Files
mgmt/lang/core/iter/map_func.go
James Shubin 415e22abe2 lang: core, funcs, types: Add ctx to simple func
Plumb through the standard context.Context so that a function can be
cancelled if someone requests this. It makes it less awkward to write
simple functions that might depend on io or network access.
2024-05-09 19:25:46 -04:00

824 lines
26 KiB
Go

// Mgmt
// Copyright (C) 2013-2024+ James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
//
// Additional permission under GNU GPL version 3 section 7
//
// If you modify this program, or any covered work, by linking or combining it
// with embedded mcl code and modules (and that the embedded mcl code and
// modules which link with this program, contain a copy of their source code in
// the authoritative form) containing parts covered by the terms of any other
// license, the licensors of this program grant you additional permission to
// convey the resulting work. Furthermore, the licensors of this program grant
// the original author, James Shubin, additional permission to update this
// additional permission if he deems it necessary to achieve the goals of this
// additional permission.
package coreiter
import (
"context"
"fmt"
"github.com/purpleidea/mgmt/lang/funcs"
"github.com/purpleidea/mgmt/lang/funcs/structs"
"github.com/purpleidea/mgmt/lang/interfaces"
"github.com/purpleidea/mgmt/lang/types"
"github.com/purpleidea/mgmt/lang/types/full"
"github.com/purpleidea/mgmt/util"
"github.com/purpleidea/mgmt/util/errwrap"
)
const (
// MapFuncName is the name this function is registered as.
MapFuncName = "map"
// arg names...
mapArgNameInputs = "inputs"
mapArgNameFunction = "function"
)
func init() {
funcs.ModuleRegister(ModuleName, MapFuncName, func() interfaces.Func { return &MapFunc{} }) // must register the func and name
}
var _ interfaces.PolyFunc = &MapFunc{} // ensure it meets this expectation
// MapFunc is the standard map iterator function that applies a function to each
// element in a list. It returns a list with the same number of elements as the
// input list. There is no requirement that the element output type be the same
// as the input element type. This implements the signature: `func(inputs []T1,
// function func(T1) T2) []T2` instead of the alternate with the two input args
// swapped, because while the latter is more common with languages that support
// partial function application, the former variant that we implemented is much
// more readable when using an inline lambda.
// TODO: should we extend this to support iterating over map's and structs, or
// should that be a different function? I think a different function is best.
type MapFunc struct {
Type *types.Type // this is the type of the elements in our input list
RType *types.Type // this is the type of the elements in our output list
init *interfaces.Init
last types.Value // last value received to use for diff
lastFuncValue *full.FuncValue // remember the last function value
lastInputListLength int // remember the last input list length
inputListType *types.Type
outputListType *types.Type
// outputChan is an initially-nil channel from which we receive output
// lists from the subgraph. This channel is reset when the subgraph is
// recreated.
outputChan chan types.Value
}
// String returns a simple name for this function. This is needed so this struct
// can satisfy the pgraph.Vertex interface.
func (obj *MapFunc) String() string {
return MapFuncName
}
// ArgGen returns the Nth arg name for this function.
func (obj *MapFunc) ArgGen(index int) (string, error) {
seq := []string{mapArgNameInputs, mapArgNameFunction} // inverted for pretty!
if l := len(seq); index >= l {
return "", fmt.Errorf("index %d exceeds arg length of %d", index, l)
}
return seq[index], nil
}
// Unify returns the list of invariants that this func produces.
func (obj *MapFunc) Unify(expr interfaces.Expr) ([]interfaces.Invariant, error) {
var invariants []interfaces.Invariant
var invar interfaces.Invariant
// func(inputs []T1, function func(T1) T2) []T2
inputsName, err := obj.ArgGen(0)
if err != nil {
return nil, err
}
functionName, err := obj.ArgGen(1)
if err != nil {
return nil, err
}
dummyArgList := &interfaces.ExprAny{} // corresponds to the input list
dummyArgFunc := &interfaces.ExprAny{} // corresponds to the input func
dummyOutList := &interfaces.ExprAny{} // corresponds to the output list
t1Expr := &interfaces.ExprAny{} // corresponds to the t1 type
t2Expr := &interfaces.ExprAny{} // corresponds to the t2 type
invar = &interfaces.EqualityWrapListInvariant{
Expr1: dummyArgList,
Expr2Val: t1Expr,
}
invariants = append(invariants, invar)
invar = &interfaces.EqualityWrapListInvariant{
Expr1: dummyOutList,
Expr2Val: t2Expr,
}
invariants = append(invariants, invar)
// full function
mapped := make(map[string]interfaces.Expr)
ordered := []string{inputsName, functionName}
mapped[inputsName] = dummyArgList
mapped[functionName] = dummyArgFunc
invar = &interfaces.EqualityWrapFuncInvariant{
Expr1: expr, // maps directly to us!
