not match expected!")
|
|
}
|
|
}
|
|
|
|
return &types.MapValue{
|
|
T: obj.typ,
|
|
V: kvs,
|
|
}, nil
|
|
}
|
|
|
|
// ExprMapKV represents a key and value pair in a (dictionary) map. This does
|
|
// not satisfy the Expr interface.
|
|
type ExprMapKV struct {
|
|
Key interfaces.Expr // keys can be strings, int's, etc...
|
|
Val interfaces.Expr
|
|
}
|
|
|
|
// ExprStruct is a representation of a struct.
|
|
type ExprStruct struct {
|
|
typ *types.Type
|
|
|
|
Fields []*ExprStructField // the list (fields) are intentionally ordered!
|
|
}
|
|
|
|
// Apply is a general purpose iterator method that operates on any AST node. It
|
|
// is not used as the primary AST traversal function because it is less readable
|
|
// and easy to reason about than manually implementing traversal for each node.
|
|
// Nevertheless, it is a useful facility for operations that might only apply to
|
|
// a select number of node types, since they won't need extra noop iterators...
|
|
func (obj *ExprStruct) Apply(fn func(interfaces.Node) error) error {
|
|
for _, x := range obj.Fields {
|
|
if err := x.Value.Apply(fn); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return fn(obj)
|
|
}
|
|
|
|
// String returns a short representation of this expression.
|
|
func (obj *ExprStruct) String() string {
|
|
var s []string
|
|
for _, x := range obj.Fields {
|
|
s = append(s, fmt.Sprintf("%s: %s", x.Name, x.Value.String()))
|
|
}
|
|
return fmt.Sprintf("struct(%s)", strings.Join(s, "; "))
|
|
}
|
|
|
|
// Init initializes this branch of the AST, and returns an error if it fails to
|
|
// validate.
|
|
func (obj *ExprStruct) Init(data *interfaces.Data) error {
|
|
for _, x := range obj.Fields {
|
|
if err := x.Value.Init(data); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Interpolate returns a new node (aka a copy) once it has been expanded. This
|
|
// generally increases the size of the AST when it is used. It calls Interpolate
|
|
// on any child elements and builds the new node with those new node contents.
|
|
func (obj *ExprStruct) Interpolate() (interfaces.Expr, error) {
|
|
fields := []*ExprStructField{}
|
|
for _, x := range obj.Fields {
|
|
interpolated, err := x.Value.Interpolate()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
field := &ExprStructField{
|
|
Name: x.Name, // don't interpolate the key
|
|
Value: interpolated,
|
|
}
|
|
fields = append(fields, field)
|
|
}
|
|
return &ExprStruct{
|
|
typ: obj.typ,
|
|
Fields: fields,
|
|
}, nil
|
|
}
|
|
|
|
// SetScope stores the scope for later use in this resource and it's children,
|
|
// which it propagates this downwards to.
|
|
func (obj *ExprStruct) SetScope(scope *interfaces.Scope) error {
|
|
for _, x := range obj.Fields {
|
|
if err := x.Value.SetScope(scope); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// SetType is used to set the type of this expression once it is known. This
|
|
// usually happens during type unification, but it can also happen during
|
|
// parsing if a type is specified explicitly. Since types are static and don't
|
|
// change on expressions, if you attempt to set a different type than what has
|
|
// previously been set (when not initially known) this will error.
|
|
func (obj *ExprStruct) SetType(typ *types.Type) error {
|
|
// TODO: should we ensure this is set to a KindStruct ?
|
|
if obj.typ != nil {
|
|
return obj.typ.Cmp(typ) // if not set, ensure it doesn't change
|
|
}
|
|
obj.typ = typ // set
|
|
return nil
|
|
}
|
|
|
|
// Type returns the type of this expression.
|
|
func (obj *ExprStruct) Type() (*types.Type, error) {
|
|
var m = make(map[string]*types.Type)
|
|
ord := []string{}
|
|
var err error
|
|
for i, x := range obj.Fields {
|
|
// vals
|
|
t, e := x.Value.Type()
|
|
if e != nil {
|
|
err = errwrap.Wrapf(e, "field val, index `%d` did not return a type", i)
|
|
break
|
|
}
|
|
if _, exists := m[x.Name]; exists {
|
|
err = fmt.Errorf("struct type field index `%d` already exists", i)
|
|
break
|
|
}
|
|
m[x.Name] = t
|
|
ord = append(ord, x.Name)
|
|
}
|
|
if err == nil && obj.typ == nil && len(obj.Fields) > 0 {
|
|
return &types.Type{ // speculate!
|
|
Kind: types.KindStruct,
|
|
Map: m,
|
|
Ord: ord, // assume same order as fields
|
|
}, nil
|
|
}
|
|
|
|
if obj.typ == nil {
|
|
return nil, interfaces.ErrTypeCurrentlyUnknown
|
|
}
|
|
return obj.typ, nil
|
|
}
|
|
|
|
// Unify returns the list of invariants that this node produces. It recursively
|
|
// calls Unify on any children elements that exist in the AST, and returns the
|
|
// collection to the caller.
|
|
func (obj *ExprStruct) Unify() ([]interfaces.Invariant, error) {
|
|
var invariants []interfaces.Invariant
|
|
|
|
// if this was set explicitly by the parser
|
|
if obj.typ != nil {
|
|
invar := &unification.EqualsInvariant{
|
|
Expr: obj,
|
|
Type: obj.typ,
|
|
}
|
|
invariants = append(invariants, invar)
|
|
}
|
|
|
|
// collect all the invariants of each sub-expression
|
|
for _, x := range obj.Fields {
|
|
invars, err := x.Value.Unify()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
invariants = append(invariants, invars...)
|
|
}
|
|
|
|
// build the reference to ourself if we have undetermined field types
|
|
mapped := make(map[string]interfaces.Expr)
|
|
ordered := []string{}
|
|
for _, x := range obj.Fields {
|
|
mapped[x.Name] = x.Value
|
|
ordered = append(ordered, x.Name)
|
|
}
|
|
invariant := &unification.EqualityWrapStructInvariant{
|
|
Expr1: obj, // unique id for this expression (a pointer)
|
|
Expr2Map: mapped,
|
|
Expr2Ord: ordered,
|
|
}
|
|
invariants = append(invariants, invariant)
|
|
|
|
return invariants, nil
|
|
}
|
|
|
|
// Graph returns the reactive function graph which is expressed by this node. It
|
|
// includes any vertices produced by this node, and the appropriate edges to any
|
|
// vertices that are produced by its children. Nodes which fulfill the Expr
|
|
// interface directly produce vertices (and possible children) where as nodes
|
|
// that fulfill the Stmt interface do not produces vertices, where as their
|
|
// children might. This returns a graph with a single vertex (itself) in it, and
|
|
// the edges from all of the child graphs to this.
|
|
func (obj *ExprStruct) Graph() (*pgraph.Graph, error) {
|
|
graph, err := pgraph.NewGraph("struct")
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "could not create graph")
|
|
}
|
|
graph.AddVertex(obj)
|
|
|
|
// each struct field needs to point to the final struct expression
|
|
for _, x := range obj.Fields { // struct fields in order
|
|
g, err := x.Value.Graph()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
fieldName := x.Name
|
|
edge := &funcs.Edge{Args: []string{fieldName}}
|
|
|
|
var once bool
|
|
edgeGenFn := func(v1, v2 pgraph.Vertex) pgraph.Edge {
|
|
if once {
|
|
panic(fmt.Sprintf("edgeGenFn for struct, arg `%s` was called twice", fieldName))
|
|
}
|
|
once = true
|
|
return edge
|
|
}
|
|
graph.AddEdgeGraphVertexLight(g, obj, edgeGenFn) // arg -> func
|
|
}
|
|
|
|
return graph, nil
|
|
}
|
|
|
|
// Func returns the reactive stream of values that this expression produces.
|
|
func (obj *ExprStruct) Func() (interfaces.Func, error) {
|
|
typ, err := obj.Type()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// composite func (list, map, struct)
|
|
return &structs.CompositeFunc{
|
|
Type: typ,
|
|
}, nil
|
|
}
|
|
|
|
// SetValue here is a no-op, because algorithmically when this is called from
|
|
// the func engine, the child fields (the struct elements) will have had this
|
|
// done to them first, and as such when we try and retrieve the set value from
|
|
// this expression by calling `Value`, it will build it from scratch!
|
|
func (obj *ExprStruct) SetValue(value types.Value) error {
|
|
if err := obj.typ.Cmp(value.Type()); err != nil {
|
|
return err
|
|
}
|
|
// noop!
|
|
//obj.V = value
|
|
return nil
|
|
}
|
|
|
|
// Value returns the value of this expression in our type system. This will
|
|
// usually only be valid once the engine has run and values have been produced.
|
|
// This might get called speculatively (early) during unification to learn more.
|
|
func (obj *ExprStruct) Value() (types.Value, error) {
|
|
fields := make(map[string]types.Value)
|
|
typ := &types.Type{
|
|
Kind: types.KindStruct,
|
|
Map: make(map[string]*types.Type),
|
|
//Ord: obj.typ.Ord, // assume same order
|
|
}
|
|
ord := []string{} // can't use obj.typ b/c it can be nil during speculation
|
|
|
|
for i, x := range obj.Fields {
|
|
// vals
|
|
t, err := x.Value.Type()
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "field val, index `%d` did not return a type", i)
|
|
}
|
|
if _, exists := typ.Map[x.Name]; exists {
|
|
return nil, fmt.Errorf("struct type field index `%d` already exists", i)
|
|
}
|
|
typ.Map[x.Name] = t
|
|
|
|
val, err := x.Value.Value()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
if val == nil {
|
|
return nil, fmt.Errorf("val for field index `%d` was nil", i)
|
|
}
|
|
|
|
if _, exists := fields[x.Name]; exists {
|
|
return nil, fmt.Errorf("struct field index `%d` already exists", i)
|
|
}
|
|
fields[x.Name] = val // add to map
|
|
ord = append(ord, x.Name)
|
|
}
|
|
typ.Ord = ord
|
|
if len(obj.Fields) > 0 {
|
|
// Run SetType to ensure type is consistent with what we found,
|
|
// which is an easy way to ensure the Cmp passes as expected...
|
|
if err := obj.SetType(typ); err != nil {
|
|
return nil, errwrap.Wrapf(err, "type did not match expected!")
|
|
}
|
|
}
|
|
|
|
return &types.StructValue{
|
|
T: obj.typ,
|
|
V: fields,
|
|
}, nil
|
|
}
|
|
|
|
// ExprStructField represents a name value pair in a struct field. This does not
|
|
// satisfy the Expr interface.
|
|
type ExprStructField struct {
|
|
Name string
|
|
Value interfaces.Expr
|
|
}
|
|
|
|
// ExprFunc is a representation of a function value. This is not a function
|
|
// call, that is represented by ExprCall. This is what we build when we have a
|
|
// lambda that we want to express, or the contents of a StmtFunc that needs a
|
|
// function body (this ExprFunc) as well. This is used when the user defines an
|
|
// inline function in mcl code somewhere.
|
|
// XXX: this is currently not fully implemented, and parts may be incorrect.
|
|
type ExprFunc struct {
|
|
Args []*Arg
|
|
Return *types.Type // return type if specified
|
|
Body interfaces.Expr
|
|
|
|
typ *types.Type
|
|
|
|
V func([]types.Value) (types.Value, error)
|
|
}
|
|
|
|
// Apply is a general purpose iterator method that operates on any AST node. It
|
|
// is not used as the primary AST traversal function because it is less readable
|
|
// and easy to reason about than manually implementing traversal for each node.
|
|
// Nevertheless, it is a useful facility for operations that might only apply to
|
|
// a select number of node types, since they won't need extra noop iterators...
|
|
func (obj *ExprFunc) Apply(fn func(interfaces.Node) error) error {
|
|
// TODO: is there anything to iterate in here?
|
|
return fn(obj)
|
|
}
|
|
|
|
// String returns a short representation of this expression.
|
|
// FIXME: fmt.Sprintf("func(%+v)", obj.V) fails `go vet` (bug?), so wait until
|
|
// we have a better printable function value and put that here instead.
|
|
//func (obj *ExprFunc) String() string { return fmt.Sprintf("func(???)") } // TODO: print nicely
|
|
func (obj *ExprFunc) String() string {
|
|
var a []string
|
|
for _, x := range obj.Args {
|
|
a = append(a, fmt.Sprintf("%s", x.String()))
|
|
}
|
|
args := strings.Join(a, ", ")
|
|
s := fmt.Sprintf("func(%s)", args)
|
|
if obj.Return != nil {
|
|
s += fmt.Sprintf(" %s", obj.Return.String())
|
|
}
|
|
if obj.Body == nil {
|
|
s += fmt.Sprintf(" { ??? }") // TODO: why does this happen?
|
|
} else {
|
|
s += fmt.Sprintf(" { %s }", obj.Body.String())
|
|
}
|
|
return s
|
|
}
|
|
|
|
// Init initializes this branch of the AST, and returns an error if it fails to
|
|
// validate.
|
|
func (obj *ExprFunc) Init(*interfaces.Data) error { return nil }
|
|
|
|
// Interpolate returns a new node (aka a copy) once it has been expanded. This
|
|
// generally increases the size of the AST when it is used. It calls Interpolate
|
|
// on any child elements and builds the new node with those new node contents.
|
|
// Here it simply returns itself, as no interpolation is possible.
|
|
func (obj *ExprFunc) Interpolate() (interfaces.Expr, error) {
|
|
return &ExprFunc{
|
|
V: obj.V,
|
|
}, nil
|
|
}
|
|
|
|
// SetScope does nothing for this struct, because it has no child nodes, and it
|
|
// does not need to know about the parent scope.