Expr2Map: mapped,
Expr2Ord: ordered,
Expr2Out: dummyOutList,
}
invariants = append(invariants, invar)
// relationship between t1 and t2
argName := util.NumToAlpha(0) // XXX: does the arg name matter?
invar = &interfaces.EqualityWrapFuncInvariant{
Expr1: dummyArgFunc,
Expr2Map: map[string]interfaces.Expr{
argName: t1Expr,
},
Expr2Ord: []string{argName},
Expr2Out: t2Expr,
}
invariants = append(invariants, invar)
// generator function
fn := func(fnInvariants []interfaces.Invariant, solved map[interfaces.Expr]*types.Type) ([]interfaces.Invariant, error) {
for _, invariant := range fnInvariants {
// search for this special type of invariant
cfavInvar, ok := invariant.(*interfaces.CallFuncArgsValueInvariant)
if !ok {
continue
}
// did we find the mapping from us to ExprCall ?
if cfavInvar.Func != expr {
continue
}
// cfavInvar.Expr is the ExprCall! (the return pointer)
// cfavInvar.Args are the args that ExprCall uses!
if l := len(cfavInvar.Args); l != 2 {
return nil, fmt.Errorf("unable to build function with %d args", l)
}
// we must have exactly two args
var invariants []interfaces.Invariant
var invar interfaces.Invariant
// add the relationship to the returned value
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Expr,
Expr2: dummyOutList,
}
invariants = append(invariants, invar)
// add the relationships to the called args
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Args[0],
Expr2: dummyArgList,
}
invariants = append(invariants, invar)
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Args[1],
Expr2: dummyArgFunc,
}
invariants = append(invariants, invar)
invar = &interfaces.EqualityWrapListInvariant{
Expr1: cfavInvar.Args[0],
Expr2Val: t1Expr,
}
invariants = append(invariants, invar)
invar = &interfaces.EqualityWrapListInvariant{
Expr1: cfavInvar.Expr,
Expr2Val: t2Expr,
}
invariants = append(invariants, invar)
var t1, t2 *types.Type // as seen in our sig's
var foundArgName string = util.NumToAlpha(0) // XXX: is this a hack?
// validateArg0 checks: inputs []T1
validateArg0 := func(typ *types.Type) error {
if typ == nil { // unknown so far
return nil
}
if typ.Kind != types.KindList {
return fmt.Errorf("input type must be of kind list")
}
if typ.Val == nil { // TODO: is this okay to add?
return nil // unknown so far
}
if t1 == nil { // t1 is not yet known, so done!
t1 = typ.Val // learn!
return nil
}
//if err := typ.Val.Cmp(t1); err != nil {
// return errwrap.Wrapf(err, "input type was inconsistent")
//}
//return nil
return errwrap.Wrapf(typ.Val.Cmp(t1), "input type was inconsistent")
}
// validateArg1 checks: func(T1) T2
validateArg1 := func(typ *types.Type) error {
if typ == nil { // unknown so far
return nil
}
if typ.Kind != types.KindFunc {
return fmt.Errorf("input type must be of kind func")
}
if len(typ.Map) != 1 || len(typ.Ord) != 1 {
return fmt.Errorf("input type func must have only one input arg")
}
arg, exists := typ.Map[typ.Ord[0]]
if !exists {
// programming error
return fmt.Errorf("input type func first arg is missing")
}
if t1 != nil {
if err := arg.Cmp(t1); err != nil {
return errwrap.Wrapf(err, "input type func arg was inconsistent")
}
}
if t2 != nil {
if err := typ.Out.Cmp(t2); err != nil {
return errwrap.Wrapf(err, "input type func output was inconsistent")
}
}
// in case they weren't set already
t1 = arg
t2 = typ.Out
foundArgName = typ.Ord[0] // we found a name!
return nil
}
if typ, err := cfavInvar.Args[0].Type(); err == nil { // is it known?