|
|
// XXX: this may not be true in the future...
|
|
func (obj *ExprFunc) SetScope(*interfaces.Scope) error { return nil }
|
|
|
|
// SetType is used to set the type of this expression once it is known. This
|
|
// usually happens during type unification, but it can also happen during
|
|
// parsing if a type is specified explicitly. Since types are static and don't
|
|
// change on expressions, if you attempt to set a different type than what has
|
|
// previously been set (when not initially known) this will error.
|
|
func (obj *ExprFunc) SetType(typ *types.Type) error {
|
|
// TODO: should we ensure this is set to a KindFunc ?
|
|
if obj.typ != nil {
|
|
return obj.typ.Cmp(typ) // if not set, ensure it doesn't change
|
|
}
|
|
obj.typ = typ // set
|
|
return nil
|
|
}
|
|
|
|
// Type returns the type of this expression.
|
|
func (obj *ExprFunc) Type() (*types.Type, error) {
|
|
// TODO: implement speculative type lookup (if not already sufficient)
|
|
if obj.typ == nil {
|
|
return nil, interfaces.ErrTypeCurrentlyUnknown
|
|
}
|
|
return obj.typ, nil
|
|
}
|
|
|
|
// Unify returns the list of invariants that this node produces. It recursively
|
|
// calls Unify on any children elements that exist in the AST, and returns the
|
|
// collection to the caller.
|
|
func (obj *ExprFunc) Unify() ([]interfaces.Invariant, error) {
|
|
return nil, fmt.Errorf("not implemented") // XXX: not implemented
|
|
}
|
|
|
|
// Graph returns the reactive function graph which is expressed by this node. It
|
|
// includes any vertices produced by this node, and the appropriate edges to any
|
|
// vertices that are produced by its children. Nodes which fulfill the Expr
|
|
// interface directly produce vertices (and possible children) where as nodes
|
|
// that fulfill the Stmt interface do not produces vertices, where as their
|
|
// children might. This returns a graph with a single vertex (itself) in it.
|
|
func (obj *ExprFunc) Graph() (*pgraph.Graph, error) {
|
|
return nil, fmt.Errorf("not implemented") // XXX: not implemented
|
|
}
|
|
|
|
// Func returns the reactive stream of values that this expression produces.
|
|
func (obj *ExprFunc) Func() (interfaces.Func, error) {
|
|
return nil, fmt.Errorf("not implemented") // XXX: not implemented
|
|
}
|
|
|
|
// SetValue for a func expression is always populated statically, and does not
|
|
// ever receive any incoming values (no incoming edges) so this should never be
|
|
// called. It has been implemented for uniformity.
|
|
func (obj *ExprFunc) SetValue(value types.Value) error {
|
|
return obj.typ.Cmp(value.Type())
|
|
}
|
|
|
|
// Value returns the value of this expression in our type system. This will
|
|
// usually only be valid once the engine has run and values have been produced.
|
|
// This might get called speculatively (early) during unification to learn more.
|
|
// This particular value is always known since it is a constant.
|
|
func (obj *ExprFunc) Value() (types.Value, error) {
|
|
// TODO: implement speculative value lookup (if not already sufficient)
|
|
return &types.FuncValue{
|
|
V: obj.V,
|
|
T: obj.typ,
|
|
}, nil
|
|
}
|
|
|
|
// ExprCall is a representation of a function call. This does not represent the
|
|
// declaration or implementation of a new function value.
|
|
type ExprCall struct {
|
|
scope *interfaces.Scope // store for referencing this later
|
|
typ *types.Type
|
|
|
|
V types.Value // stored result (set with SetValue)
|
|
|
|
Name string
|
|
Args []interfaces.Expr // list of args in parsed order
|
|
}
|
|
|
|
// Apply is a general purpose iterator method that operates on any AST node. It
|
|
// is not used as the primary AST traversal function because it is less readable
|
|
// and easy to reason about than manually implementing traversal for each node.
|
|
// Nevertheless, it is a useful facility for operations that might only apply to
|
|
// a select number of node types, since they won't need extra noop iterators...
|
|
func (obj *ExprCall) Apply(fn func(interfaces.Node) error) error {
|
|
for _, x := range obj.Args {
|
|
if err := x.Apply(fn); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return fn(obj)
|
|
}
|
|
|
|
// String returns a short representation of this expression.
|
|
func (obj *ExprCall) String() string {
|
|
var s []string
|
|
for _, x := range obj.Args {
|
|
s = append(s, fmt.Sprintf("%s", x.String()))
|
|
}
|
|
return fmt.Sprintf("call:%s(%s)", obj.Name, strings.Join(s, ", "))
|
|
}
|
|
|
|
// buildType builds the KindFunc type of this function's signature if it can. It
|
|
// might not be able to if type unification hasn't yet been performed on this
|
|
// expression, and if SetType hasn't yet been called for the needed expressions.
|
|
// XXX: review this function logic please
|
|
func (obj *ExprCall) buildType() (*types.Type, error) {
|
|
|
|
m := make(map[string]*types.Type)
|
|
ord := []string{}
|
|
for pos, x := range obj.Args { // function arguments in order
|
|
t, err := x.Type()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
name := util.NumToAlpha(pos) // assume (incorrectly) for now...
|
|
//name := argNames[pos]
|
|
m[name] = t
|
|
ord = append(ord, name)
|
|
}
|
|
|
|
out, err := obj.Type()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return &types.Type{
|
|
Kind: types.KindFunc,
|
|
Map: m,
|
|
Ord: ord,
|
|
Out: out,
|
|
}, nil
|
|
}
|
|
|
|
// buildFunc prepares and returns the function struct object needed for running
|
|
// this function execution.
|
|
// XXX: review this function logic please
|
|
func (obj *ExprCall) buildFunc() (interfaces.Func, error) {
|
|
// lookup function from scope
|
|
f, exists := obj.scope.Functions[obj.Name]
|
|
if !exists {
|
|
return nil, fmt.Errorf("func `%s` does not exist in this scope", obj.Name)
|
|
}
|
|
fn := f() // build
|
|
|
|
polyFn, ok := fn.(interfaces.PolyFunc) // is it statically polymorphic?
|
|
if !ok {
|
|
return fn, nil
|
|
}
|
|
|
|
// PolyFunc's need more things done!
|
|
typ, err := obj.buildType()
|
|
if err == nil { // if we've errored, that's okay, this part isn't ready
|
|
if err := polyFn.Build(typ); err != nil {
|
|
return nil, errwrap.Wrapf(err, "could not build func `%s`", obj.Name)
|
|
}
|
|
}
|
|
return fn, nil
|
|
}
|
|
|
|
// Init initializes this branch of the AST, and returns an error if it fails to
|
|
// validate.
|
|
func (obj *ExprCall) Init(data *interfaces.Data) error {
|
|
for _, x := range obj.Args {
|
|
if err := x.Init(data); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Interpolate returns a new node (aka a copy) once it has been expanded. This
|
|
// generally increases the size of the AST when it is used. It calls Interpolate
|
|
// on any child elements and builds the new node with those new node contents.
|
|
func (obj *ExprCall) Interpolate() (interfaces.Expr, error) {
|
|
args := []interfaces.Expr{}
|
|
for _, x := range obj.Args {
|
|
interpolated, err := x.Interpolate()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
args = append(args, interpolated)
|
|
}
|
|
return &ExprCall{
|
|
scope: obj.scope,
|
|
typ: obj.typ,
|
|
Name: obj.Name,
|
|
Args: args,
|
|
}, nil
|
|
}
|
|
|
|
// SetScope stores the scope for later use in this resource and it's children,
|
|
// which it propagates this downwards to.
|
|
func (obj *ExprCall) SetScope(scope *interfaces.Scope) error {
|
|
if scope == nil {
|
|
scope = interfaces.EmptyScope()
|
|
}
|
|
obj.scope = scope
|
|
|
|
for _, x := range obj.Args {
|
|
if err := x.SetScope(scope); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// SetType is used to set the type of this expression once it is known. This
|
|
// usually happens during type unification, but it can also happen during
|
|
// parsing if a type is specified explicitly. Since types are static and don't
|
|
// change on expressions, if you attempt to set a different type than what has
|
|
// previously been set (when not initially known) this will error. Remember that
|
|
// for this function expression, the type is the *return type* of the function,
|
|
// not the full type of the function signature.
|
|
func (obj *ExprCall) SetType(typ *types.Type) error {
|
|
if obj.typ != nil {
|
|
return obj.typ.Cmp(typ) // if not set, ensure it doesn't change
|
|
}
|
|
obj.typ = typ // set
|
|
return nil
|
|
}
|
|
|
|
// Type returns the type of this expression, which is the return type of the
|
|
// function call.
|
|
func (obj *ExprCall) Type() (*types.Type, error) {
|
|
f, exists := obj.scope.Functions[obj.Name]
|
|
if !exists {
|
|
return nil, fmt.Errorf("func `%s` does not exist in this scope", obj.Name)
|
|
}
|
|
fn := f() // build
|
|
|
|
_, isPoly := fn.(interfaces.PolyFunc) // is it statically polymorphic?
|
|
if obj.typ == nil && !isPoly {
|
|
if info := fn.Info(); info != nil {
|
|
if sig := info.Sig; sig != nil {
|
|
if typ := sig.Out; typ != nil && !typ.HasVariant() {
|
|
return typ, nil // speculate!
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if obj.typ == nil {
|
|
return nil, interfaces.ErrTypeCurrentlyUnknown
|
|
}
|
|
return obj.typ, nil
|
|
}
|
|
|
|
// Unify returns the list of invariants that this node produces. It recursively
|
|
// calls Unify on any children elements that exist in the AST, and returns the
|
|
// collection to the caller.
|
|
func (obj *ExprCall) Unify() ([]interfaces.Invariant, error) {
|
|
var invariants []interfaces.Invariant
|
|
|
|
// if this was set explicitly by the parser
|
|
if obj.typ != nil {
|
|
invar := &unification.EqualsInvariant{
|
|
Expr: obj,
|
|
Type: obj.typ,
|
|
}
|
|
invariants = append(invariants, invar)
|
|
}
|
|
|
|
// collect all the invariants of each sub-expression
|
|
for _, x := range obj.Args {
|
|
invars, err := x.Unify()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
invariants = append(invariants, invars...)
|
|
}
|
|
|
|
fn, err := obj.buildFunc() // uses obj.Name to build the func
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// XXX: can we put this inside the poly branch or is it needed everywhere?
|
|
// XXX: is there code we can pull out of this branch to use for all functions?
|
|
argNames := []string{}
|
|
mapped := make(map[string]*types.Type)
|
|
partialValues := []types.Value{}
|
|
for i := range obj.Args {
|
|
name := util.NumToAlpha(i) // assume (incorrectly) for now...
|
|
argNames = append(argNames, name)
|
|
mapped[name] = nil // unknown type
|
|
partialValues = append(partialValues, nil) // XXX: is this safe?
|
|
|
|
// optimization: if zeroth arg is a static string, specify this!
|
|
// TODO: this is a more specialized version of the next check...
|
|
if x, ok := obj.Args[0].(*ExprStr); i == 0 && ok { // is static?
|
|
mapped[name], _ = x.Type()
|
|
partialValues[i], _ = x.Value() // store value
|
|
}
|
|
|
|
// optimization: if type is already known, specify it now!
|
|
if t, err := obj.Args[i].Type(); err == nil { // is known?
|
|
mapped[name] = t
|
|
// if value is completely static, pass it in now!
|
|
if v, err := obj.Args[i].Value(); err == nil {
|
|
partialValues[i] = v // store value
|
|
}
|
|
}
|
|
}
|
|
|
|
// do we have a special case like the operator or template function?
|
|
polyFn, ok := fn.(interfaces.PolyFunc) // is it statically polymorphic?
|
|
if ok {
|
|
out, err := obj.Type() // do we know the return type yet?
|
|
if err != nil {
|
|
out = nil // just to make sure...
|
|
}
|
|
// partial type can have some type components that are nil!
|
|
// this means they are not yet known at this time...
|
|
partialType := &types.Type{
|
|
Kind: types.KindFunc,
|
|
Map: mapped,
|
|
Ord: argNames,
|
|
Out: out, // possibly nil
|
|
}
|
|
|
|
results, err := polyFn.Polymorphisms(partialType, partialValues)
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "polymorphic signatures for func `%s` could not be found", obj.Name)
|
|
}
|
|
|
|
ors := []interfaces.Invariant{} // solve only one from this list
|
|
// each of these is a different possible signature
|
|
for _, typ := range results {
|
|
if typ.Kind != types.KindFunc {
|
|
panic("overloaded result was not of kind func")
|
|
}
|
|
|
|
// XXX: how do we deal with template returning a variant?
|
|
// XXX: i think we need more invariant types, and if it's
|
|
// going to be a variant, just return no results, and the
|
|
// defaults from the engine should just match it anyways!
|
|
if typ.HasVariant() { // XXX: ¯\_(ツ)_/¯
|
|
//continue // XXX: alternate strategy...
|
|
//return nil, fmt.Errorf("variant type not yet supported, got: %+v", typ) // XXX: old strategy
|
|
}
|
|
if typ.Kind == types.KindVariant { // XXX: ¯\_(ツ)_/¯
|
|
continue // can't deal with raw variant a.t.m.
|
|
}
|
|
|
|
if i, j := len(typ.Ord), len(obj.Args); i != j {
|
|
continue // this signature won't work for us, skip!
|
|
}
|
|
|
|
// what would a set of invariants for this sig look like?
|
|
var invars []interfaces.Invariant
|
|
|
|
// use Map and Ord for Input (Kind == Function)
|
|
for i, x := range typ.Ord {
|
|
if typ.Map[x].HasVariant() { // XXX: ¯\_(ツ)_/¯
|
|
invar := &unification.AnyInvariant{ // XXX: ???