// this sets t1 and t2 on success if it learned
if err := validateArg0(typ); err != nil {
return nil, errwrap.Wrapf(err, "first input arg type is inconsistent")
}
}
if typ, exists := solved[cfavInvar.Args[0]]; exists { // alternate way to lookup type
// this sets t1 and t2 on success if it learned
if err := validateArg0(typ); err != nil {
return nil, errwrap.Wrapf(err, "first input arg type is inconsistent")
}
}
// XXX: since we might not yet have association to this
// expression (dummyArgList) yet, we could consider
// returning some of the invariants and a new generator
// and hoping we get a hit on this one the next time.
if typ, exists := solved[dummyArgList]; exists { // alternate way to lookup type
// this sets t1 and t2 on success if it learned
if err := validateArg0(typ); err != nil {
return nil, errwrap.Wrapf(err, "first input arg type is inconsistent")
}
}
if typ, err := cfavInvar.Args[1].Type(); err == nil { // is it known?
// this sets t1 and t2 on success if it learned
if err := validateArg1(typ); err != nil {
return nil, errwrap.Wrapf(err, "second input arg type is inconsistent")
}
}
if typ, exists := solved[cfavInvar.Args[1]]; exists { // alternate way to lookup type
// this sets t1 and t2 on success if it learned
if err := validateArg1(typ); err != nil {
return nil, errwrap.Wrapf(err, "second input arg type is inconsistent")
}
}
// XXX: since we might not yet have association to this
// expression (dummyArgFunc) yet, we could consider
// returning some of the invariants and a new generator
// and hoping we get a hit on this one the next time.
if typ, exists := solved[dummyArgFunc]; exists { // alternate way to lookup type
// this sets t1 and t2 on success if it learned
if err := validateArg1(typ); err != nil {
return nil, errwrap.Wrapf(err, "second input arg type is inconsistent")
}
}
// XXX: look for t1 and t2 in other places?
if t1 != nil {
invar = &interfaces.EqualsInvariant{
Expr: t1Expr,
Type: t1,
}
invariants = append(invariants, invar)
}
if t1 != nil && t2 != nil {
// TODO: if the argName matters, do it here...
_ = foundArgName
//argName := foundArgName // XXX: is this a hack?
//mapped := make(map[string]interfaces.Expr)
//ordered := []string{argName}
//mapped[argName] = t1Expr
//invar = &interfaces.EqualityWrapFuncInvariant{
// Expr1: dummyArgFunc,
// Expr2Map: mapped,
// Expr2Ord: ordered,
// Expr2Out: t2Expr,
//}
//invariants = append(invariants, invar)
}
// note, currently, we can't learn t2 without t1
if t2 != nil {
invar = &interfaces.EqualsInvariant{
Expr: t2Expr,
Type: t2,
}
invariants = append(invariants, invar)
}
// We need to require this knowledge to continue!
if t1 == nil || t2 == nil {
return nil, fmt.Errorf("not enough known about function signature")
}
// TODO: do we return this relationship with ExprCall?
invar = &interfaces.EqualityWrapCallInvariant{
// TODO: should Expr1 and Expr2 be reversed???
Expr1: cfavInvar.Expr,
//Expr2Func: cfavInvar.Func, // same as below
Expr2Func: expr,
}
invariants = append(invariants, invar)
// TODO: are there any other invariants we should build?
return invariants, nil // generator return
}
// We couldn't tell the solver anything it didn't already know!
return nil, fmt.Errorf("couldn't generate new invariants")
}
invar = &interfaces.GeneratorInvariant{
Func: fn,
}
invariants = append(invariants, invar)
return invariants, nil
}
// Polymorphisms returns the list of possible function signatures available for
// this static polymorphic function. It relies on type and value hints to limit
// the number of returned possibilities.
func (obj *MapFunc) Polymorphisms(partialType *types.Type, partialValues []types.Value) ([]*types.Type, error) {
// XXX: double check that this works with `func([]int, func(int) str) []str` (when types change!)
// TODO: look at partialValues to gleam type information?
if partialType == nil {
return nil, fmt.Errorf("zero type information given")
}
if partialType.Kind != types.KindFunc {
return nil, fmt.Errorf("partial type must be of kind func")
}
// If we figure out both of these two types, we'll know the full type...
var t1 *types.Type // type
var t2 *types.Type // rtype
// Look at the returned "out" type if it's known.
if tOut := partialType.Out; tOut != nil {
if tOut.Kind != types.KindList {
return nil, fmt.Errorf("partial out type must be of kind list")
}
t2 = tOut.Val // found (if not nil)
}
ord := partialType.Ord
if partialType.Map != nil {
// TODO: is it okay to assume this?