|
|
Expr: obj.Args[i],
|
|
}
|
|
invars = append(invars, invar)
|
|
continue
|
|
}
|
|
invar := &unification.EqualsInvariant{
|
|
Expr: obj.Args[i],
|
|
Type: typ.Map[x], // type of arg
|
|
}
|
|
invars = append(invars, invar)
|
|
}
|
|
if typ.Out != nil {
|
|
// this expression should equal the output type of the function
|
|
if typ.Out.HasVariant() { // XXX: ¯\_(ツ)_/¯
|
|
invar := &unification.AnyInvariant{ // XXX: ???
|
|
Expr: obj,
|
|
}
|
|
invars = append(invars, invar)
|
|
} else {
|
|
invar := &unification.EqualsInvariant{
|
|
Expr: obj,
|
|
Type: typ.Out,
|
|
}
|
|
invars = append(invars, invar)
|
|
}
|
|
}
|
|
|
|
// add more invariants to link the partials...
|
|
mapped := make(map[string]interfaces.Expr)
|
|
ordered := []string{}
|
|
for pos, x := range obj.Args {
|
|
name := argNames[pos]
|
|
mapped[name] = x
|
|
ordered = append(ordered, name)
|
|
}
|
|
|
|
// unused expression, here only for linking...
|
|
// TODO: eventually like with proper ExprFunc in lang?
|
|
exprFunc := &ExprFunc{}
|
|
if !typ.HasVariant() { // XXX: ¯\_(ツ)_/¯
|
|
exprFunc.SetType(typ)
|
|
funcInvariant := &unification.EqualsInvariant{
|
|
Expr: exprFunc,
|
|
Type: typ,
|
|
}
|
|
invars = append(invars, funcInvariant)
|
|
}
|
|
invar := &unification.EqualityWrapFuncInvariant{
|
|
Expr1: exprFunc,
|
|
Expr2Map: mapped,
|
|
Expr2Ord: ordered,
|
|
Expr2Out: obj, // type of expression is return type of function
|
|
}
|
|
invars = append(invars, invar)
|
|
|
|
// all of these need to be true together
|
|
and := &unification.ConjunctionInvariant{
|
|
Invariants: invars,
|
|
}
|
|
|
|
ors = append(ors, and) // one solution added!
|
|
} // end results loop
|
|
|
|
// don't error here, we might not want to add any invariants!
|
|
//if len(results) == 0 {
|
|
// return nil, fmt.Errorf("can't find any valid signatures that match func `%s`", obj.Name)
|
|
//}
|
|
if len(ors) > 0 {
|
|
var invar interfaces.Invariant = &unification.ExclusiveInvariant{
|
|
Invariants: ors, // one and only one of these should be true
|
|
}
|
|
if len(ors) == 1 {
|
|
invar = ors[0] // there should only be one
|
|
}
|
|
invariants = append(invariants, invar)
|
|
}
|
|
|
|
} else {
|
|
sig := fn.Info().Sig
|
|
// build the reference to ourself if we have undetermined arg types
|
|
mapped := make(map[string]interfaces.Expr)
|
|
ordered := []string{}
|
|
for pos, x := range obj.Args {
|
|
name := argNames[pos]
|
|
mapped[name] = x
|
|
ordered = append(ordered, name)
|
|
}
|
|
|
|
// add an unused expression, because we need to link it to the partial
|
|
exprFunc := &ExprFunc{}
|
|
exprFunc.SetType(sig)
|
|
funcInvariant := &unification.EqualsInvariant{
|
|
Expr: exprFunc,
|
|
Type: sig,
|
|
}
|
|
invariants = append(invariants, funcInvariant)
|
|
|
|
// note: the usage of this invariant is different from the other wrap*
|
|
// invariants, because in this case, the expression type is the return
|
|
// type which is produced, where as the entire function itself has its
|
|
// own type which includes the types of the input arguments...
|
|
invariant := &unification.EqualityWrapFuncInvariant{
|
|
Expr1: exprFunc, // unused placeholder for unification
|
|
Expr2Map: mapped,
|
|
Expr2Ord: ordered,
|
|
Expr2Out: obj, // type of expression is return type of function
|
|
}
|
|
invariants = append(invariants, invariant)
|
|
}
|
|
|
|
return invariants, nil
|
|
}
|
|
|
|
// Graph returns the reactive function graph which is expressed by this node. It
|
|
// includes any vertices produced by this node, and the appropriate edges to any
|
|
// vertices that are produced by its children. Nodes which fulfill the Expr
|
|
// interface directly produce vertices (and possible children) where as nodes
|
|
// that fulfill the Stmt interface do not produces vertices, where as their
|
|
// children might. This returns a graph with a single vertex (itself) in it, and
|
|
// the edges from all of the child graphs to this.
|
|
func (obj *ExprCall) Graph() (*pgraph.Graph, error) {
|
|
graph, err := pgraph.NewGraph("call")
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "could not create graph")
|
|
}
|
|
graph.AddVertex(obj)
|
|
|
|
fn, err := obj.buildFunc() // uses obj.Name to build the func
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
argNames := fn.Info().Sig.Ord
|
|
if len(argNames) != len(obj.Args) { // extra safety...
|
|
return nil, fmt.Errorf("func `%s` expected %d args, got %d", obj.Name, len(argNames), len(obj.Args))
|
|
}
|
|
|
|
// each function argument needs to point to the final function expression
|
|
for pos, x := range obj.Args { // function arguments in order
|
|
g, err := x.Graph()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
argName := argNames[pos]
|
|
edge := &funcs.Edge{Args: []string{argName}}
|
|
|
|
var once bool
|
|
edgeGenFn := func(v1, v2 pgraph.Vertex) pgraph.Edge {
|
|
if once {
|
|
panic(fmt.Sprintf("edgeGenFn for func `%s`, arg `%s` was called twice", obj.Name, argName))
|
|
}
|
|
once = true
|
|
return edge
|
|
}
|
|
graph.AddEdgeGraphVertexLight(g, obj, edgeGenFn) // arg -> func
|
|
}
|
|
|
|
return graph, nil
|
|
}
|
|
|
|
// Func returns the reactive stream of values that this expression produces.
|
|
func (obj *ExprCall) Func() (interfaces.Func, error) {
|
|
return obj.buildFunc() // uses obj.Name to build the func
|
|
}
|
|
|
|
// SetValue here is used to store the result of the last computation of this
|
|
// expression node after it has received all the required input values. This
|
|
// value is cached and can be retrieved by calling Value.
|
|
func (obj *ExprCall) SetValue(value types.Value) error {
|
|
if err := obj.typ.Cmp(value.Type()); err != nil {
|
|
return err
|
|
}
|
|
obj.V = value
|
|
return nil
|
|
}
|
|
|
|
// Value returns the value of this expression in our type system. This will
|
|
// usually only be valid once the engine has run and values have been produced.
|
|
// This might get called speculatively (early) during unification to learn more.
|
|
// It is often unlikely that this kind of speculative execution finds something.
|
|
// This particular implementation of the function returns the previously stored
|
|
// and cached value as received by SetValue.
|
|
func (obj *ExprCall) Value() (types.Value, error) {
|
|
if obj.V == nil {
|
|
return nil, fmt.Errorf("func value does not yet exist")
|
|
}
|
|
return obj.V, nil
|
|
}
|
|
|
|
// ExprVar is a representation of a variable lookup. It returns the expression
|
|
// that that variable refers to.
|
|
type ExprVar struct {
|
|
scope *interfaces.Scope // store for referencing this later
|
|
typ *types.Type
|
|
|
|
Name string // name of the variable
|
|
}
|
|
|
|
// Apply is a general purpose iterator method that operates on any AST node. It
|
|
// is not used as the primary AST traversal function because it is less readable
|
|
// and easy to reason about than manually implementing traversal for each node.
|
|
// Nevertheless, it is a useful facility for operations that might only apply to
|
|
// a select number of node types, since they won't need extra noop iterators...
|
|
func (obj *ExprVar) Apply(fn func(interfaces.Node) error) error { return fn(obj) }
|
|
|
|
// String returns a short representation of this expression.
|
|
func (obj *ExprVar) String() string { return fmt.Sprintf("var(%s)", obj.Name) }
|
|
|
|
// Init initializes this branch of the AST, and returns an error if it fails to
|
|
// validate.
|
|
func (obj *ExprVar) Init(*interfaces.Data) error { return nil }
|
|
|
|
// Interpolate returns a new node (aka a copy) once it has been expanded. This
|
|
// generally increases the size of the AST when it is used. It calls Interpolate
|
|
// on any child elements and builds the new node with those new node contents.
|
|
// Here it returns itself, since variable names cannot be interpolated. We don't
|
|
// support variable, variables or anything crazy like that.
|
|
func (obj *ExprVar) Interpolate() (interfaces.Expr, error) {
|
|
return &ExprVar{
|
|
scope: obj.scope,
|
|
Name: obj.Name,
|
|
}, nil
|
|
}
|
|
|
|
// SetScope stores the scope for use in this resource.
|
|
func (obj *ExprVar) SetScope(scope *interfaces.Scope) error {
|
|
if scope == nil {
|
|
scope = interfaces.EmptyScope()
|
|
}
|
|
obj.scope = scope
|
|
return nil
|
|
}
|
|
|
|
// SetType is used to set the type of this expression once it is known. This
|
|
// usually happens during type unification, but it can also happen during
|
|
// parsing if a type is specified explicitly. Since types are static and don't
|
|
// change on expressions, if you attempt to set a different type than what has
|
|
// previously been set (when not initially known) this will error.
|
|
func (obj *ExprVar) SetType(typ *types.Type) error {
|
|
if obj.typ != nil {
|
|
return obj.typ.Cmp(typ) // if not set, ensure it doesn't change
|
|
}
|
|
obj.typ = typ // set
|
|
return nil
|
|
}
|
|
|
|
// Type returns the type of this expression.
|
|
func (obj *ExprVar) Type() (*types.Type, error) {
|
|
// return type if it is already known statically...
|
|
// it is useful for type unification to have some extra info
|
|
expr, exists := obj.scope.Variables[obj.Name]
|
|
// if !exists, just ignore the error for now since this is speculation!
|
|
// this logic simplifies down to just this!
|
|
if exists && obj.typ == nil {
|
|
return expr.Type()
|
|
}
|
|
|
|
if obj.typ == nil {
|
|
return nil, interfaces.ErrTypeCurrentlyUnknown
|
|
}
|
|
return obj.typ, nil
|
|
}
|
|
|
|
// Unify returns the list of invariants that this node produces. It recursively
|
|
// calls Unify on any children elements that exist in the AST, and returns the
|
|
// collection to the caller.
|
|
func (obj *ExprVar) Unify() ([]interfaces.Invariant, error) {
|
|
var invariants []interfaces.Invariant
|
|
|
|
// lookup value from scope
|
|
expr, exists := obj.scope.Variables[obj.Name]
|
|
if !exists {
|
|
return nil, fmt.Errorf("var `%s` does not exist in this scope", obj.Name)
|
|
}
|
|
|
|
// if this was set explicitly by the parser
|
|
if obj.typ != nil {
|
|
invar := &unification.EqualsInvariant{
|
|
Expr: obj,
|
|
Type: obj.typ,
|
|
}
|
|
invariants = append(invariants, invar)
|
|
}
|
|
|
|
// don't recurse because we already got this through the bind statement
|
|
//invars, err := expr.Unify()
|
|
//if err != nil {
|
|
// return nil, err
|
|
//}
|
|
//invariants = append(invariants, invars...)
|
|
|
|
// this expression's type must be the type of what the var is bound to!
|
|
// TODO: does this always cause an identical duplicate invariant?
|
|
invar := &unification.EqualityInvariant{
|
|
Expr1: obj,
|
|
Expr2: expr,
|
|
}
|
|
invariants = append(invariants, invar)
|
|
|
|
return invariants, nil
|
|
}
|
|
|
|
// Graph returns the reactive function graph which is expressed by this node. It
|
|
// includes any vertices produced by this node, and the appropriate edges to any
|
|
// vertices that are produced by its children. Nodes which fulfill the Expr
|
|
// interface directly produce vertices (and possible children) where as nodes
|
|
// that fulfill the Stmt interface do not produces vertices, where as their
|
|
// children might. This returns a graph with a single vertex (itself) in it, and
|
|
// the edges from all of the child graphs to this. The child graph in this case
|
|
// is the graph which is obtained from the bound expression. The edge points
|
|
// from that expression to this vertex. The function used for this vertex is a
|
|
// simple placeholder which sucks incoming values in and passes them on. This is
|
|
// important for filling the logical requirements of the graph type checker, and
|
|
// to avoid duplicating production of the incoming input value from the bound
|
|
// expression.
|
|
func (obj *ExprVar) Graph() (*pgraph.Graph, error) {
|
|
graph, err := pgraph.NewGraph("var")
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "could not create graph")
|
|
}
|
|
graph.AddVertex(obj)
|
|
|
|
// ??? = $foo (this is the foo)
|
|
// lookup value from scope
|
|
expr, exists := obj.scope.Variables[obj.Name]
|
|
if !exists {
|
|
return nil, fmt.Errorf("var `%s` does not exist in this scope", obj.Name)
|
|
}
|
|
|
|
// should already exist in graph (i think)...