//if len(ord) == 0 {
// return nil, fmt.Errorf("must have two args in func")
//}
if len(ord) != 2 {
return nil, fmt.Errorf("must have two args in func")
}
if tInputs, exists := partialType.Map[ord[0]]; exists && tInputs != nil {
if tInputs.Kind != types.KindList {
return nil, fmt.Errorf("first input arg must be of kind list")
}
t1 = tInputs.Val // found (if not nil)
}
if tFunction, exists := partialType.Map[ord[1]]; exists && tFunction != nil {
if tFunction.Kind != types.KindFunc {
return nil, fmt.Errorf("second input arg must be a func")
}
fOrd := tFunction.Ord
if fMap := tFunction.Map; fMap != nil {
if len(fOrd) != 1 {
return nil, fmt.Errorf("second input arg func, must have only one arg")
}
if fIn, exists := fMap[fOrd[0]]; exists && fIn != nil {
if err := fIn.Cmp(t1); t1 != nil && err != nil {
return nil, errwrap.Wrapf(err, "first arg function in type is inconsistent")
}
t1 = fIn // found
}
}
if fOut := tFunction.Out; fOut != nil {
if err := fOut.Cmp(t2); t2 != nil && err != nil {
return nil, errwrap.Wrapf(err, "second arg function out type is inconsistent")
}
t2 = fOut // found
}
}
}
if t1 == nil || t2 == nil {
return nil, fmt.Errorf("not enough type information given")
}
tI := types.NewType(fmt.Sprintf("[]%s", t1.String())) // in
tO := types.NewType(fmt.Sprintf("[]%s", t2.String())) // out
tF := types.NewType(fmt.Sprintf("func(%s) %s", t1.String(), t2.String()))
s := fmt.Sprintf("func(%s %s, %s %s) %s", mapArgNameInputs, tI, mapArgNameFunction, tF, tO)
typ := types.NewType(s) // yay!
// TODO: type check that the partialValues are compatible
return []*types.Type{typ}, nil // solved!
}
// Build is run to turn the polymorphic, undetermined function, into the
// specific statically typed version. It is usually run after Unify completes,
// and must be run before Info() and any of the other Func interface methods are
// used. This function is idempotent, as long as the arg isn't changed between
// runs.
func (obj *MapFunc) Build(typ *types.Type) (*types.Type, error) {
// typ is the KindFunc signature we're trying to build...
if typ.Kind != types.KindFunc {
return nil, fmt.Errorf("input type must be of kind func")
}
if len(typ.Ord) != 2 {
return nil, fmt.Errorf("the map needs exactly two args")
}
if typ.Map == nil {
return nil, fmt.Errorf("the map is nil")
}
tInputs, exists := typ.Map[typ.Ord[0]]
if !exists || tInputs == nil {
return nil, fmt.Errorf("first argument was missing")
}
tFunction, exists := typ.Map[typ.Ord[1]]
if !exists || tFunction == nil {
return nil, fmt.Errorf("second argument was missing")
}
if tInputs.Kind != types.KindList {
return nil, fmt.Errorf("first argument must be of kind list")
}
if tFunction.Kind != types.KindFunc {
return nil, fmt.Errorf("second argument must be of kind func")
}
if typ.Out == nil {
return nil, fmt.Errorf("return type must be specified")
}
if typ.Out.Kind != types.KindList {
return nil, fmt.Errorf("return argument must be a list")
}
if len(tFunction.Ord) != 1 {
return nil, fmt.Errorf("the functions map needs exactly one arg")
}
if tFunction.Map == nil {
return nil, fmt.Errorf("the functions map is nil")
}
tArg, exists := tFunction.Map[tFunction.Ord[0]]
if !exists || tArg == nil {
return nil, fmt.Errorf("the functions first argument was missing")
}
if err := tArg.Cmp(tInputs.Val); err != nil {
return nil, errwrap.Wrapf(err, "the functions arg type must match the input list contents type")
}
if tFunction.Out == nil {
return nil, fmt.Errorf("return type of function must be specified")
}
if err := tFunction.Out.Cmp(typ.Out.Val); err != nil {
return nil, errwrap.Wrapf(err, "return type of function must match returned list contents type")
}
obj.Type = tInputs.Val // or tArg
obj.RType = tFunction.Out // or typ.Out.Val
return obj.sig(), nil
}
// Validate tells us if the input struct takes a valid form.
func (obj *MapFunc) Validate() error {
if obj.Type == nil || obj.RType == nil {
return fmt.Errorf("type is not yet known")
}
return nil
}
// Info returns some static info about itself. Build must be called before this
// will return correct data.
func (obj *MapFunc) Info() *interfaces.Info {
sig := obj.sig() // helper
return &interfaces.Info{
Pure: false, // TODO: what if the input function isn't pure?