|
|
graph.AddVertex(expr) // duplicate additions are ignored and are harmless
|
|
|
|
// the expr needs to point to the var lookup expression
|
|
g, err := expr.Graph()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
edge := &funcs.Edge{Args: []string{fmt.Sprintf("var:%s", obj.Name)}}
|
|
|
|
var once bool
|
|
edgeGenFn := func(v1, v2 pgraph.Vertex) pgraph.Edge {
|
|
if once {
|
|
panic(fmt.Sprintf("edgeGenFn for var `%s` was called twice", obj.Name))
|
|
}
|
|
once = true
|
|
return edge
|
|
}
|
|
graph.AddEdgeGraphVertexLight(g, obj, edgeGenFn) // expr -> var
|
|
|
|
return graph, nil
|
|
}
|
|
|
|
// Func returns a "pass-through" function which receives the bound value, and
|
|
// passes it to the consumer. This is essential for satisfying the type checker
|
|
// of the function graph engine.
|
|
func (obj *ExprVar) Func() (interfaces.Func, error) {
|
|
expr, exists := obj.scope.Variables[obj.Name]
|
|
if !exists {
|
|
return nil, fmt.Errorf("var `%s` does not exist in scope", obj.Name)
|
|
}
|
|
|
|
// this is wrong, if we did it this way, this expr wouldn't exist as a
|
|
// distinct node in the function graph to relay values through, instead,
|
|
// it would be acting as a "substitution/lookup" function, which just
|
|
// copies the bound function over into here. As a result, we'd have N
|
|
// copies of that function (based on the number of times N that that
|
|
// variable is used) instead of having that single bound function as
|
|
// input which is sent via N different edges to the multiple locations
|
|
// where the variables are used. Since the bound function would still
|
|
// have a single unique pointer, this wouldn't actually exist more than
|
|
// once in the graph, although since it's illogical, it causes the graph
|
|
// type checking (the edge counting in the function graph engine) to
|
|
// notice a problem and error.
|
|
//return expr.Func() // recurse?
|
|
|
|
// instead, return a function which correctly does a lookup in the scope
|
|
// and returns *that* stream of values instead.
|
|
typ, err := obj.Type()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
f, err := expr.Func()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// var func
|
|
return &structs.VarFunc{
|
|
Type: typ,
|
|
Func: f,
|
|
Edge: fmt.Sprintf("var:%s", obj.Name), // the edge name used above in Graph is this...
|
|
}, nil
|
|
}
|
|
|
|
// SetValue here is a no-op, because algorithmically when this is called from
|
|
// the func engine, the child fields (the dest lookup expr) will have had this
|
|
// done to them first, and as such when we try and retrieve the set value from
|
|
// this expression by calling `Value`, it will build it from scratch!
|
|
func (obj *ExprVar) SetValue(value types.Value) error {
|
|
if err := obj.typ.Cmp(value.Type()); err != nil {
|
|
return err
|
|
}
|
|
// noop!
|
|
//obj.V = value
|
|
return nil
|
|
}
|
|
|
|
// Value returns the value of this expression in our type system. This will
|
|
// usually only be valid once the engine has run and values have been produced.
|
|
// This might get called speculatively (early) during unification to learn more.
|
|
// This returns the value this variable points to. It is able to do so because
|
|
// it can lookup in the previous set scope which expression this points to, and
|
|
// then it can call Value on that expression.
|
|
func (obj *ExprVar) Value() (types.Value, error) {
|
|
expr, exists := obj.scope.Variables[obj.Name]
|
|
if !exists {
|
|
return nil, fmt.Errorf("var `%s` does not exist in scope", obj.Name)
|
|
}
|
|
return expr.Value() // recurse
|
|
}
|
|
|
|
// Arg represents a name identifier for a func or class argument declaration and
|
|
// is sometimes accompanied by a type. This does not satisfy the Expr interface.
|
|
type Arg struct {
|
|
Name string
|
|
Type *types.Type // nil if unspecified (needs to be solved for)
|
|
}
|
|
|
|
// String returns a short representation of this arg.
|
|
func (obj *Arg) String() string {
|
|
s := obj.Name
|
|
if obj.Type != nil {
|
|
s += fmt.Sprintf(" %s", obj.Type.String())
|
|
}
|
|
return s
|
|
}
|
|
|
|
// ExprIf represents an if expression which *must* have both branches, and which
|
|
// returns a value. As a result, it has a type. This is different from a StmtIf,
|
|
// which does not need to have both branches, and which does not return a value.
|
|
type ExprIf struct {
|
|
typ *types.Type
|
|
|
|
Condition interfaces.Expr
|
|
ThenBranch interfaces.Expr // could be an ExprBranch
|
|
ElseBranch interfaces.Expr // could be an ExprBranch
|
|
}
|
|
|
|
// Apply is a general purpose iterator method that operates on any AST node. It
|
|
// is not used as the primary AST traversal function because it is less readable
|
|
// and easy to reason about than manually implementing traversal for each node.
|
|
// Nevertheless, it is a useful facility for operations that might only apply to
|
|
// a select number of node types, since they won't need extra noop iterators...
|
|
func (obj *ExprIf) Apply(fn func(interfaces.Node) error) error {
|
|
if err := obj.Condition.Apply(fn); err != nil {
|
|
return err
|
|
}
|
|
if err := obj.ThenBranch.Apply(fn); err != nil {
|
|
return err
|
|
}
|
|
if err := obj.ElseBranch.Apply(fn); err != nil {
|
|
return err
|
|
}
|
|
return fn(obj)
|
|
}
|
|
|
|
// String returns a short representation of this expression.
|
|
func (obj *ExprIf) String() string {
|
|
return fmt.Sprintf("if(%s)", obj.Condition.String()) // TODO: improve this
|
|
}
|
|
|
|
// Init initializes this branch of the AST, and returns an error if it fails to
|
|
// validate.
|
|
func (obj *ExprIf) Init(data *interfaces.Data) error {
|
|
if err := obj.Condition.Init(data); err != nil {
|
|
return err
|
|
}
|
|
if err := obj.ThenBranch.Init(data); err != nil {
|
|
return err
|
|
}
|
|
if err := obj.ElseBranch.Init(data); err != nil {
|
|
return err
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Interpolate returns a new node (aka a copy) once it has been expanded. This
|
|
// generally increases the size of the AST when it is used. It calls Interpolate
|
|
// on any child elements and builds the new node with those new node contents.
|
|
func (obj *ExprIf) Interpolate() (interfaces.Expr, error) {
|
|
condition, err := obj.Condition.Interpolate()
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "could not interpolate Condition")
|
|
}
|
|
thenBranch, err := obj.ThenBranch.Interpolate()
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "could not interpolate ThenBranch")
|
|
}
|
|
elseBranch, err := obj.ElseBranch.Interpolate()
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "could not interpolate ElseBranch")
|
|
}
|
|
return &ExprIf{
|
|
typ: obj.typ,
|
|
Condition: condition,
|
|
ThenBranch: thenBranch,
|
|
ElseBranch: elseBranch,
|
|
}, nil
|
|
}
|
|
|
|
// SetScope stores the scope for later use in this resource and it's children,
|
|
// which it propagates this downwards to.
|
|
func (obj *ExprIf) SetScope(scope *interfaces.Scope) error {
|
|
if err := obj.ThenBranch.SetScope(scope); err != nil {
|
|
return err
|
|
}
|
|
if err := obj.ElseBranch.SetScope(scope); err != nil {
|
|
return err
|
|
}
|
|
return obj.Condition.SetScope(scope)
|
|
}
|
|
|
|
// SetType is used to set the type of this expression once it is known. This
|
|
// usually happens during type unification, but it can also happen during
|
|
// parsing if a type is specified explicitly. Since types are static and don't
|
|
// change on expressions, if you attempt to set a different type than what has
|
|
// previously been set (when not initially known) this will error.
|
|
func (obj *ExprIf) SetType(typ *types.Type) error {
|
|
if obj.typ != nil {
|
|
return obj.typ.Cmp(typ) // if not set, ensure it doesn't change
|
|
}
|
|
obj.typ = typ // set
|
|
return nil
|
|
}
|
|
|
|
// Type returns the type of this expression.
|
|
func (obj *ExprIf) Type() (*types.Type, error) {
|
|
boolValue, err := obj.Condition.Value() // attempt early speculation
|
|
if err == nil && obj.typ == nil {
|
|
branch := obj.ElseBranch
|
|
if boolValue.Bool() { // must not panic
|
|
branch = obj.ThenBranch
|
|
}
|
|
return branch.Type()
|
|
}
|
|
|
|
if obj.typ == nil {
|
|
return nil, interfaces.ErrTypeCurrentlyUnknown
|
|
}
|
|
return obj.typ, nil
|
|
}
|
|
|
|
// Unify returns the list of invariants that this node produces. It recursively
|
|
// calls Unify on any children elements that exist in the AST, and returns the
|
|
// collection to the caller.
|
|
func (obj *ExprIf) Unify() ([]interfaces.Invariant, error) {
|
|
var invariants []interfaces.Invariant
|
|
|
|
// if this was set explicitly by the parser
|
|
if obj.typ != nil {
|
|
invar := &unification.EqualsInvariant{
|
|
Expr: obj,
|
|
Type: obj.typ,
|
|
}
|
|
invariants = append(invariants, invar)
|
|
}
|
|
|
|
// conditional expression might have some children invariants to share
|
|
condition, err := obj.Condition.Unify()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
invariants = append(invariants, condition...)
|
|
|
|
// the condition must ultimately be a boolean
|
|
conditionInvar := &unification.EqualsInvariant{
|
|
Expr: obj.Condition,
|
|
Type: types.TypeBool,
|
|
}
|
|
invariants = append(invariants, conditionInvar)
|
|
|
|
// recurse into the two branches
|
|
thenBranch, err := obj.ThenBranch.Unify()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
invariants = append(invariants, thenBranch...)
|
|
|
|
elseBranch, err := obj.ElseBranch.Unify()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
invariants = append(invariants, elseBranch...)
|
|
|
|
// the two branches must be equally typed
|
|
branchesInvar := &unification.EqualityInvariant{
|
|
Expr1: obj.ThenBranch,
|
|
Expr2: obj.ElseBranch,
|
|
}
|
|
invariants = append(invariants, branchesInvar)
|
|
|
|
// the two branches must match the type of the whole expression
|
|
thenInvar := &unification.EqualityInvariant{
|
|
Expr1: obj,
|
|
Expr2: obj.ThenBranch,
|
|
}
|
|
invariants = append(invariants, thenInvar)
|
|
elseInvar := &unification.EqualityInvariant{
|
|
Expr1: obj,
|
|
Expr2: obj.ElseBranch,
|
|
}
|
|
invariants = append(invariants, elseInvar)
|
|
|
|
return invariants, nil
|
|
}
|
|
|
|
// Graph returns the reactive function graph which is expressed by this node. It
|
|
// includes any vertices produced by this node, and the appropriate edges to any
|
|
// vertices that are produced by its children. Nodes which fulfill the Expr
|
|
// interface directly produce vertices (and possible children) where as nodes
|
|
// that fulfill the Stmt interface do not produces vertices, where as their
|
|
// children might. This particular if expression doesn't do anything clever here
|
|
// other than adding in both branches of the graph. Since we're functional, this
|
|
// shouldn't have any ill effects.
|
|
// XXX: is this completely true if we're running technically impure, but safe
|
|
// built-in functions on both branches? Can we turn off half of this?
|
|
func (obj *ExprIf) Graph() (*pgraph.Graph, error) {
|
|
graph, err := pgraph.NewGraph("if")
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "could not create graph")
|
|
}
|
|
graph.AddVertex(obj)
|
|
|
|
exprs := map[string]interfaces.Expr{
|
|
"c": obj.Condition,
|
|
"a": obj.ThenBranch,
|
|
"b": obj.ElseBranch,
|
|
}
|
|
for _, argName := range []string{"c", "a", "b"} { // deterministic order
|
|
x := exprs[argName]
|
|
g, err := x.Graph()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
edge := &funcs.Edge{Args: []string{argName}}
|
|
|
|
var once bool
|
|
edgeGenFn := func(v1, v2 pgraph.Vertex) pgraph.Edge {
|
|
if once {
|
|
panic(fmt.Sprintf("edgeGenFn for ifexpr edge `%s` was called twice", argName))
|
|
}
|
|
once = true
|
|
return edge
|
|
}
|
|
graph.AddEdgeGraphVertexLight(g, obj, edgeGenFn) // branch -> if
|
|
}
|
|
|
|
return graph, nil
|
|
}
|
|
|
|
// Func returns a function which returns the correct branch based on the ever
|
|
// changing conditional boolean input.
|
|
func (obj *ExprIf) Func() (interfaces.Func, error) {
|
|
typ, err := obj.Type()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return &structs.IfFunc{
|
|
Type: typ, // this is the output type of the expression
|
|
}, nil
|
|
}
|
|
|
|
// SetValue here is a no-op, because algorithmically when this is called from
|
|
// the func engine, the child fields (the branches expr's) will have had this
|
|
// done to them first, and as such when we try and retrieve the set value from
|
|
// this expression by calling `Value`, it will build it from scratch!
|
|
func (obj *ExprIf) SetValue(value types.Value) error {
|
|
if err := obj.typ.Cmp(value.Type()); err != nil {
|
|
return err
|
|
}
|
|
// noop!
|
|
//obj.V = value
|
|
return nil
|
|
}
|
|
|
|
// Value returns the value of this expression in our type system. This will
|
|
// usually only be valid once the engine has run and values have been produced.
|
|
// This might get called speculatively (early) during unification to learn more.
|
|
// This particular expression evaluates the condition and returns the correct
|
|
// branch's value accordingly.
|
|
func (obj *ExprIf) Value() (types.Value, error) {
|
|
boolValue, err := obj.Condition.Value()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
if boolValue.Bool() { // must not panic
|
|
return obj.ThenBranch.Value()
|
|
}
|
|
return obj.ElseBranch.Value()
|
|
}
|