Memo: false,
Sig: sig,
Err: obj.Validate(),
}
}
// helper
func (obj *MapFunc) sig() *types.Type {
// TODO: what do we put if this is unknown?
tIi := types.TypeVariant
if obj.Type != nil {
tIi = obj.Type
}
tI := types.NewType(fmt.Sprintf("[]%s", tIi.String())) // type of 2nd arg
tOi := types.TypeVariant
if obj.RType != nil {
tOi = obj.RType
}
tO := types.NewType(fmt.Sprintf("[]%s", tOi.String())) // return type
// type of 1st arg (the function)
tF := types.NewType(fmt.Sprintf("func(%s %s) %s", "name-which-can-vary-over-time", tIi.String(), tOi.String()))
s := fmt.Sprintf("func(%s %s, %s %s) %s", mapArgNameInputs, tI, mapArgNameFunction, tF, tO)
return types.NewType(s) // yay!
}
// Init runs some startup code for this function.
func (obj *MapFunc) Init(init *interfaces.Init) error {
obj.init = init
obj.lastFuncValue = nil
obj.lastInputListLength = -1
obj.inputListType = types.NewType(fmt.Sprintf("[]%s", obj.Type))
obj.outputListType = types.NewType(fmt.Sprintf("[]%s", obj.RType))
return nil
}
// Stream returns the changing values that this func has over time.
func (obj *MapFunc) Stream(ctx context.Context) error {
// Every time the FuncValue or the length of the list changes, recreate the
// subgraph, by calling the FuncValue N times on N nodes, each of which
// extracts one of the N values in the list.
defer close(obj.init.Output) // the sender closes
// A Func to send input lists to the subgraph. The Txn.Erase() call ensures
// that this Func is not removed when the subgraph is recreated, so that the
// function graph can propagate the last list we received to the subgraph.
inputChan := make(chan types.Value)
subgraphInput := &structs.ChannelBasedSourceFunc{
Name: "subgraphInput",
Source: obj,
Chan: inputChan,
Type: obj.inputListType,
}
obj.init.Txn.AddVertex(subgraphInput)
if err := obj.init.Txn.Commit(); err != nil {
return errwrap.Wrapf(err, "commit error in Stream")
}
obj.init.Txn.Erase() // prevent the next Reverse() from removing subgraphInput
defer func() {
close(inputChan)
obj.init.Txn.Reverse()
obj.init.Txn.DeleteVertex(subgraphInput)
obj.init.Txn.Commit()
}()
obj.outputChan = nil
canReceiveMoreFuncValuesOrInputLists := true
canReceiveMoreOutputLists := true
for {
if !canReceiveMoreFuncValuesOrInputLists && !canReceiveMoreOutputLists {
//break
return nil
}
select {
case input, ok := <-obj.init.Input:
if !ok {
obj.init.Input = nil // block looping back here
canReceiveMoreFuncValuesOrInputLists = false
continue
}
if obj.last != nil && input.Cmp(obj.last) == nil {
continue // value didn't change, skip it
}
obj.last = input // store for next
value, exists := input.Struct()[mapArgNameFunction]
if !exists {
return fmt.Errorf("programming error, can't find edge")
}
newFuncValue, ok := value.(*full.FuncValue)
if !ok {
return fmt.Errorf("programming error, can't convert to *FuncValue")
}
newInputList, exists := input.Struct()[mapArgNameInputs]
if !exists {
return fmt.Errorf("programming error, can't find edge")
}
// If we have a new function or the length of the input
// list has changed, then we need to replace the
// subgraph with a new one that uses the new function
// the correct number of times.
// It's important to have this compare step to avoid
// redundant graph replacements which slow things down,
// but also cause the engine to lock, which can preempt
// the process scheduler, which can cause duplicate or
// unnecessary re-sending of values here, which causes
// the whole process to repeat ad-nauseum.
n := len(newInputList.List())
if newFuncValue != obj.lastFuncValue || n != obj.lastInputListLength {
obj.lastFuncValue = newFuncValue
obj.lastInputListLength = n
// replaceSubGraph uses the above two values
if err := obj.replaceSubGraph(subgraphInput); err != nil {
return errwrap.Wrapf(err, "could not replace subgraph")
}
canReceiveMoreOutputLists = true
}
// send the new input list to the subgraph
select {
case inputChan <- newInputList:
case <-ctx.Done():
return nil
}
case outputList, ok := <-obj.outputChan:
// send the new output list downstream
if !ok {
obj.outputChan = nil
canReceiveMoreOutputLists = false
continue
}
select {
case obj.init.Output <- outputList:
case <-ctx.Done():
return nil
}
case <-ctx.Done():
return nil
}
}
}
func (obj *MapFunc) replaceSubGraph(subgraphInput interfaces.Func) error {
// Create a subgraph which splits the input list into 'n' nodes, applies
// 'newFuncValue' to each, then combines the 'n' outputs back into a list.
//
// Here is what the subgraph looks like:
//
// digraph {
// "subgraphInput" -> "inputElemFunc0"
// "subgraphInput" -> "inputElemFunc1"
// "subgraphInput" -> "inputElemFunc2"
//
// "inputElemFunc0" -> "outputElemFunc0"
// "inputElemFunc1" -> "outputElemFunc1"
// "inputElemFunc2" -> "outputElemFunc2"
//
// "outputElemFunc0" -> "outputListFunc"
// "outputElemFunc1" -> "outputListFunc"
// "outputElemFunc1" -> "outputListFunc"
//
// "outputListFunc" -> "subgraphOutput"
// }
const channelBasedSinkFuncArgNameEdgeName = structs.ChannelBasedSinkFuncArgName // XXX: not sure if the specific name matters.
// delete the old subgraph
if err := obj.init.Txn.Reverse(); err != nil {
return errwrap.Wrapf(err, "could not Reverse")
}
// create the new subgraph
obj.outputChan = make(chan types.Value)
subgraphOutput := &structs.ChannelBasedSinkFunc{
Name: "subgraphOutput",
Target: obj,
EdgeName: channelBasedSinkFuncArgNameEdgeName,
Chan: obj.outputChan,
Type: obj.outputListType,
}
obj.init.Txn.AddVertex(subgraphOutput)
m := make(map[string]*types.Type)
ord := []string{}
for i := 0; i < obj.lastInputListLength; i++ {
argName := fmt.Sprintf("outputElem%d", i)
m[argName] = obj.RType
ord = append(ord, argName)
}
typ := &types.Type{
Kind: types.KindFunc,
Map: m,
Ord: ord,
Out: obj.outputListType,
}
outputListFunc := structs.SimpleFnToDirectFunc(
"mapOutputList",
&types.FuncValue{
V: func(_ context.Context, args []types.Value) (types.Value, error) {
listValue := &types.ListValue{
V: args,
T: obj.outputListType,
}
return listValue, nil
},
T: typ,
},
)
obj.init.Txn.AddVertex(outputListFunc)
obj.init.Txn.AddEdge(outputListFunc, subgraphOutput, &interfaces.FuncEdge{
Args: []string{channelBasedSinkFuncArgNameEdgeName},
})
for i := 0; i < obj.lastInputListLength; i++ {
i := i
inputElemFunc := structs.SimpleFnToDirectFunc(
fmt.Sprintf("mapInputElem[%d]", i),
&types.FuncValue{
V: func(_ context.Context, args []types.Value) (types.Value, error) {
if len(args) != 1 {
return nil, fmt.Errorf("inputElemFunc: expected a single argument")
}
arg := args[0]
list, ok := arg.(*types.ListValue)
if !ok {
return nil, fmt.Errorf("inputElemFunc: expected a ListValue argument")
}
return list.List()[i], nil
},
T: types.NewType(fmt.Sprintf("func(inputList %s) %s", obj.inputListType, obj.Type)),
},
)
obj.init.Txn.AddVertex(inputElemFunc)
outputElemFunc, err := obj.lastFuncValue.Call(obj.init.Txn, []interfaces.Func{inputElemFunc})
if err != nil {
return errwrap.Wrapf(err, "could not call obj.lastFuncValue.Call()")
}
obj.init.Txn.AddEdge(subgraphInput, inputElemFunc, &interfaces.FuncEdge{
Args: []string{"inputList"},
})
obj.init.Txn.AddEdge(outputElemFunc, outputListFunc, &interfaces.FuncEdge{
Args: []string{fmt.Sprintf("outputElem%d", i)},
})
}
return obj.init.Txn.Commit()
}